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A fundamental discovery in segmented-mirror active optics is described: symmetrizing the geometry of the
sensor—actuator array provides a computationally effective symmetrization of the mathematical description
for the figure control of a Keck-type telescope mirror. The author establishes a universal mathematical control
model and provides an efficient algorithm to solve this model equation set. This model can be applied to mul-
tifarious Keck-type mirror configurations with a similar sensor—actuator geometry design, no matter what
kind of outline shapes and how many segments they have. With the underlying symmetry, a further extension
of this algorithm is possible without increasing the number of parameters to be estimated for the recently pro-
posed extremely large telescopes, such as the 30-m California Extremely Large Telescope (CELT) and the
100-m OverWhelmingly Large (OWL) telescope. Moreover, careful choice of boundary conditions in conjunc-
tion with the proper choice of minimization algorithm yields results that exceed the performance of the current
existing techniques given by Nelson and Mast [Appl. Opt. 21, 2631 (1982)]. This method allows noise perfor-
mance analysis. Several computer simulation models for application of this algorithm are given for the Keck
10-m Telescope and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope’s (LAMOST’s) M, (Reflect-
ing Schmidt plate) and Mg (spherical primary mirror).
OCIS codes: 230.4040, 350.1260, 010.1080, 000.3860, 080.2720.
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1. INTRODUCTION

In astronomy today, almost all the frontier explorations
rely on the progress of new astronomical technologies. In
order to upgrade angular resolution and detect more-
remote nebulae, astronomical telescopes are being made
with increasingly larger apertures. However, restricted
by the gravity of our planet, our ability to improve the an-
gular resolution by means of molding larger-aperture
monolithic mirrors has reached its limit. It is very diffi-
cult to overcome the financial and technological difficul-
ties associated with building a traditional telescope with
larger than a 6-m aperture: the cost of building a tradi-
tional telescope is proportional to the third power of the
telescope’s aperture diameter.

Active Optics, born at the end of the 1970’s, makes it
possible for us to build even larger telescopes with lower
cost and better optical quality. With this technique, the
twin Keck 10-m telescopes, currently the largest optical
telescopes in the world, were built. The primary mirror
of this telescope is composed of 36 hexagonal mosaic seg-
ments. There are 168 capacitive displacement sensors
installed underneath each intersegment edge for measur-
ing the edge heights between segments, and three dis-
placement actuators are installed on the back of each seg-
ment to provide three out-of-plane degrees of freedom.
All 168 edge-height measurements together with three
tilt measurements for the whole mirror configuration are
used to compute the correction steps of 108 actuators
(three of which are frozen to act as a fiducial segment).
The optical figure of the primary mirror is controlled
adaptively by moving actuators according to sensor
readings.’
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The central problem of active optics in a Keck-type tele-
scope mirror is how to maintain the orientations and po-
sitions of the mirror segments to obtain the ideal mirror
figure that we require. Translating the sensor informa-
tion into the desired actuator motions is the task of a
figure-control algorithm. This mathematical problem is
closely related to the geometry of the sensor—actuator ar-
ray, which determines the matrices of figure-control equa-
tions. Mast and Nelson proposed a figure-control design
for Keck telescopes and analyzed it in detail in 1982.1
The locations of the sensors and actuators of Keck tele-
scopes are shown in Fig. 1.2 A chi-square minimization
technique is used to obtain the actuator motions for cor-
recting the figure perturbations from the 171 readings of
displacement sensors and tilt sensors.! To find the in-
verse matrix of the normal equation set, an efficient
singular-value decomposition (SVD) algorithm is em-
ployed in their control system,! as described by Golub and
Reinsch in 1970.3 This inverse matrix is stored in a com-
puter to eliminate repetitive computations.

With the success of Keck telescopes, telescope experts
proposed more-ambitious configuration telescope projects,
such as the 100-m OverWhelmingly Large (OWL)* the
30-m California Extremely Large Telescope (CELT),? and
the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST).® To implement these designs we
have to repeatedly study the figure-control algorithms for
the diversified project configurations. Moreover, with
the increase in the number of segments, providing the
computing power needed for active optics control becomes
a challenging problem. Thus we propose a question:
can we find a generalized and efficient figure-control algo-
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Fig. 1. Configuration of the primary mirror of the Keck 10-m
telescope showing sensor and actuator locations.

rithm with which to solve all the figure-control problems
of this sort?

In this paper we provide an answer to this question.
We propose a generalized figure-control algorithm that
fits all Keck-type segmented mirrors with multifarious
boundary shapes and provides an efficient algorithm with
which to obtain the actuator motions.

2. ESTABLISHMENT OF A FIGURE-
CONTROL EQUATION SET FOR GENERAL
PURPOSES

A. Mathematical Preparation

In plane analytic geometry, if the three vertices of a tri-
angle counterclockwise are (x;,y;), (x9,y5), and
(x3,y3), then the area of this triangle can be expressed as

llxg —x1 Y2 — 1
S =- . (2.1)
2|x3 — %1 Y3~ Y1

As shown in Fig. 2, the simplest configuration of a seg-
mented mirror is that this mirror is composed of only two
hexagonal segments. Although the segments are actu-
ally located on a large spherical surface (a hyperbolic sur-
face for the Keck telescope), the sensor—actuator relations
can be described in plane geometry with sufficient accu-
racy with respect to the relatively small curvature of the
primary mirror.

In solid analytic geometry, a plane passing through
three points counterclockwise, (x1,y1,21), (x9,¥9,29),
and (x5, y3, 23), can be defined as

X~ X y Y1,
X9 — X1, Yo — Y1, 22 — 21| =0. (2.2)

X3 — X1, Y3~ Y1, 23 21

zZ— z4

Apparently, a sensor reading shows the height difference
(the coordinate difference in the z axis) between the two
adjacent segment planes at a boundary point. Assume
that a sensor s is on the common boundary of segments
M; and M, and that its coordinates are (£, 7). Suppose
that the initial heights of the three actuators of segment
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M, are all zero and that after perturbation they become
Z, Zy, and zz. If the height of plane M; at (& 7) is z,
then

E—x1, M—Y1, 7y
E—x9, M=y, 2y
g_'xSa n— Y3, 23
z = , (2.3)

Xg — X1, Y2 — V1

X3 — X1, Y3~ V1

so z can be expressed as a linear polynomial of z;, z,, and
z3, where £ — x;, 7 —y;, x; — x; and y; — y,; are con-
stants. According to Eq. (2.1), we have

1
VAR S—(Slzl + SQZZ + S3Z3), (24)
0

where Sg, S, Sy, and S3 are the areas of Aajaqas,
Asasag, Asasaq, and Asaaq, respectively, and

Sl+SQ+S3:SO. (25)

Strictly, Sy, S1, S, and S3 should be the projected areas
on the x—y plane. However, since the angle between the
segment plane and the x—y plane is so small, the error
that is introduced is negligible. From Eq. (2.4) we find
that height z has no relation to the x—y coordinate system
that we adopt but depends only on the sensor—actuator
geometry. The value of z is a weighted sum of z;, z,,
and z3, where the weighting coefficients are related only
to the triangular areas among the actuators and the sen-
sors.

Generally, the relative sensor—actuator geometry has
two possible configurations, which are on the left and the
right sides of Fig. 2. Suppose that the length of one side
of each hexagonal segment is a, that the length of one side
of the triangle formed by the three actuators under a seg-
ment is ¢, and that the distance between two sensors on a
common boundary is d. Then the actuator triangle area
in a segment is Sy = (\/3/4)c2. When a sensor is on the
same line as two actuators in a segment, the height mo-
tion of another actuator in the same segment does not
contribute to this sensor reading. Therefore d should

Fig. 2. Possible sensor—actuator geometrical relationships in
two adjacent segments.
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satisfy

2
<d=sa-+ gc. (2.6)

2

a— —c
3

Studying the two configurations of the sensor—actuator
geometry yields the following results:

1. On the left-hand side of Fig. 2, the heights of the
left segment planes at the two sensor locations s and s’
can be expressed as

z, = Lz, + Lyzy + L3zg,

z, = L2y + Lszy + Lozs, (2.7
where
1 a 1 a—d
Ll =77 L2 = -+ 5
3 c 3 2¢
L 1 . a+d
8373 2¢

Table 1. Possible Geometrical Sensor—Actuator
Position Permutations and the Corresponding
Linear Coefficients in Eq. (2.9)

Sensor-Actuator
Type Geometries Ci C C Cs GCs Cs | Sensors
Ri R Rt -Ri -R2 -Rs s

1 s .6
2>3 S'E4<I5 R R3 Ri -Ri -R3 -R: s'

143 846 Li L Ls -Ri -R: -Rs s
2484 g L Ly L. -Ri -Rs -R s'

= = |H|H

1 1>73 S§ Ri R Ri -Ls -L» -L: s
2 §'¢g f R: Rs R -L. -Ls -Li s'
: 43 S Iﬁrﬁ L L. Ly -Ls -L» -L s

2 ¢85 L Ly L -L. -Ls -L s'
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2. Similarly, for the right-hand side, the heights of the
right segment planes at s and s’ can be expressed as

z, = Rlzl + RQZZ + R323,

Z, = R1z1 + R3Z + R2Z3, (28)
where
1 a 1 a+d
Rl = -+ ) R2 = - B
3 c 3 2¢
R. = 1 a—d
373 2¢

If we define a sensor reading as the difference in height of
the adjacent segment planes at the sensor location, then
the reading can be expressed as a linear representation of
the six actuator lengths underneath the two segments.
Therefore we have the following equation,

s=Cz; + Cyzy + C3z3 + Cyzy + Csz5 + Cgzg, (2.9)

and Table 1. We find that if we know one sensor presen-
tation (such as s), then we can obtain another presenta-
tion (s’) by swapping L3 for L, and swapping R3 for R,.
Therefore much repetition of deductions is avoided.

« Actuator 1,2,...,147
o Sensor 1,2,...,120

O Sensor 1,2°,...,120’

Fig. 3. Universal schematic of a segmented mirror configuration for figure control. The central hexagonal region is ), and the outer
parallelogram region is ;. The actuator position distribution scheme is a proportional spacing array, which is different from that of

the Keck 10-m telescope.
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B. Establishment of a Generalized Equation Set for
Segmented-Mirror Figure Control

The complexity of the coefficient matrix of a generalized
figure-control equation set is closely related to the
sensor—actuator position geometry and its serial number-
ing. For the Keck telescopes in Fig. 1 we can obtain 168
sensor—actuator relation equations similar to Eq. (2.9),
which is an irregular large sparse linear equation set, and
solving this equation requires a great deal of computa-
tion. Moreover, different primary configurations corre-
spond to different coefficient matrices; therefore much re-
petitive research work has to be done when we encounter
similar problems. In addition, it is difficult work to es-
tablish the giant equation set for an extremely large tele-
scope such as the CELT and the OWL.

However, we discovered that if we adopt the actuator
location design shown in Fig. 3, we can establish a large
but regular sparse linear equation set and that a direct
but efficient solving method can be employed to produce
the solution. Therefore, as long as a segmented mirror
can be encompassed by the parallelogram domain shown
in Fig. 3, its figure-control equation set is obtained simul-
taneously, no matter what kinds of outline shapes and

R3 R2 Rl _L3 _L2 _Ll

R3 R2 Rl _L3

how many segments the mirror has.

Taking the Keck telescope primary mirror as an ex-
ample, to make the coefficient matrix regular and simple
we adopt the following regularizations for Fig. 3:

1. Add some imaginary segments to the configuration of
the Keck primary and extend it to a parallelogram do-
main in which the actuator-position distribution geom-
etry is a proportional spacing array and all the actuator
position triangles in every segment have the same orien-
tation.

Ly L, Ls

Ly

LY
I
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2. Index the sensors (1-120 and 1'-120’) and actua-
tors (1-147) serially row by row (or, alternatively, column
by column).

3. Let the additive virtual sensor readings be zero.

Suppose that the original sensor readings are zero and
that after perturbations the sensor readings become s;
and s/, i = 1, 2...120; that the actuator motion lengths
needed for correcting these sensor readings are p;, i
= 1,2...147; and that all the sensors have the same level
measurement noise.

it p=@®" pl pl Pl Pl P! PDT=(p,,
Do,... P1ap) T, then in Fig. 3, according to Type I in Table
1, we have

E

P, S1
B , ITZ = S;Z (2.10)
E|LP7 S7
or
A1P = SI> (211)
where S; = (s155...549)7, and
_Ll
(2.12)
Ry Ry, R, -Ly -L, -Lil,.,
According to Type II in Table 1, we have
B G Pl 21 % i3
B, C, P; Si3
or
AP = Sy, (2.14)
where Si; = (S43,S44,-..,5g0)
L, L
2 , (2.15)
Ly Ly Ly 7x21
-R, —-R; -—Rj 2.16)

—Ry -Ry; —Rj

7x21



642 dJ. Opt. Soc. Am. A/Vol. 18, No. 3/March 2001

According to Type III in Table 1, again we have

B, C,

B C P, Sis
P S
T 2 =17" @i
B, C, Py S1o
or
A3P = SIH’ (218)
where Sy; = (sg5, Sgg5--+» 8120)T,
0 0 0 Ry R; Rj
B, - Ry, Ry Ry
-_L2 _Ll _L3
c, - -Ly, —-L; -—Lg

Combining Egs. (2.11), (2.14), and (2.18), we have

Ay St
A |P=| Sy, (2.21)
A St
which we rewrite as
AP =8S,. (2.22)

We obtain Aj by swapping L3 for L, and swapping R 3 for
R, in A,, and we obtain S; by replacing s; with
s; (i=1,2,...,120) in S;. Then we have

AP =8;. (2.23)
Combining Egs. (2.23) and (2.22), we have
AP =S, (2.24)
where
A= D , S= {S? :
A 240X 147 0J240x1

Therefore the generalized figure-control equation set for
the segmented mirrors is established. In this paper the
generalized normal equation set is deduced for the case
that each side of this extended segment array has seven
segments (total 7 X 7 segments). However, our method
is extensible to a general case of n X n segments, and the
normal equation set needs only a few modifications.

To further economize the computation and memory
space in solving the normal equations, the size of ex-
tended domain €, is selected adaptively to fit the seg-
mented mirror Q,: If the segmented mirror is large,
then the extended domain should be large; if the seg-
mented mirror is small, then the extended domain should
also be small. It is best that the size of ; be exactly big
enough to accommodate the segmented mirror Q,. A
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larger extended domain is also workable, but it will waste
some computation and memory space in solving the nor-
mal equations.

C. Deviation of the Normal Equation Set for
Generalized Figure Control

Because of the redundancy of the sensor measurements,
the least-squares (LS) technique is used to search for the

solutions. So the normal equation set can be expressed
as
ATAP = ATS, (2.25)
, (2.19)
Ry Ry Rs]gy
(2.20)
_L2 _L1 _L3 0 O O 6x21
where
ATA = |AJAg + ATAG 7 (2.26)
A”S = |ATS) + A"Splurxa - (2.27)
Deduction of AYA, and ATA
Let
Ry, =(R; Ry Ry, Ly =(-Ly -Ly —Ly),
(2.28)

Ry = (-R;y —Ry; —Rjy), Loy = (L, Ly Ly),

(2.29)
R = (R; Ry Ry), Ly = (-Ly —L; —Lj),
(2.30)
and O = [0]3x3. Then we obtain
D, F
FT D, F
Ag1A0: ... .‘. ... ,
F" D, F
T
F D 147x147
(2.31)

where
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d, e -
el d, e
D, = ,
el d, e
T
- e d;] 21x21
-d, e -
el d; e
D, = ,
el d; e
T
- e dg ] 21x21
-d, e -
el dg e
D3 — .. ,
el dg e
T
L e dy] 21x21
£
f, f;
F = s
L £ 21x21

(2.32)

(2.33)

(2.34)

(2.35)

E’S, + BTS, + CTs; + BIS,; + CIS,, =

T T T T
R(I)S'; + R(2>843 + L(2)850 + L(3)385
T T T T T T
L(l)S7 + R(I)SS + R(2)344 + L(2)S51 + L(3)886 + R(S)SQI
T T T T T T
L(I)SS + R(l)SQ + R(2)345 + L<2)852 + L(3)387 + R(3)892
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dy = L)Ly, + RL Ry, (2.44)
e=R{ L., (2.45)
f, = LRy, (2.46)
£, = Ry L. (2.47)

Swapping L4 for L, and swapping R3 for R, in Ag‘ A, we
obtain AjTA}. Then

ATA = ATA, + A)TA}. (2.48)

Deduction of AY'S, and ATS
According to

AgSO = A{SI + AgSH + Ag):SIH, (24:9)

we have

E”S, + BTs; + BI'S,,
E”S, + BIS, + CTs; + BIS,; + CISy,
E”S,; + BIS,, + CTs, + BIS;s + CIS;
A’s, = | ETS, + B[S, + C|S,, + BIS,; + CISy;
E’S; + BTS,, + CTs;; + BIS;s + CIs,;
E”S; + BTS;; + CTS, + BIS;g + CISg
I E’S; + CTs,; + CIsy [,

(2.50)

A more-detailed expression of Al'S, is available. For ex-
ample,

T T T T T T
Li1se + R{yys10 + Rig)s46 T Lig)s53 + Li3)588 T Ri3)593 . (2,51

T T T T T T
L(l)slo + R(l)sn + R(2)347 + L(2)854 + L(3)889 + R(3)894
T T T T T T
L(1)311 + R(l)812 + R(2)848 + L(2)855 + L(3)890 + R(3)895
T T T T
L{"sy5 + Ri2)s40 T Lig)ss6 + Ri3)506

where
d, = L, Ly + RG Ry,
dy = L{; Ly, + L L) + R,R) + R Re),
d; = L)Ly, + Lz Lis) + Ri3Ra),
d, = L Ly, + Li; Lis) + R Ry + RGRea),
d; = L{; L) + L Lig) + L3 Lis) + R Ry
+ Ry Ri2) + R(3Rs),

_ T T T T
dg = L)L) + LigLe) + Ry Ry + Rz Ry,

_ T T T
d; = Lz)Ls) + R)Ra) + RigRa),

_ T T T T
ds = L)L) + Ly L) + RyRi) + R\ Ree),

(2.36)
(2.37)
(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

< 21X1

The rest of the terms can be deduced by analogy.

In Al'S,, replace s; with s/ (i = 1, 2...120), swap Ry
for Ry, and swap L for Ly, thus obtaining Aj’S,. Then
we have

ATS = ATS + A[TS . (2.52)

Two sides of the normal equations are obtained, and the
normal equation set is established.

D. Solution Space of the Normal Equations

1. Compatibility of Domain Extension

Observing two sides of the normal equations, we find
that on the right-hand side of a normal equation is
the weighted sum of the sensor readings around
a segment; and on the left side is the weighted sum of
the actuators underneath this segment and its am-
bient segments. As for an interior segment, the sensor
readings (displacement errors) around it are corrected
together by 21 ambient segment actuator mo-
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tions. This implies a smoothing effect for sensor noise in
the meaning of LS in figure control.

Since the normal equation of a segment is related only
to the ambient sensors and actuators, for the interior seg-
ments of O, the normal equations after domain extension
remain the same as before, whereas for the boundary seg-
ments of O, which become the interior segments after
domain extension, their corresponding normal equations
have changed. However, we can demonstrate that these
normal equations retain the boundary properties; at least
these extended normal equations can be deduced to yield
the same forms of expression as the previous boundary
segments (or the corresponding boundary segments in
Q,), under the condition that the additive sensor readings
be zero. Therefore the regularizations that we made for
the domain extension in Fig. 3 are reasonable, and the
compatibility of this domain extension is just satisfied, at
least approximately.

2. Droop Mode Control

It can be demonstrated that the rank of equation set
(2.24) is r(A) = N — 4, where N is the number of actua-
tors. If all the sensor readings are zero and all the
spherical segments have equal radii, the central normals
to all the segments will cross at a point. This crossing
point may move along the central normal to the fiducial
segment within limits. Once the position of this point is
determined, the figure of this segmented mirror is deter-
mined. The way in which to keep the correct position of
this crossing point is a problem called droop mode control,
whose effect on the optical image is simply a change of fo-
cus in some measure.!

Because of the overall telescope structure distortion
that is due to temperature and gravity changes, the droop
mode of the segmented mirror may drift slowly, whereas
the sensor readings remain zero. Mast and Nelson once
added three tilt sensors to monitor the whole figure of the
primary mirror and keep the correct position of focus.!
However, we found that if all the actuators are shaft en-
coded it is possible for us to maintain the droop mode
without using the tilt sensors.

Suppose that P is the vector of the real-time readings
of the actuator shaft encoders, AP is the actuator motion
vector, and AS = S — S },..q- We have

(ATA + 6)AP = ATAS + 6(Pypaee — Po), (2.53)

where P, can be the vector of the ideal readings of the
actuator shaft encoders for the correct focal position or a
vector for the primary tilt and piston, or a vector even for
a conicoid surface as long as we require it; éis the damp-
ing diagonal matrix, and the elements of diagonal matrix
6 can be set specifically for controlling specific actuators.
In this way, by assigning specific weights to the specific
normal equations, we can control the primary mirror fig-
ure to an “arbitrary required shape.”” In addition, we
can use slope-measurement instruments, such as a
Shack—Hartmann sensor, installed near the bent Casseg-
rain focus of the telescope to calibrate the droop mode and
control it accordingly.
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3. SOLUTION TO THE NORMAL
EQUATIONS

A. Solving the Normal Equation Set by Employing the
Cholesky Decomposition Method

When a mirror is composed of only a few segments, the
search for a method of solving the normal equation set is
not especially important, but when the number of seg-
ments increases, an efficient algorithm that requires less
memory is necessary, because active optics needs real-
time corrections. Mast and Nelson found their inverse
matrix from the coefficient matrix of 105-sensor coupled
linear equations, employing the SVD algorithm given by
Golub and Reinsch.? To avoid repeated computation in
real-time control, they store the inverse matrix in a com-
puter and perform matrix multiplication with the sensor
reading vector to obtain the actuator motions.!

Although the SVD algorithm is practicable for this gen-
eralized equation set, employing the Cholesky decomposi-
tion method in our problem will require less computation.
We know that the normal equation set is always nonne-
gative definite, and it will be positive definite after addi-
tion of suitable constraints or a damping factor to the
matrix. Therefore we can perform the Cholesky decom-
position on it. The Cholesky method is a common direct
method, and a similar application of it can be found in the
literature.’

B. Memory Problem in Solving the Normal Equation
Set

To solve the large sparse linear equation set, we must
first clear up the coefficient matrix storage problem. We
usually employ the compression storage method, elimi-
nating the repeated zero elements in memory. Neverthe-
less, even if this method is used in our problem, to store
the nonzero remainders and their pointers will still re-
quire too much space.

Fortunately, we find that the elements of the coefficient
matrix can be expressed by a function a(i, j) whose val-
ues are zero and the corresponding elements of only 12
submatrices, d; ~ dg, e, f;, and f, in Eqgs. (2.32)—(2.35).
Therefore only up to 108-element memory space is needed
for storing this 147 X 49 matrix, even if the mirror con-
figuration includes more segments. An additional 147
X 24 element memory space is required for the configu-
ration in Fig. 3 to store a band matrix generated in
Cholesky decomposition.

C. Solutions to the Figure-Control Problem

1. Least-Squares Solutions with Boundary Constraints
The rank of Eq. (2.25) is N-4, so if 4 of the 147 actuators
are frozen, its solution will be unique. These 4 constraint
points can be chosen arbitrarily in the parallelogram re-
gion shown in Fig. 3: real and virtual. Since the virtual
segments can be regarded as the smooth extension of a
real segmented mirror, if we constrain all the virtual ac-
tuator lengths to zero, the condition number of the normal
equation set will be much improved and the correspond-
ing solution will still satisfy our problem.

2. Least-Squares Solution with Minimum Norm
When three actuators are locked for a fiducial segment,
the solution space has only one dimension; we need to de-
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termine the droop mode. In mathematics, we can sort a
LS solution that has minimum norm, so that the whole
mirror will neither sag nor fold up.

Assume that this free actuator is p;; thus p; can be ex-
pressed as the linear functions about p;. Let

v = 21 p; = 21 (a;py + b))% (3.1)

If d¥/dp; = 0, we have

(3.2)

P1 = _E aibi/ E aiz'
i=1

According to Egs. (3.1) and Eq. (3.2), we will obtain the LS
solution with the minimum norm p;, i = 1,..., 147.

3. Damped Least-Squares Solution

The solutions are the damped least-squares (DLS) solu-
tions when the normal coefficient matrix is added with a
damping diagonal matrix. The larger the damping fac-
tors are, the closer to zero the solutions are. It can be
demonstrated that when the damping factor approaches
zero, the DLS solution will tend toward the LS solution
with minimum norm (MN).” The simulation computa-
tion demonstrates that when the damping factor is
~107%, there is almost no difference between the DLS so-
lution and the LS solution with MN. In addition, it is
also feasible to add constraints to the normal equation set
in the DLS method.

4. ERROR PROPAGATION

The purpose of studying the error propagation is to ex-

plore the variation of the minimum point of the linear LS

problem min|S — AP|| with the perturbations of the coef-
P

ficient matrix ATA and sensor readings S.

02|

0.1

arc sec
o

-0.1

02| o

0.3 . -

arc sec
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Fig. 5.
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Introduce norm || - |5
m 1/2
X[ = VXTX = | X |xi|2) 4.1)
i=1

and the corresponding matrix norm

XTATAX
XX

luby(A) = max = Vp(ATA) = Jluby(ATA),

x#0
4.2)

where p(ATA) is the spectral radius of ATA. After per-
turbation, the normal equation becomes

(A + AA)T(A + AA)(P + AP) = (A + AA)T(S + AS).

(4.3)

The perturbation of A is introduced by the size errors of
the segments and the position errors of the actuators and
sensors. If the position errors of the actuators and sen-
sors are controlled within ¢5 mm and we consider only
the maximum positive errors, we obtain luby(AA)
= 0.019, which is so small that it can be ignored. Pre-
cisely, we can obtain the coefficient matrix by measuring

ol ,
—_ o
° A
£ « . e
o .o
w OF « ¢ o* ‘. =
o . *
5 e )
— [ ]
..
*

0.1 1

~0.1 [¢] O

{arc seconds)

Fig. 4. Typical image spot diagram of the Keck 10-m primary
mirror as given by Mast and Nelson,! which was generated by
50-nm rms displacement sensor noise.
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(a) Superposition of 100 spot diagrams of the Keck primary mirror with four actuators locked: p7y = p71 = p7o = p7s = 0. The
(b) Superposition of 100 spot diagrams of the Keck primary with all the virtual actuators con-
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(a) Image spot diagram of the Keck primary mirror generated by the MN LS method with fiducial actuators po = p71 = pro

(c¢) Superposition of 100 image spot diagrams. The image rms radius is
(d) Same as (c) but here the three fiducial

arc sec
(d)

Fig. 6.
= 0.0. (b) Corresponding three-dimensional surface plot.
0.0499 arc sec, the 80% energy radius is 0.061 arcsec, and the rms surface error is 170.62 nm.
actuators are pig = pgs = p13g = 0. The image rms radius is 0.04 arc sec and the rms surface error is 119.28 nm.

the influence function of the sensor—actuator system. Notice that
Therefore, if we ignore the matrix perturbation, for the
~ . . 9 A
first-degree approximation we have 1AS]l, = \/nsﬂ's, (4.6)
[cond(ATA)]Y2
APy = —————[AS];, (4.4) where ng is the number of sensors, o, is the rms of sensor
1ub2(A) .
noise, and

where the condition number of ATA is defined as

cond(ATA) = luby(ATA)luby|(ATA) Y. (4.5) |aP], = V0, (4.7)

For the configuration shown in Fig. 3, luby(A) = 5.5 and where 7, is the number of actuators and o, is the rms of

luby(ATA) = 30. The value of luby(ATA)™!| changes actuator noise introduced by sensor noise. We have

greatly for different boundary conditions. For example,

in the case of a four-point constraint (p; = py = p3, P4 T A1/

= 10), luby|(ATA)"}] = 3 X 10'%; when all the virtual v < \/’7 [cond(A" A 4.8)
P n luby(A) s

actuators are constrained to zero, luby|(ATA)™1| = 338; »

when the damping factor is 1, luby[(ATA)™!| = 1.6. Ob-
viously, the solution to the normal equations is sensitive
to sensor noise in the case of a four-point constraint.

This formula gives the estimation of the error propaga-
tion from sensors to actuators.
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5. COMPUTER SIMULATIONS

To demonstrate the feasibility of the algorithm that we
have proposed, we compose the simulation programs in C
language and study the error propagation in this algo-
rithm. For comparison of our results with those of Nel-
son and Mast,! all the sensor noise consists of the 50-nm
rms Gaussian distribution random numbers generated by
the C programs given in the literature.'”

A. Simulation Computation of the Keck 10-m
Segmented Mirror

The Keck telescope has 36 segments, 168 sensors, and
108 actuators. Figure 4 is a typical image spot diagram
of a Keck 10-m primary mirror generated by 50-nm sen-
sor noise as described by Nelson and Mast.! According
to the superposition result of 100 spot diagrams,' the
rms radius of the image distribution is o = 0.720y,

0.2

01 |

arc sec
o
T

_02 Il L L
-0.2 -0.1 0] 0.1 0.2

arc sec
Fig. 7. Superposition of 100 image spot diagrams of the Keck
primary mirror generated by the DLS method with three fiducial

actuators p;o = p7; = pre = 0.0. The damping factor is 1076,
The image rms radius is 0.0482 arc sec.
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X 2 = 0.0509 arcsec, and the image radius, which
contains 80% of the energy, is r(80%) = 1.8 X 0.720y,
= 0.062 arc sec.

1. Result of the Constrained Least-Squares Method

Figure 5(a) is the simulation result for a four-point con-
straint. The image spot diagram is scattered, and it
changes greatly when the constraint points are changed.
However, the result will improve significantly if we con-
strain all the virtual actuators to zero, as shown in Fig.

5(b).

2. Least-Squares Method with Minimum Norm

Lock actuators pqg, p71, and pyy to zero, and make use of
actuator pq¢ as a free actuator (which one of these is cho-
sen as the free actuator is not important): according to
Egs. (3.1) and (3.2) we will obtain the LS solution with
MN. The simulation results are shown in Fig. 6. The
image rms radius is 0.0499 arc sec, the image radius that
contains 80% of the energy is 0.061 arc sec, and the rms
surface error is 170.62 nm. This result agrees well with
that of Mast and Nelson.! Moreover, we found that a
better result [shown in Fig. 6(d)] will be obtained if we
lock actuators pig, pes, and pq3g to zero; the image rms
radius is 0.04 arc sec.

3. Damped Least-Squares Method

The DLS method is also a good method for figure control
of the segmented mirror in addition to its application in
optical design.'"'? The solution to the normal equation
set is stable in this method. Compare Fig. 7 with Fig.
6(c); the DLS solution is only a little different from the
MN LS solution when the damping factor is 1078.

« Actuator 1,2,...,147
o Sensor 1,2,...,120
O Sensor 1°,2,...,120°

Fig. 8. Configuration of M, and its extended domain €, for the application of the generalized figure-control algorithm in the LAMOST.
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Fig. 9. (a) Superposition of 100 image spot diagrams of the LAMOST mirror M, generated by the LS method with four actuators locked:
Pro=DP71 =P =P = 0.0. The rms surface error is 268.87 nm, the image rms radius is 0.107 arc sec, and the 80% energy radius is
0.126 arcsec. (b) Superposition of 100 image spot diagrams of the LAMOST mirror M, generated by the MN LS method with three
fiducial actuators, p;g = p71 = p7o = 0.0. The image rms radius is 0.074 arc sec and the 80% energy radius is 0.091 arc sec.
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Fig. 10. (a) Superposition of 200 image spot diagrams of the LAMOST mirror My generated by the MN LS method with three fiducial
actuators, pyo = p71 = p7o = 0.0. The image rms radius is 0.051 arc sec and the rms surface error is 183.14 nm. (b) Same as (a) but
with the three fiducial actuators replaced by p19 = pgs = p13g = 0. The image rms radius is 0.0401 arc sec, and the rms surface error

is 117.95 nm.

B. Simulation Computation of the LAMOST

The LAMOST is a meridian reflecting Schmidt telescope
with a 4-m clear aperture, a 20-m focal length, and a 5°
field of view. Employing the active optics technique to
achieve its reflecting corrector (M) makes the LAMOST
a unique astronomical instrument in combining a large
aperture with a wide field of view.® The aspheric mirror
M, is composed of 24 hexagonal segments, and spherical
mirror Mp consists of 37 hexagonal segments. Now we
use the generalized figure-control algorithm to simulate
the error propagation in M, and Mp.

1. Simulation Computation of M4

There are 72 actuators and 110 displacement sensors in
My, . The configuration of M, and its extended domain
Q, are shown in Fig. 8, and the simulation results are
shown in Fig. 9. The image spot diagram in Fig. 9(a) is
rather dispersed and has a ghostly outline shape of M, .
Nevertheless, the result in Fig. 9(b) is much improved by

employing the MN LS method: The spot diagram be-
comes round and concentrated.

2. Simulation Computation of My

Compared with the primary mirror of the Keck telescope
(see Fig. 1), Mp has an additional central segment; there-
fore it has 180 sensors and 111 actuators. Figure 10(a)
shows a simulation result of Mg by the MN LS method,
which is very close to the result for the Keck telescope
shown in Fig. 6(c). Figure 10(b) shows a better result
that we obtained by changing the different actuators for
the fiducial segment of My .

6. CONCLUSION

The generalized figure-control algorithm proposed in this
paper provides a universal method for figure control of
large segmented mirrors with irregular outlines. This
study was performed during the first half of 1996 while
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the author was working on his Master’s thesis.” The con-
formance of the simulation results tothose of Mast and
Nelson! demonstrates the feasibility of this generalized
algorithm. By adoption of this symmetrical sensor—
actuator geometry, this algorithm is extensible to the
cases of the extremely large telescopes, such as 30-m
CELT and the 100-m OWL.*® In 1998 a successful ap-
plication of this algorithm in the experimental system of
segmented-mirror active optics in China®® to
control a $500-mm mirror with three segments demon-
strated the feasibility of this algorithm again. By employ-
ing this generalized figure-control algorithm we achieved
a diffraction-limited image at a visible wavelength of
N = 650 nm over an aperture of ¢$220 mm in this experi-
mental system. Because of the extreme regularity of the
coefficient matrix that we built, the sophisticated SVD al-
gorithm was replaced with a simpler and more efficient
Cholesky decomposition algorithm for solving this normal
equation set. We demonstrate that the LS solution with
minimum norm can be obtained with enough precision by
employing the damped LS method with very small damp-
ing factors’; therefore the computation in the figure-
control algorithm is simplified, and the DLS algorithm is
a good algorithm for figure control. To obtain a further
stable solution, we can damp all the virtual actuators in
the normal equations to zero to improve the stability of
the coefficient matrix. A careful choice of the fiducial ac-
tuators in conjunction with a proper minimization algo-
rithm makes it possible for us to further optimize the
figure-control algorithm for segmented large telescopes.
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