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Abstract— Photon counting detection is a promising approach 

towards dose reduction in x-ray computed tomography (CT). Full 

CT reconstruction from a fraction of the detected photons required 

by energy-integrating detectors has been demonstrated. In medical 

and industrial CT applications, projection truncation to the region-

of-interest (ROI) is another effective way of dose reduction, as 

information from the ROI is usually sufficient for diagnostic 

purposes. Truncated projections pose an ill-conditioned inverse 

problem, which can be improved by including measurements from 

the exterior region. However, this trade-off between the interior 

reconstruction quality and the additional exterior measurement 

(extra dose) has not been studied. In this manuscript, we explore 

the number of detected x-ray photons as a new dimension for 

measurement engineering. Specifically, we design a flexible, 

photon-efficient measurement strategy for ROI reconstruction by 

incorporating the photon statistics at extremely low flux level (16 

photons per pixel). The optimized photon-allocation strategy shows 

a 10 to 15-fold lower normalized mean square error (NMSE) in 

ROI than truncated projections, and a 2-fold lower NMSE in ROI 

than whole-volume CT scan. Our analysis in few-photon interior 

tomography could serve as a new framework for dose-efficient, 

task-specific x-ray image acquisition design. 

 
Index Terms— photon statistics, single-photon detection, 

computed tomography, interior tomography, dose reduction, 

computational imaging. 

 

I. INTRODUCTION 

Due to the ionization nature of x-ray radiation, dose reduction 

is a critical design consideration in x-ray based imaging 

modality, especially in computed tomography (CT) where a 

series of projections are acquired during the acquisition 

process [1,2]. CT systems equipped with photon counting 

detectors (PCD) have demonstrated a ~30% dose reduction 

compared with the energy-integrating counterparts, while 

maintaining the same image contrast [3,4]. In addition, PCDs 

can effectively reduce the dark noise and discriminate the 

unwanted signal through energy gating [5,6]. However, in the 

filtered backprojection framework, photon-counting CT still 

collects hundreds to thousands of photons per pixel on average 

for a satisfactory reconstruction [7]. Image recovery from low-

dose measurements necessitates the consideration of photon 
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statistics in the reconstruction [8]. For photon counts on the 

order of 102~103, Poisson likelihood can model the detected 

photons and infer the attenuation map  [9–11]. More recently, 

image reconstruction from an average ~10 photons per pixel 

based on the binomial likelihood [12] has been demonstrated 

in the visible regime. Extending few-photon imaging 

framework to CT modality could potentially minimize 

radiation damage to the object of interest.  

In medical or industrial applications, the ultimate imaging 

task is often diagnosis or detection of a specific feature, rather 

than whole-volume reconstruction. Majority of the medical 

diagnostic scans require high image quality only in a small 

volume, while the projections outside this volume only 

provide structural or orientation information [13]. In industrial 

CT inspection, the whole-volume scan could expose radiation-

sensitive components, such as processers, flash memory, to 

potential damage [9,14]. The image processing tasks, on the 

other hand, focus on classifying material compositions or 

quantifying the localized defects (e.g. air cavity, porosity, 

etc.) [15]. Task-specific image acquisition design can 

potentially shorten imaging time and reduce radiation damage 

to the region irrelevant to the diagnostic goal. This paper 

investigates the acquisition strategies from the perspective of 

photon statistics, when only a small localized region within 

the object is of interest.  

 The image acquisition process designed specifically for 

ROI reconstruction, termed interior tomography, distributes 

the radiation exclusively to the ROI, resulting in a series of 

truncated projections [16]. A unique and stable ROI solution is 

possible, provided that either a sub-region within the ROI is 

known  [17,18], or the sample is piecewise constant [19,20]. 

However, the additional information of samples may not 

always be available [21,22]. Another solution is to use low-

resolution projection from the exterior region to stabilize the 

ROI reconstruction [13,23]. This approach can be considered 

as a trade-off between reconstruction stability of whole CT 

scan and dose reduction benefit of truncated scan. Yet this 

trade-off has not been quantitatively studied, mainly because 

the illumination or integration time of each pencil beam is not 

easily adjustable in a conventional setup [24]. Recently, a 

time-stamp photon-counting X-ray imaging method has been 

developed [25]. Instead of counting the number of photons 

within a fixed integration time, the elapsed time is recorded 

when a pre-allocated photon count has been reached. With this 

photon-counting setup, we explore the photon allocation 

strategies for the ROI reconstruction, given a fixed total 

detected photon budget. Based on the statistics of the photon 
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arrival time, we formulate the tomography reconstruction as a 

Bayesian estimator. The optimal photon allocation strategy is 

identified by the smallest mean square error (MSE) within the 

ROI, for a given total photon budget. ROI reconstructions 

from an average of 16 photons per pencil beam have been 

established in both simulations and experiments. The 

optimized allocation strategy has demonstrated as much as a 

~15-fold improvement in ROI MSE compared with truncated 

projection measurements, and ~2-fold compared with a 

uniform whole volume CT scan under the same total photon 

budget. 

This paper is organized as follows: Section 2 describes the 

setup of our photon-counting CT system, and models the 

measurement and reconstruction process with a negative 

binomial distribution. Section 3 describes the details of the 

simulation and experiment setups used to explore the optimal 

photon allocation strategy. Section 4 presents the ROI 

reconstruction in phantom simulations, and applies the 

optimized photon allocation strategy to scan a real sample. 

Section 5 discusses the discrepancy between our analytical 

model and the numerical estimator, as well as the truncation 

artifacts in interior photon allocation strategy. Section 6 

concludes the whole paper. 

II. THEORY 

A. Imaging principle 

 

Fig. 1: Illustration of the photon-counting tomography scheme based on the 

time-stamp of each detected photon. The imaging task is to design an 

optimized photon allocation strategy among all the measurements to minimize 

the reconstruction error in ROI, marked by the red circle. 

 

An x-ray tomography system with pencil-beam illumination 

and a single-pixel photon-counting detector has been 

constructed in our study.  Fig. 1 illustrates the concept of the 

imaging setup. The incident x-ray beam is collimated by a pair 

of pinholes. To eliminate dark noise and obtain photon-limited 

signal, we specify a narrow bandwidth around the Kα line of 

the source for pulse censoring, so that photons whose energy 

fall outside the range are rejected. The source flux is well-

controlled such that the probability 𝜆 of detecting one photon 

within one time interval is much smaller than 1 (𝜆~10−2), 

even when no sample is placed between the source and 

detector. The output signal is a series of discrete time 

intervals Δ𝑡, within which either one or no photon is 

registered. 

Instead of directly counting the number of photons in a pre-

defined integration time, we record the number of elapsed 

time intervals, 𝐠, before the 𝐫-th photon is detected for each 

pencil-beam measurement. To reconstruct the image of a 2D 

layer, the sample is translated across the pencil beam by 𝑠, 

which is the offset between the rotation center and the incident 

x-ray beam, and rotated around the vertical axis by angle 𝜙. 

Let 𝐟 = {𝑓𝑖𝑥,𝑖𝑦
} ∈ ℝ+

𝑛𝑥×𝑛𝑦
 denote the 2D attenuation map, 

where (𝑖𝑥 , 𝑖𝑦) = {1, 2 … 𝑛𝑥} × {1, 2 … 𝑛𝑦} is the pixel index 

of an 𝑛𝑥 × 𝑛𝑦 image. The discrete measurements 𝐠={𝑔𝑗𝑠,𝑗𝜙
} ∈

ℕ𝑚𝑠×𝑚𝜙  and the photons received at each pencil beam 𝐫 

={𝑟𝑗𝑠,𝑗𝜙
} ∈ ℕ𝑚𝑠×𝑚𝜙  are both indexed by (𝑗𝑠, 𝑗𝜙) =

{1, 2 … 𝑚𝑠} × {1, 2 … 𝑚𝜙}, where 𝑚𝑠, 𝑚𝜙 represent the 

number of sampling in the translation 𝑠 and rotation 𝜙 

dimension, respectively. In our photon-counting framework, 

we assign a pre-defined photon number 𝐫 to accumulate at 

each pencil beam, and measure the elapsed time intervals 𝐠, 

which is a negative-binomial random variable. The 

reconstruction estimates the attenuation map 𝐟 from the 

observations of 𝐠 with a set of known parameters 𝐫. For a 

given parameter set {𝐫, 𝐟}, the ROI reconstruction error is 

modeled by the weighted mean-square error of the estimator 𝐟, 

which is defined as 

 𝑀𝑆𝐸𝐟(𝐫; 𝐟) = Ε𝐟‖𝐰⨀(𝐟 − 𝐟)‖
2

, (1) 

where 𝐰 = {𝑤𝑖𝑥,𝑖𝑦
∈ {0,1}, (𝑖𝑥 , 𝑖𝑦) = {1,2, … , 𝑛𝑥} ×

{1,2, … , 𝑛𝑦}} denotes the weight of each object pixel; 𝑤𝑖𝑥,𝑖𝑦
=0 

for pixels outside the ROI, 1 for pixels inside the ROI; ⨀ 

denotes the element-wise product between two vectors. The 

optimal photon allocation strategy looks for a photon map 𝐫 

that minimizes the ROI reconstruction MSE, given a fixed 

total detected photon budget 

 ∑ 𝑟𝑗𝑠,𝑗𝜙

𝑚𝑠,𝑚𝜙

𝑗𝑠,𝑗𝜙=1

= 𝐼0. (2) 

In the following discussions involving linear indexing, the 

2D map 𝐟 and 𝐰 are vectorized to  𝑛 = 𝑛𝑥 × 𝑛𝑦 vectors 𝐟 =

{𝑓𝑖 , 𝑖 = 1,2 … , 𝑛}, 𝐰 = {𝑤𝑖 , 𝑖 = 1,2 … , 𝑛}; 𝐠 and 𝐫 to 𝑚 =

𝑚𝑠 × 𝑚𝜙 vectors 𝐠 = {𝑔𝑗 , 𝑗 = 1,2, … , 𝑚}, 𝐫 = {𝑟𝑗 , 𝑗 =

1,2, … , 𝑚}, respectively. 

B. Negative binomial measurement model 

Considering the sample attenuation, the probability of 

receiving one photon within one time interval Δ𝑡 for the 

pencil-beam 𝑗 is 

 𝑇𝑗 = 𝜆 exp(− ∑ 𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

), (3) 

where 𝐀 ∈ 𝐑𝑚×𝑛, 𝐴𝑗𝑖  ≥ 0 is the CT transform matrix 

constructed from the distance-driven method [26]. The 

probability of receiving the 𝑟𝑗-th photon at 𝑔𝑗-th interval 

(𝑔𝑗 , 𝑟𝑗 ∈ 𝑁+, 𝑔𝑗 > 𝑟𝑗) for every pencil beam 𝑗 follows a 

negative binomial distribution (~𝑁𝐵(𝑟𝑗 , 𝑇𝑗)) with explicit 

parameters 𝐫 = (𝑟1, 𝑟2, … 𝑟𝑚) and implicit parameters 𝐟 =

Time sequence

Photon-

counting 

detector
ROI

X-ray 

source

Δ𝑡 𝑡

…
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(𝑓1, 𝑓2, … 𝑓𝑛) 

𝑝(𝐠|𝐟; 𝐫) = ∏ (
𝑔𝑗 − 1

𝑟𝑗 − 1
) (1 − 𝑇𝑗)

𝑔𝑗−𝑟𝑗𝑇𝑗
𝑟𝑗

𝑚

𝑗=1

. (4) 

Let 𝜋(𝐟) denote the prior distribution that describes the 

smoothness or sparsity constraints on the object. Since the 

attenuation map is non-negative 𝐟 ≥ 0, we restrain the domain 

of 𝜋(𝐟) to non-negative values 𝐟 ∈ ℝ+
𝑛 . The negative log-

posterior distribution 𝐿(𝐟|𝐠; 𝐫) of waiting 𝐠 intervals for 𝐫 

photons given the sample prior 𝜋(𝐟) is 

𝐿(𝐟|𝐠; 𝐫) = − log [
𝑝(𝐠|𝐟; 𝐫)𝜋(𝐟)

𝑝(𝐠; 𝐫)
] 

= − ∑ {log (
𝑔𝑗 − 1

𝑟𝑗 − 1
)

𝑚

𝑗=1

+ (𝑔𝑗 − 𝑟𝑗) log [1 − 𝜆 exp (− ∑ 𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

)]

− 𝑟𝑗 ∑ 𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

} + 𝑢(𝐟) + log 𝑝(𝐠; 𝐫), 

(5) 

where we introduce 𝑢(𝐟) = − log 𝜋(𝐟) as the negative log-

prior, 𝑙(𝐟|𝐠; 𝐫) = log 𝑝(𝐠|𝐟; 𝐫) as the log-likelihood of the 

model parameter 𝐟 in the negative binomial distribution, for 

simplicity. The object 𝐟 is reconstructed by the maximum-a-

posteriori (MAP) estimation, which minimizes the negative 

log-posterior distribution. The marginal distribution of the 

measurement log 𝑝(𝐠; 𝐫) is independent of 𝐟, and thus not 

included in the optimization. 

𝐟(𝐠; 𝐫) = argmin
𝐟′

{ −𝑙(𝐟′|𝐠; 𝐫) + 𝑢(𝐟′)}. (6) 

C. Property of the measurement and estimator 

In this section, we introduce some quadratic approximations 

that are essential to analyzing the behavior of the numerical 

MAP estimator (Eq. (6)), for a given object and photon counts 

{𝐫, 𝐟}, and the prior distribution 𝜋(𝐟). To facilitate the 

discussion of the measurement distribution, given the 

parameter set {𝐫, 𝐟}, we introduce auxiliary variables 

 𝐭 = {𝑡𝑗(𝐟) = log
𝜆

𝑇𝑗(𝐟)
= ∑ 𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

, 𝑗 = 1,2, … , 𝑚}, (7) 

which can be interpreted as the CT line-integrals. By setting 

the derivative of the negative binomial measurement (Eq. (4)) 

with respect to 𝑇𝑗  to 0, and applying the invariance principle, 

the maximum likelihood (ML) estimation for 𝑡𝑗 is achieved at 

 𝑡̂𝑗 = log
𝜆𝑟𝑗

𝑔𝑗

. (8) 

We then change the variable in the negative binomial 

distribution (Eq. (4)) from 𝐠 to 𝐭̂ to derive the conditional 

distribution of 𝐭̂, 𝑞(𝐭̂|𝐭(𝐟); 𝐫). The logarithm of  𝑞(𝐭̂|𝐭; 𝐫) is 

 

𝑞(𝐭̂|𝐭; 𝐫) = ∑ 𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗)

𝑚

𝑗=1

 

= ∑ {log
Γ(𝑟𝑗 exp 𝑡̂𝑗/𝜆)

Γ(𝑟𝑗 exp 𝑡̂𝑗/𝜆 − 𝑟𝑗 + 1 )Γ(𝑟𝑗)

𝑚

𝑗=1

+ (
𝑟𝑗exp 𝑡̂𝑗

𝜆
− 𝑟𝑗) log[1 − 𝜆 𝑒𝑥𝑝(−𝑡𝑗)]

+ 𝑟𝑗 log(𝜆 exp(−𝑡𝑗)) + log(𝑟𝑗 exp 𝑡̂𝑗 /𝜆)}, 

(9) 

where ∑ 𝐴𝑗𝑖𝑓𝑖
𝑛
𝑖=1  is replaced with 𝑡𝑗 , 𝑔𝑗 with 𝑟𝑗 exp 𝑡̂𝑗 / 𝜆 ; and 

binomial coefficients in 𝑝(𝐠|𝐟; 𝐫) are expressed by the gamma 

functions. The additional term log(𝑟 exp 𝑡̂ /𝜆) normalizes the 

distribution with respect to 𝐭̂. Based on Eq. (9), we introduce a 

couple of first-order approximations to the log-likelihood 

function to simplify the discussion of the distribution of 𝑡̂𝑗. 

Since 𝜆~10−2, we take the first-order approximation for 

log(1 − 𝜆 exp(−𝑡𝑗)) ≈ −𝜆 exp(−𝑡𝑗), and according to 

Stirling’s formula,  

Γ (
𝑟𝑗 exp 𝑡̂𝑗

𝜆
)

Γ (
𝑟𝑗 exp 𝑡̂𝑗

𝜆
− 𝑟𝑗 + 1)

≈ (
𝑟𝑗 exp 𝑡̂𝑗

𝜆
)

(𝑟𝑗−1)

, 

Eq. (9) is simplified to: 

𝑞(𝐭̂|𝐭; 𝐫) = ∑[𝑟𝑗(𝑡̂𝑗 − 𝑡𝑗) − 𝑟𝑗 exp(𝑡̂𝑗 − 𝑡𝑗)

𝑚

𝑗=1

+ 𝑟𝑗𝜆 exp(−𝑡𝑗) + 𝑟𝑗 log 𝑟𝑗 − log Γ(𝑟𝑗)]. 

(10) 

Eq. (10) shows that the distribution of 𝑡̂𝑗 is asymmetrically 

centered at 𝑡̂𝑗 = 𝑡𝑗. Taylor expansion on 𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗) to the 

second order around 𝑡̂𝑗 = 𝑡𝑗 gives 

𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗) = 𝑞𝑗(𝑡𝑗) + 𝑞𝑗
′(𝑡𝑗)(𝑡̂𝑗 − 𝑡𝑗)

+
𝑞𝑗

′′(𝑡𝑗)(𝑡̂𝑗 − 𝑡𝑗)
2

2
+ 𝑅(𝑡̂𝑗) 

= 𝑟𝑗𝜆 exp(−𝑡𝑗) + 𝑟𝑗 log 𝑟𝑗 − log Γ(𝑟𝑗)

+
𝑟𝑗(𝑡̂𝑗 − 𝑡𝑗)

2

2
+ 𝑅(𝑡̂𝑗). 

(11) 

The quadratic component in Eq. (11) implies that each random 

variable 𝑡̂𝑗 approximately follows a normal distribution 

𝑁(𝜇𝑡̂𝑗
, 𝜎𝑡̂𝑗

2  ) with mean 𝜇𝑡̂𝑗
 equal to the ground truth of CT line 

integral 𝑡𝑗, and a variance 𝜎𝑡̂𝑗

2 = 1/𝑟𝑗 that depends only on the 

photon count.  𝑅(𝑡̂𝑗) contains the higher-order Taylor 

expansion terms that introduce a negative skew to this normal 

distribution. When the photon number 𝑟𝑗 reaches 16 and 

above, however, the skew becomes insignificant, which is 

discussed in Section V.A in detail. 

Next, we discuss the property of the MAP estimator under a 

prior distribution 𝜋(𝐟). Here, we omit the non-negativity 

constraint, and consider the Gaussian family of distributions 

for obtaining closed-form solutions to the optimization 
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problem in Eq. (6) 

 𝜋(𝐟) =
√𝜏det (𝐃𝐃𝑇)/2

√(2𝜋)𝑛
exp(−𝜏‖𝐃𝐟‖2) (12) 

where the regularization matrix 𝐃 ∈ ℝ𝑞×𝑛 projects the 

attenuation map 𝐟 onto a 𝑞-dimensional sparse domain; the 

parameter 𝜏 controls the variance of the Gaussian prior. If 𝐃 is 

the identity matrix 𝐈𝑛, 𝜋(𝐟) becomes the L2-prior that punishes 

large values in 𝐟. Notice that the widely-used total-variation 

(TV) regularization cannot be expressed as Gaussian prior due 

to its semi-norm definition. After a set of measurements, 𝐠, are 

recorded with photon counts 𝐫, we rewrite the likelihood of 

the parameter 𝐟 in terms of the CT line-integral, 𝐭, given {𝐠, 𝐫} 

𝑙(𝐟|𝐠; 𝐫) = ∑ 𝑦𝑗(𝑡𝑗)

𝑚

𝑗=1

 

= ∑ {log (
𝑔𝑗 − 1

𝑟𝑗 − 1
)

𝑚

𝑗=1

+ (𝑔𝑗 − 𝑟𝑗) log[1 − 𝜆 exp(−𝑡𝑗)] − 𝑟𝑗𝑡𝑗}. 

(13) 

Applying second-order Taylor-expansion to 𝑦𝑗(𝑡𝑗) around the 

estimated line-integral 𝑡̂𝑗 = log(𝜆𝑔𝑗/𝑟𝑗) yields [27] 

𝑦𝑗(𝑡𝑗) ≈ 𝑦𝑗(𝑡̂𝑗) + 𝑦𝑗
′(𝑡̂𝑗)(𝑡𝑗 − 𝑡̂𝑗) +

𝑦𝑗
′′(𝑡̂𝑗)(𝑡𝑗 − 𝑡̂𝑗)

2

2
 

= {log (
𝑔𝑗 − 1

𝑟𝑗 − 1
) + (𝑔𝑗 − 𝑟𝑗) log[1 − 𝜆 exp(−𝑡̂𝑗)]

− 𝑟𝑗 𝑡̂𝑗} −
𝑟𝑗(𝑡𝑗 − 𝑡̂𝑗)

2

2 (1 −
𝑟𝑗

𝑔𝑗
)

, 

(14) 

where the first-order derivative 𝑦𝑗
′(𝑡̂𝑗)=0 for all 𝑗 = 1,2, … , 𝑚; 

𝑟𝑗/𝑔𝑗 ≈ 𝜆 exp ∑ 𝐴𝑖𝑗𝑓𝑖
𝑛
𝑖=1 ≪ 1 is negligible on the 

denominator. The Taylor-expansion in Eq. (14) reduces the 

MAP estimator in Eq. (6) to a least-square problem weighted 

on photon count 𝐫 

𝐟(𝐭̂; 𝐫) = argmin
𝐟′

{ − ∑ 𝑦𝑗(𝑡𝑗(𝐟′))

𝑚

𝑗=1

+ 𝜏‖𝐃𝐟′‖2
2} 

≈ argmin
𝐟′

{
1

𝟐
‖𝑑𝑖𝑎𝑔(√𝐫)(𝐀𝐟′ − 𝐭̂)‖

2

2
+ 𝜏‖𝐃𝐟′‖2

2}, 

(15) 

where the zero-order terms in 𝑦𝑗 are independent of 𝐟, and can 

thus be neglected in the optimization; 𝑑𝑖𝑎𝑔(√𝐫) denotes the 

diagonal matrix constructed from the vector √𝐫. The resulting 

objective function in Eq. (15) ε(𝐟) =
1

𝟐
‖𝑑𝑖𝑎𝑔(√𝐫)(𝐀𝐟 −

𝐭̂)‖
2

2
+ 𝜏‖𝐃𝐟‖2

2 has a gradient 

 ∇ε(𝐟) = 𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)(𝐀𝐟 − 𝐭̂) + 2𝜏𝐃𝑻𝐃𝐟 (16) 

and Hessian matrix 

 𝐇(ε(𝐟)) = 𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)𝐀 + 2𝜏𝐃𝑻𝐃. (17) 

For a properly-chosen regularization matrix 𝐃, 𝐇 is positive-

definite and can thus be conceived as the inverse covariance of 

the posterior distribution 𝑝(𝐟| 𝐭̂). Eq. (15) has an explicit 

solution similar to a Tikhonov regularization [28] weighted on 

𝐫 

𝐟̂(𝐭̂; 𝐫) = 𝐇−1(𝐫)𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)𝐭̂. (18) 

where 𝐇−1(𝐫) denotes the inverse of Hessian matrix 𝐇(𝐫). 

Since the estimator 𝐟 is a linear superposition of Gaussian 

variables 𝐭̂, the distribution of 𝐟 thus follows a multivariate 

Gaussian distribution with mean 

𝛍
𝐟̂
(𝐫; 𝐟) = 𝐇−1(𝐫)𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)𝐀𝐟 (19) 

and covariance 

𝚺𝐟̂(𝐫) = 𝐇−1(𝐫)𝐀𝑻𝑑𝑖𝑎𝑔(𝐫)𝐀𝐇−1(𝐫). 
(20) 

The MSE of the estimator consists of the bias square and the 

variance of the pixels within ROI 

𝑀𝑆𝐸𝒇̂(𝒓; 𝒇) = ‖(𝝁𝒇̂(𝒓; 𝒇) − 𝒇)𝒘‖
2

+

𝑡𝑟[𝑑𝑖𝑎𝑔(𝒘)𝜮𝒇̂(𝒓)]. 
(21) 

Eq. (19) indicates that without regularization, 𝜏=0, the 

estimator (Eq. (18)) is unbiased. When 𝜏 ≠ 0, the Gaussian 

prior introduces a bias to the estimator and reduces its 

variance. The tradeoff between bias and variance implies the 

existence of a best regularization parameter, 𝜏, that yields 

minimum MSE in the reconstruction. 

III. MATERIALS AND METHODS 

A. Phantoms and photon maps 

Two simulation phantoms were used to evaluate the 

performance of the estimator (Eq. (6)) with different photon 

allocation strategies. Simulation phantom 1 was a real 

abdomen CT slice (Subject ID 116-HM10395)  [29]. The raw 

image underwent 2 X 2 binning to reduce the number of pixels 

to 256 X 256, with a pixel size of 2mm X 2mm after binning. 

The region around the cross-section of the vertebra was 

selected as the ROI, which was centered at 80mm (40 pixels) 

away from the rotation center, and was 80mm in diameter. 

Phantom 2 was a 256 X 256 Shepp-Logan phantom with a 

pixel size of 1mm. The 15mm-diameter region (15-pixel wide) 

was defined as the ROI, which was 4mm (4 pixels) away from 

the rotation center. For both phantoms, the translation step of 

the pencil beam matched the spatial grid of the phantom (2mm 

for abdomen slice, 1mm for Shepp-Logan phantom). The 

projections were sampled at 0.5° interval, which matches the 

Nyquist sampling in the reciprocal space. 

The photon allocation strategy in the ROI and exterior 

region is modeled by assigning different number of photon 

counts 𝐫 to accumulate at each measurement 𝑗. To avoid 

enumerating all the possibilities of 𝐫 that satisfy the total 

photon budget constraint, we confine our choice of the 2D 

photon allocation map to a trapezoid function: 



2333-9403 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2019.2922477, IEEE
Transactions on Computational Imaging

TCI-00738-2018 

 where 𝛿𝑥 is the translation step size; 𝜎 is the radius of ROI; 𝛽 

controls the interior/exterior ratio; Δ denotes the width of the 

transition region where the photon number drops from 

maximum to the minimum; when Δ=0, the photon allocation 

profile becomes a rectangular shape. In our simulation, we 

define 𝛾 = 𝜎/Δ as the shape parameter that describes the slope 

of the photon allocation profile across the ROI boundary. 𝑠𝑐  is 

the center coordinate of ROI at different projections, and is 

calculated via 

 𝑠𝑐 = 𝑠𝑜𝑓𝑓𝑠𝑒𝑡 sin(𝜙 + 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) (23) 

where 𝑠𝑜𝑓𝑓𝑠𝑒𝑡  is the offset between the ROI center and the 

rotation center; 𝜙𝑜𝑓𝑓𝑠𝑒𝑡  is the azimuthal coordinate of the ROI 

center with respect to the rotation center. Fig. 2 (a) plots the 

photon allocation profile along the translation direction, 𝑠, 

with 𝛾=1, 4 and 16 under 0° projection. For phantom 1, the 

two-dimensional photon allocation maps for 𝛽=0, 0.5 and 1 

are shown in Fig. 2 (b). The white, dashed curves mark the 

trajectory of ROI center as the sample undergoes 180° 

rotation. The reconstruction quality is assessed with the mean 

square error (MSE). We normalize the MSE according to the 

L2-norm of the ROI to obtain normalized MSE (NMSE), 

which makes the scale consistent among different samples and 

ROIs. 

 𝑁𝑀𝑆𝐸 = ‖𝒘𝑻(𝒇̂ − 𝒇)‖
2

/‖𝒘𝑻𝒇‖2 (24) 

Our simulation goal was to find the best photon allocation 

strategy, expressed by the two parameters (𝛽,𝛾), that 

minimizes the NMSE between the reconstruction and the 

object within ROI. 

B. Simulation setup 

The 2D photon map 𝐫 was calculated from Eq. (22) and 

rounded to the nearest integer. Each simulated measurement 

summed up 𝑟𝑗 geometric random numbers 𝐺𝑒𝑜(𝑇𝑗) (generated 

by MATLAB R2017B) to represent the number of time 

intervals 𝑔𝑗 before the arrival of the 𝑟𝑗-th photon, where 𝑇𝑗 is 

calculated from the CT line integral 𝑇𝑗 = 𝜆[𝐀𝐟]𝑗.  In case zero 

photons were assigned to a particular pencil beam, the 

corresponding row in CT matrix 𝐀 that represented this 

measurement was removed. In total, 12 interior/exterior 

ratios 𝛽 (from 0 to 1 at 0.1 step, and 0.95) and 3 shape 

parameters 𝛾=1, 4, and 16 were combined as different photon 

allocation strategies in our simulations. For each photon 

map 𝐫, we ran 15 instances of simulated measurements 𝐠 and 

reconstructions 𝐟. Based on the 15 reconstruction instances 𝐟, 

we calculated the NMSE within the ROI, and plotted its 

average and standard deviation. We also recorded the pixel-

wise mean, variance and MSE map for comparison with our 

analytical approximation. 

C. Experiment setup 

The experimental photon-counting system was implemented 

by connecting the electrically censored pulses from the Si-PIN 

detector (X-123, AMPTEK) to a data acquisition device 

 

 
 

 

0

0 0
,

1
, 

2 Δ

1 Δ1
, Δ

2 Δ Δ

0, Δ

1,2, ,

1,2,  ,

s

s c

s c

j j s c

s c

s s

I x
j x s

m

I j x sI x
r j x s

m m

j x s

j m

j m





 

 


 



  
  



 


  


   

     


   



 

 

 

(22) 

 

 
Fig. 2: Photon distribution profiles used in the simulation. (a) Photon allocation profiles at 𝛾=1, 4 and 16 under 0° projection. (b) two-dimensional photon 

allocation maps for 𝛽=0, 0.5 and 1, 𝛾=1, 4 and 16. 
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(USB6353, National Instrument) operating in the edge-

counting mode. The detector system was configured to run at a 

counting interval of 𝛥𝑡=10µs. The X-ray source was a copper-

anode tube (XRT60, Proto Manufacturing) operating at 12kV. 

The current of the tube had been reduced to 1mA to minimize 

the probability of registering two photons in the same time 

interval. The incident X-ray beam was collimated by a pair of 

0.5mm pinholes located at 20cm away from the X-ray focus. 

With this setup geometry, the probability of detecting one 

photon within one Δ𝑡 time interval from the collimated beam 

was 𝜆=0.015. The sample was mounted on a rotational stage 

(RV120PP, Newport) and a linear stage (UTM150CC, 

Newport) for pencil-beam CT scan. 

An acrylic resolution target was scanned in our 

experiments. The target was laser-machined with 0.5-1.0mm 

line-width groups. The 0.6mm group was defined as the ROI. 

The sample was translated at a step size of 0.2mm for 81 

steps, and rotated by 2° step size to cover 180° projections. 

For each pencil-beam measurement, we collected the entire 1s 

time stamps and used all the detected photons to form a 

reference image. The few-photon measurement had a detected 

photon budget of 16 photons per pencil beam on average. We 

extracted the first 𝑟𝑗 photons from the 1s time stamp according 

to our optimized strategy for reconstruction. 

D. Reconstruction algorithm 

The optimization problem in Eq. (6) is solved numerically 

with a modified SPIRAL-TAP[30], which is a gradient-

descent algorithm combined with regularization in each 

iteration. The gradient and Hessian of our negative binomial 

log-likelihood are respectively 

 ∇𝑙(𝐟) = 𝐀𝑇 (𝐫 −
𝜆(𝐠 − 𝐫) ⊙ exp(−𝐀𝐟)

1 − 𝜆 exp(−𝐀𝐟)
), (25) 

 𝐇(𝑙(𝐟)) = 𝐀𝑇 (
𝜆(𝐠 − 𝐫) ⊙ exp(−𝐀𝐟)

(1 − 𝜆 exp(−𝐀𝐟))2
) 𝐀. (26) 

Because the probability 𝜆 of detecting one photon within each 

time interval is on the order of 10−2, it is very rare (<10−4) to 

detect multiple photons in one time interval. As a result, 

𝑔𝑗 − 𝑟𝑗 has a high probability of being non-negative, which 

suggests that the Hessian has a high probability of being 

positive semidefinite for non-negative object 𝐟 ≥ 𝟎. The step 

parameter 𝛼𝑘, which is the inverse of step size at 𝑘-th 

iteration, is chosen according to the modified Barzilai-

Borwein method described in Ref. [30]. Notice that Eq. (26) 

contains a singular point on the denominator. To avoid 

moving the solution across this singular point, we enforce a 

minimum value, 𝛼𝑚𝑖𝑛, in each iteration if the chosen 𝛼 value 

is smaller than 𝛼𝑚𝑖𝑛 . The iteration stops when the relative 

change in 𝐿(𝐟) is smaller than 10−6. 

The modified SPIRAL was initialized with a trial solution 

𝐟(0) = 𝐀𝑇 log 𝜆𝐫/𝐠. The change in the solution 𝛿𝐟 was chosen 

as 𝛿𝐟 = 𝐟(0) in the first iteration, and 𝛿𝐟 = 𝐟(𝑘) − 𝐟(𝑘−1) in 

subsequent iterations 𝑘 ≥ 2. The major computational burden 

was the calculation of matrix-vector product 𝐀𝐟, 𝐀𝐓𝐫 or 𝐀𝐓𝐠, 

which all had a complexity of 𝑂(𝑚𝑛). We pre-calculated the 

vector 𝐀𝐟 and 𝐀𝛿𝐟 at the beginning of each iteration for use in 

both gradient and Hessian. This resulted in three 𝑂(𝑚𝑛) 

operations in each iteration. 

The regularization step in our modified SPIRAL-TAP was 

implemented with either TV or L2-norm constraint. The TV 

regularization penalizes the L2-norm of the total-variation 

𝑢(𝐟)

= 𝜏 ∑ ∑ √(𝑓𝑖𝑦+1 , 𝑖𝑥
− 𝑓𝑖𝑦, 𝑖𝑥

)2 + (𝑓𝑖𝑦, 𝑖𝑥+1 − 𝑓𝑖𝑦, 𝑖𝑥
)2

𝑛𝑦

𝑖𝑦=1

𝑛𝑥

𝑖𝑥=1

 
(27) 

and enforces non-negativity with the FISTA algorithm [31]. 

The L2-norm constraint belongs to a special case in the 

Gaussian prior family, with 𝐃 being the identity matrix  𝐈𝑛 in 

Eq. (12). This leads to the solution to the regularization step at 

𝑘-th iteration 

 𝐟𝑘+1 = {max (0,
𝑓𝑖

𝑘+1,𝑡𝑒𝑚𝑝

1 + 𝜏/𝛼𝑘
) , 𝑖 = 1,2, … , 𝑛} (28) 

where 1/𝛼𝑘 is the step size along the gradient; 𝐟𝑘+1,𝑡𝑒𝑚𝑝 is the 

intermediate result after the 𝑘-th gradient-descent step; and 

𝐟𝑘+1 is the final result after regularization. The negative values 

in 𝐟𝑘+1,𝑡𝑒𝑚𝑝 are replaced with 0 to enforce non-negativity. For 

both constraints, the regularization strength, 𝜏, ranging 

from 101 to 103 at 100.5 step, was optimized for minimum 

NMSE in the reconstruction. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS 

A. Phantom simulations with L2-norm constraint 

1) The effect of 𝛾 on NMSE 

We first evaluated the ROI reconstruction performances 

with different photon allocation strategies using the abdomen 

phantom. The regularization parameter that yielded minimal 

NMSE for each photon map was selected. The total detected 

photon budget was 1.5 × 106, corresponding to 16 photon 

counts per pencil beam on average. Fig. 3 plots the 

reconstruction NMSE within the ROI in terms of 

interior/exterior ratio 𝛽 and shape parameter 𝛾. As 𝛽 increases 

from 0 up to 0.9, more photons are allocated to the ROI, 

therefore decreasing its reconstruction NMSE. This simulation 

trend was also reflected by the analytical MSE from our 

approximation (Eq. (21) ). The optimal 𝛽 and the minimum 

NMSE are summarized in Table 1 for 𝛾=1, 4 and 16. The best 

photon strategy is 𝛽=0.9, 𝛾=4 in the numerical simulation. It is 

worth noting that for 𝛽<0.9, the NMSE of 𝛾=1 is generally 

higher than 𝛾=4 and 16. This is because for the same 𝛽, 𝛾=1 

allocates more photons in the vicinity outside the ROI 

boundary, which reduces the ROI photon counts as a result of 

the fixed total photon budget. Therefore a shape parameter 

𝛾>1 is generally preferred. 

 
TABLE 1: 

THE OPTIMAL 𝛽S AND NMSES FOR DIFFERENT SHAPE 

PARAMETER 𝛾 

Shape parameter 𝜸 𝜸=1 𝜸=4 𝜸=16 

Optimal 𝛽 1 0.9 0.8 

NMSE 0.81±0.02% 0.75±0.02% 0.79±0.03% 
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Fig. 3: Simulated and predicted ROI reconstruction NMSE vs. the 

interior/exterior ratio 𝛽 for 𝛾=1, 4, and 16. 

Fig. 4 exemplifies the reconstruction instances at different 

(𝛽,𝛾) combinations. The ground truth and ROI of the abdomen 

phantom are shown in Fig. 4 (a) for comparison. Fig. 4 (b-d) 

show the reconstruction at 𝛽=0, the optimized 𝛽 in the 

simulation, and 𝛽=1. At high 𝛽 values, the absence of the 

projection measurement creates artifacts on the boundary 

between measured and unmeasured regions (Fig. 4 (c3-d3)), 

which are consistent with the truncation artifacts associated 

with the non-localized filtered back-projection (FBP) 

kernel [16,32]. The photon allocation strategy 𝛽=1, 𝛾=16 is 

equivalent to the projection truncation in interior tomography. 

Notice that for 𝛾=1, the measured region extends to twice the 

ROI size. As a result, the truncation artifact is not visible 

within the display window of Fig. 4 (b3) and the NMSE does 

not increase for 𝛽=1. Our simulation and analytical 

approximates suggest that the optimal strategy is to deposit 

10%~20% of the total photon budget outside ROI, which 

reduces the NMSE in ROI by 6 times compared to 

concentrating all available photon budgets in the ROI 

(𝛽=1, 𝛾=16). 

 

2) The effect of ROI size on NMSE 

As 𝛽 increases from 0 to the optimal value, the general 

trend of NMSE for different 𝛾s is to decrease, then increase 

dramatically as 𝛽 passes the optimal value and missing 

measurements start to appear. In the following discussions, we 

focus on the case of 𝛾=16, which incorporates the 

conventional interior tomography strategy. Fig. 5 plots the 

NMSE vs. 𝛽 with different ROI diameters 2𝜎, normalized 

with respect to the total phantom size. For this simulation, we 

scaled up/down the total photon budget 𝐼0 so that for the 

same 𝛽, the average number of photons per beam dedicated to 

the ROI 𝐼0𝛽/(2𝜎𝑚𝑠) remained unchanged regardless of the 

ROI size. All the ROIs in this simulation are centered on the 

same location as in Fig. 4 (a). Fig. 6 shows the reconstruction 

instances for 𝛽=0, optimized 𝛽, and 𝛽=1 when ROI diameter 

equals 10%, 15%, 20% and 25% of the full phantom 

dimension, respectively. The optimal 𝛽 and NMSE are 

summarized in Table 2. These results indicate that the 

optimized 𝛽 parameter is generally determined by the portion 

of ROI within the whole sample. A smaller ROI requires a 

lower 𝛽 for optimal reconstruction performance. 
TABLE 2: 

THE OPTIMAL 𝛽 AND NMSES FOR DIFFERENT ROI SIZES 

ROI size 

ratio 
10% 15% 20% 25% 

Optimal 𝛽 0.8 0.8 0.9 0.95 

NMSE 
0.63% 

±0.02% 

0.78% 

±0.03% 

0.72% 

±0.01% 

0.71% 

±0.02% 

 

0.5%

1.0%

10%

Interior/exterior ratio 𝛽

N
M

S
E

 i
n
 R

O
I

SPIRAL
Approximation𝛾=1

𝛾=4
𝛾=16

0 0.2 0.4 0.6 0.8 1

5.0%

1.3% 𝛽=0 1.3% 𝛽=0

𝛽=0.80.79%

𝛾=16𝛾=4𝛾=1

0.80% 𝛽=1

0

0.2

0.4

0.6

0.8

𝐟

ROI

Ground truth

a) b1) c1) d1)

0.76% 𝛽=0.9

b2) c2) d2)

2.1% 𝛽=1 4.8% 𝛽=1

b3) c3) d3)

0.80% 𝛽=1

𝛽=01.3%

Fig. 4: (a) Ground truth of the abdomen phantom used in the simulation. (b-d) Reconstruction of the abdomen phantom with different shape parameters 𝛾 

for (b) 𝛽=0 (uniform), (c) optimal 𝛽, and (d) 𝛽=1. The ROI is marked by the red circle. The red arrows highlight the truncation artifacts. The numbers in 
the left bottom of each reconstruction indicate the NMSE within ROI. The display window is 200mm X 200mm. 
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Fig. 5: ROI reconstruction NMSE vs. the interior/exterior ratio 𝛽 for ROI 

diameters equal to 10%, 15%, 20% and 25% of the phantom size, with 𝛾=16. 

 

3) The effect of total photon budget on NMSE 

 Next, we focus on the allocation strategies for different 

total photon budgets, ranging from an average of 16 photons 

per beam to 1024 photons perbeam. Fig. 7 plots the NMSE as 

a function of 𝛽 with 𝛾=16 at different photon budgets for the 

ROI shown in Fig. 4 (a). Fig. 8 shows the phantom 

reconstruction instances with respect to different photon 

budgets and 𝛽. The NMSE of uniform, interior and optimized 

photon allocations are summarized in Table 3. The ROI 

reconstruction NMSEs for all three strategies decrease as the 

average number of photons per beam increases, which 

displays a trade-off between reconstruction quality and photon 

budget. The results indicate that the optimal photon-allocation 

strategy consistently outperforms the full-scan (𝛽=0) by 

1.5~3-fold, and interior-scan (𝛽=1) strategies by ~10-fold, in 

the trade space between NMSE and photon budget. 

TABLE 3: 

THE OPTIMAL 𝛽S FOR UNIFORM, OPTIMIZED AND INTERIOR 

PHOTON ALLOCATION STRATEGIES WITH DIFFERENT TOTAL 
PHOTON BUDGETS 

Average 

photons per 
beam 

16 64 256 1024 

Optimal 𝛽 0.8 0.8 0.8 0.8 

Uniform 

strategy 
NMSE 
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±0.03% 
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Fig. 7: ROI reconstruction NMSE vs. the interior/exterior ratio 𝛽 at different 

total photon budget, with 𝛾=16. The black, red, blue and green curves 

represent 16, 64, 256 and 1024 detected photons per beam on average. 
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Fig. 6: Reconstruction of the abdomen phantom with ROI sizes equal to (a) 10% (b) 15% (c) 20% (d) 25% of the total size, for (1) 𝛽=0 (uniform), (2) 

optimal 𝛽, and (3) 𝛽=1, with 𝛾=16. The ROI is marked by the red circle. The red arrows highlight the truncation artifacts. The numbers in the left bottom of 

each reconstruction indicate the NMSE within ROI. The display window is 280mm X 280mm. 
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B. Phantom simulation with total-variation (TV) prior 

In this section, we demonstrate the photon allocation 

strategies applied to ROI reconstruction with TV prior. The 

object in this simulation is a piecewise-constant Shepp-Logan 

phantom (Fig. 9(a)). Fig. 9 (b) plots the NMSE of the ROI 

reconstruction with different (𝛽,𝛾) combinations compared 

with the ground truth. Fig. 9 (c, d) shows the photon map and 

ROI reconstruction at the optimal and interior measurement 

strategies. The best reconstruction performance was attained 

at 𝛽=0.9, 𝛾=16, with an NMSE of 0.40%±0.04%. The optimal 

regularization parameter 𝜏 is 101.5. In contrast, the 

reconstruction from interior strategy (𝛽=1,  𝛾=16) has an 

NMSE of 15%±5%, which was obtained at the optimal 

𝜏=105.5. We speculate that the smooth and low-contrast ROI 

reconstruction in Fig. 9 (c2) is mainly due to the large 

regularization parameter required for lowering the 

reconstruction variance in ROI. Allocating 10% of the photon 

budget to the exterior region obviates the need for a strong 

piecewise constant regularizer, thus achieving superior 

reconstruction quality than TV-based interior reconstruction. 

C. Resolution target imaging 

Based on the high consistency between the analytical model 

and the numerical estimator, we were able to approximately 

predict the optimized photon-allocation strategy for an 

experimental object with L2 prior. Fig. 10 shows a full-scan 

CT image of an acrylic resolution target acquired with 1s 

integration time and an average photon count of 589 per pencil 

beam, which was used as the reference. The ROI 

reconstruction was performed at various photon allocation 

strategies with 16 photons per beam on average. For each 

strategy, we calculated the bias and variance with 6 

regularization parameters 𝜏 ranging from 101~103.5, and 

selected the one giving minimal predicted MSE for use in the 

SPIRAL reconstruction. Fig. 10 plots the analytically-

predicted reconstruction MSE (compared to the reference in 

(a)) inside the ROI as a function of interior/exterior ratio 𝛽 

and the shape parameter 𝛾. From our prediction, the smallest 

ROI reconstruction error was attained at 𝛽=0.7, 𝛾=4 with the 

regularization parameter 𝜏=102. Fig. 10 (d, e) shows the 

measured time intervals 𝐠 (d1-d3) and reconstructions (e1-e3) 

from 3 photon allocation maps 𝐫 (c1-c3), corresponding to 

uniform (c1), optimized (c2) and interior (c3) strategies, 

respectively. The optimized strategy had a reconstruction 

NMSE of 2.8% at ~30 times reduced photon budget compared 

to the reference image. 

V. DISCUSSIONS 

A. Approximations on the distribution of 𝑡̂ 

In Section III.C, we approximated the distribution of the 

measured CT line integral 𝐭̂ with a Gaussian distribution. Fig. 

11 compares the distribution  𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗) (Eq. (9)), the first-

order simplification (Eq. (10)) and our Gaussian 

approximation (Eq. (11) without remainder 𝑅(𝑡̂𝑗)) for 𝑟𝑗 

ranging from 1 to 32, and 𝑡𝑗=1.0. The difference 

between 𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗) and the first-order simplification is 
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Fig. 8: Reconstruction of the abdomen phantom with different total photon budget (a) 16, (b) 64, (c) 256 and (d) 1024 photons per beam on average for (1) 

𝛽=0 (uniform distribution), (2) optimized 𝛽, and (3) 𝛽=1, with 𝛾=16. The ROI is marked by the red circle. The red arrows highlight the truncation artifacts. 

The numbers in the left bottom of each reconstruction indicate the NMSE within ROI. The display window is 200mm X 200mm. 

0.29% 𝛽=0.8

4.8% 𝛽=1 4.2% 𝛽=1

1.3% 𝛽=0

0.79% 𝛽=0.8

16 photons/beam 64 photons/beam 256 photons/beam 1024 photons/beam

0.26% 𝛽=00.31% 𝛽=00.56% 𝛽=0

0.072% 𝛽=0.8

3.9% 𝛽=1

b1) c1) d1)a1)

b2) c2) d2)a2)

b3) c3) d3)a3)

0.12% 𝛽=0.8

4.0% 𝛽=1



2333-9403 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2019.2922477, IEEE
Transactions on Computational Imaging

TCI-00738-2018 

negligible. The discrepancy mainly arises from the remainder 

term 𝑅(𝑡̂𝑗) in Eq. (11), which introduces negative skew on the 

normal distribution and lowers the mean of 𝑡̂𝑗. Fig. 11 (e) 

quantifies the bias, variance and MSE of the distribution 

 𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗) with respect to the ground truth 𝑡𝑗. The variance 

and MSE of the unbiased Gaussian approximation, 1/𝑟𝑗, is also 

plotted for comparison. As the photon number increases to 16 

and above, the bias contributes to less than 1% in the MSE, 

 
Fig. 9: Photon allocation strategy for TV prior. (a) Shepp-Logan phantom and ROI in the simulation. (b) NMSE in ROI vs. interior/exterior ratio 𝛽 for 𝛾=1, 

4, and 16. (c) Photon allocation map for (c1) optimized strategy (𝛽=0.9, 𝛾=16) and (c2) conventional truncated projection (𝛽=1, 𝛾=16). (d1, d2) 
Reconstruction from (c1), (c2), respectively. The ROI is highlighted in (d1, d2). The numbers in the left bottom of each reconstruction indicate the NMSE 

within ROI. 

 

 
Fig. 10: Comparison between different photon allocation strategies for the resolution target. (a) Full-scan CT image of the resolution target. The ROI covers 

the 0.6mm line-width group. (b) Predicted reconstruction MSE in ROI with respect to different photon allocation strategies, expressed in terms of the 

interior/exterior ratio 𝛽 and the shape parameter 𝛾. (c–e) Examples of the photon allocation strategies, experimental measurements and the corresponding 

ROI reconstructions from (1) uniform photon counts (2) optimized photon allocation map (3) interior measurement with 𝛽=1, 𝛾=16. The average photon 
count was 16 per beam. All scale bars represent 2mm. The ROI is marked by the red, dashed circle in (a) and (e). The numbers in the left bottom of each 

reconstruction indicate the MSE within ROI. 
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which indicates that the unbiased normal distribution is a good 

approximation to 𝑞𝑗(𝑡̂𝑗|𝑡𝑗; 𝑟𝑗). Notice that for a different 

ground truth 𝑡𝑗, Eq. (10) implies that the peak of the 

distributions in Fig. 11 (a-d) would shift, while their shapes 

remain the same.  

B. Approximations on the MAP objective function 

In our analytical models and numerical simulations, the 

regularization parameter was selected by minimizing the 

reconstruction MSE. Fig. 12 (a) plots the bias, variance and 

MSE of both the negative binomial (Eq. (6)) and the 

approximated (Eq. (15)) estimators with respect to different 

regularization levels 𝜏. Here we chose the optimized photon 

allocation strategy (𝛽=0.8, 𝛾=16) of the abdomen phantom as 

an example. All plotted values are normalized with respect to 

the L2-norm of the object ground truth in ROI. The bias-

variance trade-off in the MSE of the estimator can be clearly 

seen in both analytical and modified SPIRAL estimator. Both 

curves predict a choice of 𝜏=102 to minimize the 

reconstruction MSE. It is clear from Fig. 12 (a) that Eq. (15) 

differs from the numerical estimator in terms of variance at 

small regularization parameters 𝜏, and bias at large 𝜏. The 

over-estimation of variance is caused by the absence of non-

negativity constraint, which removes the negative portion in 

the distribution of the numerical estimator and thus reduces its 

variance. The discrepancy in bias is caused by approximating 

the shape of log-likelihood function 𝑙(𝐟|𝐠; 𝐫) with a quadratic 

function. This error becomes especially prominent as the 

solution moves away from the center of the quadratic function 

at high 𝜏. 

Fig. 12 (b-c) details the pixel-wise bias square, variance and 

MSE map from the analytical approximation and modified 

SPIRAL estimator at 𝜏=102. Due to the higher photon count, 

the variance within ROI is smaller than the exterior region in 

both (b2) and (c2). The variance map of (c2) shows object-

dependent features that do not exist in the analytical 

approximation (Eq. (20)). This is because the modified 

SPIRAL estimator with positivity constraint (Eq. (6)) is a non-

linear function of 𝐭̂. Table 4 summarizes the NMSE within the 

ROI and whole sample. Despite the discrepancy in the 

variance maps between modified SPIRAL and our 

approximation, for 𝜏 on the order of ~102, which we pick in 

the reconstruction, the NMSE of the numerical simulation 

matches well with Eq. (21) within the ROI. 

 
Fig. 11: Comparison between the distribution of 𝑡̂ and our approximations. (a-d) Original distribution of 𝑡̂, first-order simplification and Gaussian 

approximation for 𝑟=2, 4, 8 and 16, 𝑡=1.0. (e) Bias2, variance and MSE of 𝑡̂ with respect to the ground truth 𝑡. The dashed, orange curve plots the variance 

of Gaussian-approximated, unbiased distribution of 𝑡̂ (Eq. (11)). 
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Fig.12: Comparison between the approximated and SPIRAL estimator in 

terms of bias, variance and MSE map, normalized by the L2-norm of ROI 
ground truth. (a) Bias square, variance and MSE within the ROI as a 

function of the regularization parameter 𝜏 for the photon map 𝛽=0.8, 𝛾=16. 
(b-c) Bias2 (b1,c1), variance (b2,c2) and MSE (b3,c3) map of the object 

from (b) analytical approximation, (c) SPIRAL with negative binomial 
objective function. The white, dashed circles mark the ROI. The display 

window is 200mm X 200mm. 
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TABLE 4: 

COMPARISON OF NMSE BETWEEN THE ANALYTICAL 
APPROXIMATION AND MODIFIED SPIRAL WITH NEGATIVE 

BINOMIAL LIKELIHOOD 

NMSE Analytical approximation Modified SPIRAL 

Within ROI 0.76% 0.79% 

Whole phantom  3.8% 4.5% 

C. Truncation artifacts in ROI reconstruction 

The truncation artifacts of interior tomography are mainly 

concentrated near the edge of ROI [33,34], and by extending 

the truncated sinogram beyond ROI boundary with a circular 

or Gaussian profile, the truncation error can be effectively 

reduced. From the photon allocation standpoint, by simply 

extending the conventional truncated projection slightly larger 

than the ROI, it might be possible to “exclude” the artifact 

region. This strategy can be implemented by further 

generalization of the parameterized photon allocation function 

in Eq. (22) to allow a non-linear roll-off from the interior to 

the exterior region. Here we perform an analysis on the 

extended truncation approach (𝛽=1, 𝛾=16) by shrinking the 

weight matrix 𝐰 in Eq. (21) from whole ROI to a reduced ROI 

with 10 pixels smaller in diameter, the weight matrix of which 

is denoted as 𝐰𝑝. Table 5 shows the result of the NMSE for 

the extended truncation approach. We can see that though the 

NMSE of this approach has reduced the truncation error (c.f. 

Table 3), the optimized allocation strategy still outperforms 

this extended truncation approach by more than 3 times, and 

uniform strategy by 2~4 times. Though extended truncation 

avoids the artifacts near the boundary, the reconstruction bias 

of 𝐟 persists, contributing to the majority of the reconstruction 

error, which is consistent with previous results [35]. 
TABLE 5: 

THE NMSE FOR UNIFORM, OPTIMIZED AND INTERIOR PHOTON 

ALLOCATION STRATEGIES WITHIN PARTIAL ROI 

Average 

photons per 
beam 

16 64 256 1024 

Optimal 𝛽 0.8 0.9 0.9 0.9 

Uniform 
strategy 

NMSE 

1.1% 

±0.04% 

0.49% 

±0.04% 

0.26% 

±0.03% 

0.24% 

±0.01% 

Optimal 

strategy 
NMSE 

0.64% 

±0.03% 

0.24% 

±0.01% 

0.10% 

±0.003% 

0.059% 

±0.002% 

Interior 

strategy 
NMSE 

1.95% 

±0.03% 

1.63% 

±0.01% 

1.56% 

±0.05% 

1.52% 

±0.05% 

VI. CONCLUSION 

In summary, we have proposed a few-photon measurement 

framework and its corresponding statistical reconstruction 

algorithm optimized for region-of-interest x-ray computed 

tomography. The demonstrated framework is capable of 

reconstructing an ROI with an average detected photon budget 

of 16 photons per beam. We model the numerical 

reconstruction as a Bayesian estimator, and study its bias, 

variance and MSE with various levels of regularization. The 

analytical model with L2 prior consistently agrees with the 

simulation, and correctly predicts the trend of MSE for 

different photon allocation maps. Although predicting MSE 

involves the ground truth of the attenuation map 𝐟, this 

information can be obtained from a fast, pre-diagnostic scan, 

which has already been practiced in a number of multi-

resolution, region-of-interest CT systems  [13,23,36].  

The combination of negative binomial photon statistics with 

an optimized photon allocation strategy presents a novel 

approach to efficiently utilizing the available photon budget, 

which is especially attractive for low-photon scenarios. By 

optimizing the two parameters controlling the profile of the 

photon allocation, we have demonstrated a ~2-fold 

improvement in ROI reconstruction compared with uniformly 

allocating the same photon budget throughout the sample, and 

a 10~15-fold improvement compared with concentrating all 

available photons in the ROI. In our numerical experiments, 

we have discovered that the optimal photon ratio between ROI 

and exterior region is primarily determined by the ROI 

diameter relative to the whole object size. A smaller ROI 

requires more photons outside ROI to lower the NMSE 

contributed from the noisy exterior region. In a real CT 

experiment, we were able to faithfully reconstruct an ROI of 

the resolution target at ~30 times reduced total photon budget.  

The proposed time-stamp photon-counting interior 

tomography scheme can be extended beyond the demonstrated 

pencil-beam system. To achieve the parallelization of the 

latest generation CT, we can use a photon-counting detector 

array and a programmable mask that blocks the individual 

beam when a predefined photon count is received on each 

pixel. The energy discrimination capability of the PCDs also 

allows simultaneous acquisition of attenuation maps in 

different x-ray energy channels for spectral CT. Finally, the 

high photon-efficiency associated with the x-ray PCDs could 

extend our model to the reconstruction of x-ray diffraction 

tomography [37], where the diffraction signal is intrinsically 

~2 orders of magnitude lower than the transmission signal. We 

envision that our photon-counting tomography framework 

could be applied to photon-starved environments for both x-

ray and visible imaging systems. 
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