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Abstract. Texture synthesis is the ability to create ensembles of
images of similar structures from sample texiures that have been
photographed. The method we employ for texiure synthesis is
based on histogram matching of images at multiple scales and ori-
entations. This paper reports two fast and in one case simple algo-
rithms for histogram maiching. We show that the sort-maiching and
the optimal cumulative distribution function (CDF)-matching (OCM)
algorithms provide high computational speed compared to that pro-
vided by the conventional approach. The sort-matching aigorithm
also provides exact histogram matching. Results of fexture synthe-
sis using either method show no subjective percepliual differences.
The sort-matching algorithm is attractive because of its simplicity
and speed, however as the size of the image increases, the OCM
algorithm may be preferred for optimal computational speed.
© 2000 SPIE and IS&T. [S1017-9909(00)00601-2]

1 Introduction

Texture synthesis is the ability to create ensembles of im-
ages, that Jook visually similar in structure yet differ pixel
to pixel, from sample textures that have been photographed.
An important common application of texture synthesis is
real-time computer graphics where the objective is 1o gen-
erate textures ‘‘on the fly”” to simulate realistic sccncs,l""
without the artifacts created from texture maps.’ Procedural
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techniques have been developed for real-time texture
synthesis.® Such approaches, however, are not necessarily
optimal for natural textures.

We instead propose to use an approach that employs
multiscale decomposition and filtering of both a texture
sample and a realization of white noise image for each
synthesis. The utilization of multiple realizations of white
noise images allows photorealistic generation of ensembles
of statistical textures. Textures such as marble, grass, and
sand have been synthesized,”® and we have extended the
method to include synthesis of medical textures.’

Texture synthesis may indeed play an important role in
the assessment of image quality in medical imaging, where
quality is defined in relation to medical tasks efficacy.'® To
assess the ability to detect lesions in various types of medi-
cal images (e.g., liver ultrasound, mammogram), a large
ensemble of statistically equivalent images is required.
These images may serve as background images into which
one may or may not insert objects of interest.'' !> For ex-
ample, in optimizing or assessing a mammography imaging
system to detect cancerous lesions, a large number of sta-
tistically equivalent mammography backgrounds, half with
inserted lesions, half without, can be generated.'® The en-
semble of images can be created using texture synthesis as
an alternative to establishing a large pool of certified ‘‘nor-
mal’”’ mammograms.

An approach to mammography texture synthesis is
shown in Fig. 1 where some underlying small-scale texture
is extracted from the larger scale. Two realizations of the
synthesized small-scale texture are shown. The larger scale
may be synthesized using, for example, lumpy back-
grounds.!! By recombining the synthetic structures, syn-
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Fig. 1 In the top row, (a) shows a 256 X256 pixel image of a sample
mammeography tissue; the same image blurred with a Gaussian of o
6 pixels is shown in (b). The underlying mammography texture
shown in (c} is obtained by subtracting image (b} from image (a). In
the bottom row, a realization of a white noise image is shown in (d);
and two examptes of synthesis of the underlying mammography tex-
ture shown in {c) are displayed In (&) and (f), respectively.

thetic mammograms may be obtained. Naturally, the need
for large ensembles of statistically equivalent images for
image quality assessment may apply equally well to do-
mains of image science other than medical imaging.

The method of texture synthesis, that we employ to
make, for example, the mammography texture samples
shown in Fig. 1, comprises a technique known as histogram
matching between two images recursively. Histogram
matching, sometimes referred to as histogram specification,
is an image processing technique, specifically a point op-
eration, which modifies a candidate image so that its histo-
gram matches that of a model image.!” While histogram
matching is not widely employed in image processing, it is
a generalization of histogram equalization, an image pro-
cessing technique commonly employed to enhance low-
contrast images.'®™2° The synthesis algorithm will be fur-
ther detailed in Sec. 7.1. Based on applications that require
cither the generation of on-the-fly synthetic textures (i.e.,
computer graphics} or large ensemble of synthetic textures
(i.e., image quality assessment in image science) high-
speed computation is necessary for all procedures of the
texture synthesis algorithm, including histogram matching,
A further important point for the motivation of a faster
histogram-matching algorithm is that we shall encounter
multiple histogram matching steps in the synthesis of a
single realization of a texture as a consequence of the
muitiple-scale and multiple-orientation decomposition re-
quired by the texture synthesis algorithm. The histogram-
matching algorithm thus needs to be efficient for small im-
ages {e.g., 16X 16 pixels), as well as large ones (e.g., 256
X256 pixels).

A basic question that thus motivated this research is how
to speed up the texture synthesis algorithm. For equally fast
algorithms, we shall also value the simplicity of the algo-
rithm. The investigation of how various components of the
texture synthesis algorithm can be optimized for increased
computational speed will be reported elsewhere. This paper
reports on establishing fast, and, if possible, simple,
histogram-matching algorithms. In this paper, two algo-
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rithms are presented. Within the context of texture synthe-
sis, the overall computational-speed performance and sim-
plicity of the algorithms are also assessed.

2 Approaches to Histogram Matching

The most common approach to matching the histogram of
two images starts by computing their gray level histograms
and their CDFs. Matching the two CDFs is then conducted
as summarized in Sec. 3. We refer to this technique as the
CDF-matching approach.'”?~% 1t is to our knowledge the
only algorithm of histogram matching given in the litera-
ture. Based on this basic algorithm, an optimal CDF-
matching algorithm, referred to as the OCM algorithm, is
proposed. The algorithm is optimal in the sense that, among
possible implementations of CDF-matching, it minimizes
computational time by employing not only look-up tables
(LUTs) for performing histogram matching, but impor-
tantly, the property that the CDF is a monotonically nonde-
creasing function. Once established, this improvement
seems a simple idea. However when not accounted for, it
leads to suboptimal computational times and higher com-
plexity,

We shall also present an alternative to the CDF-
matching approach referred to as the sort-matching algo-
rithm. The benefits of this approach are its simplicity, lower
overhead than CDF matching, and high speed. Its simplic-
ity lies in the fact that it does not employ either histogram
or cumulative distribution computations. Rather, the ap-
proach is based on the matching of two sorted arrays, thus
its name. A theoretical time analysis shows, however, that
the sort-matching algorithm is more complex than the
OCM algorithm. This implies that as the images get larger,
the time complexity overwhelms the benefits of lower over-
head. For images larger than 6464 pixels, OCM is effec-
tively faster. However, for the application of texture syn-
thesis demonstrated in Sec. 7, which involves images of
various sizes due to the multiple-scale decomposition from
256 X256 to 16X 16 pixels images, it will be shown that the
sort-matching algorithm is still the fastest algorithm, An
additional important feature of the algorithm is the exact
matching of the histograms obtained as discussed in Sec.
7.2. The sort-matching algorithm described assumes that
the two images have equal size. A strategy to apply the
algorithm to images of different sizes is discussed in Sec.
7.2 as well.

3 Histogram Matching with the CDF-Matching
Algorithm

Given a candidate image B, whose histogram is to be
matched to that of a model image A, the CDF-matching
algorithm proceeds in four steps:® 1. The normalized his-
tograms H_A and H_B of images A and B, respectively,
are computed by dividing the histogram values by the total
number of pixels in the image. 2. The CDFs, CDF_A and
CDF_B of images A and B, respectively, are then formed
from the normalized histograms. Each CDF then operates
as a LUT, where the indices of the LUT are the gray level
values (0—255), and the content of the LUT at each index is
the value of the CDF. 3. For each pixel in image B of
associated gray level i, the corresponding value of CDF_B
corresponding to gray level i is determined via the LUT.
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The corresponding gray level value j in image A such that
(CDF_A); equal (CDF_B); must then be found. 4. The
final step is to substitute gray level j for gray level i in
image B.

The specific implementation of the CDF-matching algo-
rithm will impact the computational speed. We shall esti-
mate the minimum number of operations that are required
to perform CDF matching under the assumption that all
computations are executed on one processor. We shall also
assume a bin size for histogram computation of one, where
the gray levels of the image are binned into 256 different
levels spanning 0—255 in increments of one. Any smaller
binning of the gray level values would require a larger
number of operations for CDF computation. We shall use K
to denote the number of bins used in histogram computa-
tion and N to denote the number of pixels in the image. A
time analysis of this algorithm breaks the steps into several
parts: N operations per image to compute the histogram,
K —1 operations to make the CDFs; on average K/2 opera-
tions to find the CDF_A value that is closest to that of the
CDF_B value; and N operations to update the gray level
values of the image. The K/2 matching operation is done
for each of the N update operations. In summary, the total
time analysis yields an O(N+K-+KN) or O(KN) algo-
rithm,

4 The Optimal CDF-matching Algorithm

To improve the speed of performing CDF matching, a LUT
between the two functions to be matched can be built. The
two functions must first be set up in two arrays with CDFs,
A LUT is then formed based on the target and the source
arrays by starting with the first target value and then search-
ing the source array for the nearest value to the target value.
This search can be performed in a monotonically nonde-
creasing manner because any new matching value will nec-
essarily be greater than or equal to the previously acquired
matching value,

The C code is essentially two lines in a loop:

void OCM(float target[], float source{], int AQUT[])

{
int {, cur_ix=0;
for (1=0;1<256;i+ +)/** Get the value of target [i]**/

/**Find the source value equal to or
**greater than the current target value**/
while (source[cur_ix]<target[i])
cur_ix+-+;
/**Find out if the current or previous source
**value is closer to the current target value**/
if (source[cur_ix]—target[i]) < (target[i]— source
[cur_ix—17)
AOUT[i]=cur_ix;
else
AOUT[i]=cur_ix—1;
}

}

As previously established, it takes N+ X operations for
histogram and CDF computations. Based on the linear
search, K*K operations are needed to build the table. N
operations are required to update image B. Thus, the total

time analysis yields an O(N+K+KK+N) or O(N
+KK) algorithm, If a binary search instead of a linear
search is employed to build up the table, building the LUT
takes K log K operations instead. This yields an O(N
+K log K) algorithm. Finally, when accounting for the
fact that the two CDF functions are monotonically nonde-
creasing, the LUT can be constructed in only K operations.
The algorithm performance thus improves from O(N
+K log K) to O(N+K).

5 Histogram Matching with the Sort-matching
Algorithm

The sort-matching algorithm utilizes sorting to implement
an exact histogram matching rather than creating histo-
grams as was done in the CDF-matching algorithm. By
“‘exact histogram matching’’ we mean that upon comple-
tion of the algorithm, the number of pixels of a particular
gray level is the same for both images. The assignment is
such that the lowest gray level pixel of the candidate image
is assigned the value of the lowest gray-level pixel of the
model image. The next-to-lowest gray level pixel of the
candidate image is assigned the value of the next-to-lowest
gray level pixel of the model image. This process is re-
peated until all the pixel values have been assigned.

Let us again presume that B represents a candidate im-
age we wish to match to a model image A of the same size.
Rather than the two usual indexing of the images, we will
assume that the pixel values are arranged into one-
dimensional arrays. Bold characters are employed to denote
vector quantities. This lexicographical indexing of the im-
ages, which is generally trivial to implement in most com-
puting languages (e.g., C, Fortran), allows multidimen-
sional arrays to be reduced to one dimension in procedures
and functions. In higher-level languages such as IDL, redi-
mensioning the array is unnecessary since the language al-
lows a multidimensional array element to be accessed by its
one-dimensional lexicographical index. The size of the lin-
car arrays is the total number of pixels in each image. The
algorithm is implemented in two simple steps:

1. The pixel values of the two images are sorted in as-
cending order. The lexicographic indices corresponding to
the sorted gray levels are denoted IND_A and IND_B for
images A and B, respectively, The first element of the list
IND_A contains the index of the lowest gray level value of
A. The second element of IND_A contains the index of the
next-to-lowest gray level value of A, etc. The same applies
to IND_B. Any of the standard sort routines can be used
for this step. We used the generally accepted fastest sort
algorithm, QuickSort. The average time complexity of
QuickSort is O(N log, N).

2. The candidate image B is then assigned the gray level
values of the model image A according to the sorted gray
level values, We can define this step by the following equa-
tion:

B(IND_B)=A(IND_A). (1)

This sequence of sorting and substitution yields an image B
whose histogram is matched with that of A. An illustration
of th:f.)e5 sort-matching algorithm can be found in Rolland
et al.
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Fig. 2 lllustration of one scale level of the steerable pyramid transform used in the texture synthesis

algorithm.

6 Comparison of Computational Speeds of the
Various Approaches

We have estimated the minimum number of operations for
the conventional CDF matching, the QCM, and the sort-
matching algorithms to be O(NK), O(N+K), and
O(N log; N), respectively, where N is the number of pix-
cls and K is the number of gray level values. Therefore, the
OCM and the sort-matching algorithms outperform the
conventional CDF-matching algorithm by a large margin.
The OCM algorithm outperforms the sort-matching algo-
rithm where N is much larger than K. If K was sufficiently
large to wash out the effect of N, which would be the case
for true-color values (X =22%), then the sort-matching al-
gorithm would be the fastest.

7 Application to Texture Synthesis

7.1 Texture Synthesis Algorithm

The algorithm for texture synthesis we have developed is
based on a multiple-scale and multiple-orientation decom-
position of a sample from a model texture image and the
same decomposition of a realization of a uniformly distrib-
uted white noise image.” The decomposition is depicted in
Fig. 2. The decomposition may use, for example, the steer-
able pyramid transform.?¢~? The histograms of the decom-
posed white noise images existing at multiple scales are
then matched with that of the sample texture. After decom-
position and histogram matching at all scales and orienta-
tions, the noise subband images are recombined to yield a
synthetic image. The algorithm was implemented in the
IDL language and is further summarized in Rolland and
Strickland.

7.2 Results and Discussion

Synthesized textures using either the OCM, the conven-
tional CDF matching, or the sort-maiching algorithms are
shown in Fig. 3 for two different model texture images,
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respectively. Two realizations of image synthesis were gen-
crated for each texture model using two different realiza-
tions of the input noise image.

Given one realization of a noise image, the synthesized
images are perceptually identical using the three methods.
Their histograms, however, are slightly different because
only the sort-matching algorithm performs exact histogram
matching as shown. The CDF-matching algorithm performs
only a relatively close match. A comparison of perfor-
mance based on the same noise realizations for each
method allows assessment of potential artifacts (e.g., ran-
dom scrambling of pixel values) that could have been in-
troduced by an approach (e.g., the sort-matching algo-
rithm},

The computational speeds of the algorithms are summa-
rized in Table 1. The timing data were collected on a Sun-
Sparc4 workstation running SOLARIS 2.5.1 and using the IDI.
programming language. For each synthetic image, a com-
putational time was recorded for the histogram matching
procedure at each scale of the decomposition and for a
single iteration of the overall processing of the synthesis.
Seven iterations were typically conducted. The texture syn-
thesis employing the sort-matching and OCM algorithms
are, respectively, about 10 and 60 times faster than when
employing the conventional CDF-matching algorithm for a
256 X256 image. Averaged over the two computational tri-
als, the sort-matching algorithm is the fastest of the three.

The OCM algorithm comes next and quite close. The
OCM also does not degrade as rapidly with image size past
128X128 pixel images. It can be noted that for texture
synthesis, algorithms that differ in the histogram-matching
algorithm employed, the overall computational time re-
quired for histogram matching is small compared to the
decomposition and filtering contributions. We are currently
investigating other decomposition schemes that will further
contribute to a higher computational speed. However, a
faster histogram matching procedure is a first step toward
faster synthesis of images using subband decomposition
and histogram matching.
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Fig. 3 Results of texture synthesis by two methods of histogram matching for two textures. The
histograms of each texture and the syntheses are also shown,
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Table 1 Timing data in s. The computational speeds for the OCM, the conventional CDF matching,
and the sort-matching algorithms are reported for 256 gray scale images. The scale refers to the size
of the decomposed subimages for texture synthesis. Synthesis 1 and 2 refer to the two different
realizations of white noise as a starting point for the synthesis. Overall refers to an iteration of the

synthesis algorithm.

Options QOCM aigorithm CDF-matching Sort-matching algorithm
(s} algorithm (s}
Scale Synthesis  Synthesis  Synthesis  Synthesis Synthesis Synthesis
1 2 1 2 1 2
256x256 149 1.53 91.79 107.25 10.68 10.92
128x128 0.40 0.40 23.12 23.55 0.43 0.44
64 X64 0129 0.126 4,96 8.27 0.09 0.093
32x32 0.058 0.060 1.28 1.29 0.02 0.021
Overall 227 .46 305.98 1402.73 1561.54 228.80 237.99

It is interesting to note that some expected, but uncom-
mon, gray level mappings occurred with the sort-matching
algorithm, Let us consider the 2X2 left-corner subimages
A; and B; of two images A and B, respectively, given by

11
A:
L2 2
and

5 5
B, = .
L

As a result of the sort-matching algorithm, four identical
gray levels given by B, can be mapped to two different
gray levels. It is indeed the nature of any exact histogram-
matching algorithm to yield such mappings. If this mapping
were not preferred, searching for elements of the sorted
arrays with identical pixel values and resetting their gray
levels to identical gray level values would modify the map-
ping. Such a remapping would lead to nonexact histogram
matching and it would cost computational time. In the ap-
plication of texture synthesis presented here, such mapping
as a result of sort matching seems acceptable as shown by
the perceptually similar syntheses when we applied both
methods to a single realization of the noise. Ultimately, an
analysis of the statistical properties may be required for
quantitative analysis.

Finaily, the sort-matching algorithm assumes that the
two images being matched have the same size, which can
be satisfied in the subband-decomposition-based texture
synthesis application. In the case of other applications or
other texture synthesis frameworks, where the images have
dissimilar sizes, the smaller image could be, for example,
interpolated to equal the other image in size before the
sort-matching algorithm is applied.

8 Conclusion

Texture synthesis based on the steerable pyramid transform
requires multiple histogram-matching operations of images
that have been decomposed at multiple scales and orienta-
tions. We have shown that the sort-matching and the OCM
histogram-matching algorithms provide high computational
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speed for texture synthesis, compared to the conventional
approach. In some applications, the sort-matching algo-
rithm may be preferred because it provides exact histogram
matching. Results of texture synthesis that use either of the
methods presented here show no subjective perceptual dif-
ferences. The sort-matching algorithm is attractive because
of its simplicity and speed, however, as the size of the
image increases, the OCM may be preferred for optimal
computational speed.
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