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Abstract.We demonstrate a deep-learning-based fiber imaging system that can transfer real-time artifact-free
cell images through a meter-long Anderson localizing optical fiber. The cell samples are illuminated by an
incoherent LED light source. A deep convolutional neural network is applied to the image reconstruction
process. The network training uses data generated by a setup with straight fiber at room temperature (∼20°C)
but can be utilized directly for high-fidelity reconstruction of cell images that are transported through fiber with a
few degrees bend or fiber with segments heated up to 50°C. In addition, cell images located several millimeters
away from the bare fiber end can be transported and recovered successfully without the assistance of distal
optics. We provide evidence that the trained neural network is able to transfer its learning to recover images of
cells featuring very different morphologies and classes that are never “seen” during the training process.
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1 Introduction
In biomedical science and clinical applications, visualizations
of real-time cell activity, morphology, and overall tissue archi-
tecture are crucial for fundamental research and medical
diagnosis.1,2 This usually requires real-time in vivo imaging
to be performed in a minimally invasive way with the ability
to deeply penetrate into organs or tissues. Due to their miniature
size and flexible imaging transfer capability, fiber-optic imaging
systems (FOISs) have been widely applied to this domain.2–10

Current solutions encounter challenges due to poor compatibil-
ity with broadband incoherent illumination, bulky and complex
distal optics, low imaging quality and speed, and extreme sen-
sitivity to perturbations. These limitations mainly originate from
both the optical fiber device and the imaging reconstruction
method. For example, multicore optical fibers (MCFs) and mul-
timode fibers (MMFs) are the two most widely used fibers in
these systems. Most conventional MCF-based systems usually
require extra distal optics or mechanical actuators, which limits

the extent of miniaturization and induces large penetration
damage.3,8 The particular core patterns featured in MCFs result
in pixelated artifacts in images transported through such
fibers.2,10–13 Even if recently reported MCF-based systems using
the wavefront-shaping method can mitigate pixelated artifacts to
some extent, strong core-to-core coupling in MCFs makes
MCF-based FOISs inherently sensitive to deformation and
rather intolerant to perturbations.14–17 The core-to-core crosstalk
in MCFs also limits the mode density and leads to the require-
ment of narrowband light sources for illumination in MCF-
based FOISs.12 Typical systems using MMF rely on image
reconstruction processes using the transmission matrix (TM)
method to compensate for randomized phases through wave-
front shaping.5,6,9,18,19 This kind of reconstruction process is vul-
nerable to perturbations due to the mode properties of MMFs.
Minor changes of temperature (a few degrees Celsius) or slight
fiber movement (a few hundred micrometers) can induce mode
coupling and scramble the precalibrated transmission matrix.9

In addition, most state-of-the-art FOISs relying on the TM
method suffer from a slow imaging speed limited by the refresh
rate of wavefront-shaping devices and are not fully compatible
with a broadband incoherent light source, since a coherent light

*Address all correspondence to Jian Zhao, E-mail: jianzhao@knights.ucf.edu
†Present address: Boston University, Photonics Center, Boston, Massachusetts,
United States

Research Article

Advanced Photonics 066001-1 Nov∕Dec 2019 • Vol. 1(6)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 19 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.AP.1.6.066001
https://doi.org/10.1117/1.AP.1.6.066001
https://doi.org/10.1117/1.AP.1.6.066001
https://doi.org/10.1117/1.AP.1.6.066001
https://doi.org/10.1117/1.AP.1.6.066001
https://doi.org/10.1117/1.AP.1.6.066001
mailto:jianzhao@knights.ucf.edu
mailto:jianzhao@knights.ucf.edu
mailto:jianzhao@knights.ucf.edu


source is required to perform phase-shifting interferometry.17,20–22

The interferometry applied in such systems also results in
complexity, polarization-sensitivity, and rather high levels of
noise.17,20,21

Recent burgeoning deep-learning technology and the latest
discoveries of the novel properties of glass-air Anderson local-
izing optical fibers (GALOFs) open an avenue for overcoming
these challenges and fundamentally promoting the overall per-
formance of FOISs. Deep-learning technology is a fast-develop-
ing research field that has gained great success in imaging
applications and demonstrated better performance than conven-
tional model-based methods.23–29 Deep convolutional neural net-
works (DCNNs) are very powerful techniques because they
represent a universal approach to the imaging reconstruction
problem.30 Instead of relying on known models and priors,
the DCNN directly learns the underlying physics of imaging
transmission systems through a training process using a large
training dataset without any advance knowledge. Deep learning
is particularly suitable for the inverse imaging problem of
FOISs: the trained DCNN learns the mapping function between
the measured imaging data and the input imaging data; well-
designed and trained DCNNs can be used to predict input im-
ages even if the particular type of images is not included in the
set of training data. The application of DCNNs addresses two
major bottlenecks of current FOISs. First, it is often extremely
difficult to develop an accurate physics model for wave propaga-
tion through FOISs. For example, there is no analytical physics
model to describe the TM of GALOFs, and numerical simula-
tions require significant computational resources to model even
simplified propagation processes.31 With the help of DCNNs,
the TM of the whole system is learned using just a personal
computer without composing a complicated physics model.32

The image mapping process is very fast, on the order of several
milliseconds on regular GPUs. Second, image mapping utilizing
DCNNs is only based on measurements of intensity images us-
ing conventional CCD cameras and no particular requirements
are imposed on the coherence or polarization properties of the
light source.32,33 In contrast to existing methods, this could speed
up the imaging process and simplify the system to a large extent
while simultaneously maintaining a high-imaging quality.

The use of DCNNs for simple binary image recovery and
classification after transport through optical fibers has been re-
ported recently.32–37 For image transmission, different types of
optical fibers, MMF,33,34,36 MCF,37 and GALOF,32 have been uti-
lized in recently reported DCNN-based FOISs. Being limited by
strong-mode coupling and low-mode density, the sensitivity to
temperature variation and mechanical bending and low imaging
quality hinder deep-learning-based MMF or MCF systems from
developing flexible endoscopy with high-quality imaging
capability.33–37 In contrast, the DCNN-GALOF system demon-
strated bending-independent imaging capabilities while main-
taining high imaging quality and transfer-learning capability
simultaneously.32 This robust performance is based on the
unique mode properties of the GALOF.38–40 Multiple scattering
in the disordered refractive index structure of the transverse
plane results in modes that are localized in two-dimensional
space of the GALOF cross section and can freely propagate
along the axial direction of the GALOF.40 The imaging informa-
tion is encoded and transferred by thousands of densely packed
transversely localized modes in the GALOF. It has been shown
that the point spread function based on these modes does not
degrade with propagation distance.41 Unlike MMF, most of

the modes mediated by transverse Anderson localization dem-
onstrate single-mode properties, which makes the device rather
insensitive to external perturbations.38,42 For example, the local-
ized modes should have the potential to withstand extremely
strong bending (bending radius ∼ 0.5 mm), which contrasts
with the high bending sensitivity of both MCFs and MMFs.43

Nevertheless, the design of the existing GALOF imaging
system is based on a previous limited understanding of the local-
ized modes in GALOFs. Hence, it is faced with several chal-
lenges limiting its practical application. First, the system only
demonstrated success in imaging of low-resolution sparse ob-
jects, such as the binary MNIST handwritten numbers. There
is a chasm between sparse binary object reconstruction and
the reconstruction of biological objects, which are typically dif-
ferent types of cells or tissue with complicated morphologic fea-
tures. Second, the demonstrated transfer-learning capability of
the previous DCNN-GALOF system was limited to binary
sparse testing objects that shared image features quite similar
to those of the objects in the training data.32 For many practical
applications, it would be highly desirable if the system would be
able to perform transfer learning using objects that are signifi-
cantly different from the training data. Third, the previous
DCNN-GALOF system performs high-quality imaging under
coherent laser illumination. The ability to perform imaging
under incoherent broadband illumination in the fiber imaging
system would be another important step toward practical appli-
cations. For example, white-light transmission cellular micro-
graphs are already very familiar to histopathologists, and they
prefer similar white light illumination for endoscopic images.8

Furthermore, the coherence of lasers results in speckle patterns,
which often reduce the image quality. Last but not least, the high
intensity of lasers light might be damaging to biological objects
such as living cells and the cost of lasers is relatively high. In
contrast, incoherent broadband illumination generally avoids
speckle problems and the lower intensity of incoherent light
sources helps to protect cells against photobleaching and photo-
toxicity during the imaging process. At the same time, the cost
of incoherent light sources, such as LEDs, is much lower com-
pared with laser systems. The latest research progress on mode
properties of GALOFs offers a new possibility to overcome
all of these barriers and enhance the system performance of
FOISs. Recently, we prove that the wavefront quality of local-
ized modes in GALOFs is close to that of an ideal fundamental
Gaussian mode.42 Meanwhile, the mode density is orders of
magnitude higher than that of MMF and MCF.42 Other related
research further shows that localization lengths, comparable to
point spread function, of localized modes are independent of
wavelengths.44 Based on these latest discoveries, the GALOF
has the potential to support a high-quality imaging process using
a broadband incoherent light source. In addition, DCNN itself
does not raise any requirements for illumination. Therefore, it
should be possible to achieve high-quality imaging of biological
objects under incoherent broadband illumination using the com-
bination of GALOFs and DCNNs.

In this work, we develop an incoherent broadband light illu-
minated DCNN-GALOF imaging system with the capability to
image various cell structures. Within this system, a DCNN
model with a design tailored to the cell imaging task is applied,
and a low-cost LED works as the light source. We call the new
system Cell-DCNN-GALOF. We demonstrate that it is able to
transfer high-quality, artifact-free images of different types of
cells in real time. We further prove that the imaging depth of
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this system can reach up to several millimeters without any dis-
tal optics. In addition, we show that the image reconstruction
process is remarkably robust with regard to external perturba-
tions, such as temperature variation and fiber bending. Last
but not least, the transfer-learning capability of the new system
is confirmed using cells of different morphologies and classes
for testing. The work presented here introduces a new platform
for various practical applications, such as biomedical research
and clinical diagnosis. The system performance of the Cell-
DCNN-GALOF is superior to state-of-the-art systems. It is also
a new cornerstone for imaging research based on waveguide de-
vices using transverse Anderson localization.

2 Methods
The experimental setup and details of DCNN are shown in
Fig. 1. The GALOF used here is fabricated using the stack-and-
draw method. Silica capillaries with different diameters and air-
filling fractions are fabricated first. The outer diameter of the
silica capillaries ranges from about 100 to 180 μm, and the ratio
of inner diameter to outer diameter ranges from 0.5 to 0.8. To
make a preform, capillaries are randomly fed into a silica jacket
tube. In the following steps, the preform is drawn to canes with
an outer diameter around 3 mm. Finally, the cane is drawn to the
GALOF with the desired size. The SEM image of the GALOF
cross-section is shown in Fig. 1(a).

In Fig. 1(a), the light source is an LED with a center wave-
length of 460 nm. An 80-cm long GALOF sample is utilized.
The diameter of the disordered structure is about 278 μm, and
the air–hole-filling fraction in the disordered structure is
∼28.5%.39 The numerical aperture (NA) of the GALOF, based
on far-field emission angles, is measured to be ∼0.4; see Fig. S5
in the Supplementary Material. The temperature of a GALOF
segment can be raised by the heater underneath. A 10-mm-long
section in the middle of the GALOF is heated. We use fixed
stained cell samples in all of our experiments. The images of
cell samples are magnified by a 10× objective (NA = 0.3) and
split into two copies sent into a reference path and a measure-
ment path, respectively. The cell samples are scanned both ver-
tically and horizontally with steps of 5 μm to obtain training,
validation, and test data sets. In the reference beam path,
the image is further magnified by a 20× objective (NA ¼ 0.75)
and recorded by CCD 1 (Manta G-145B, 30 fps) after passing
through a tube lens. In the measurement path, the image is trans-
ported through the 80-cm-long GALOF and then projected onto
CCD 2 (Manta G-145B, 30 fps) by the same combination of
a 20× objective and tube lens. The reference images are labeled
as the ground truth. Both reference and raw images are 8-bit
grayscale images and are cropped to a size of 418 × 418 pixels.
Figure 1(b) shows that experiments are performed for both
straight GALOF and bent GALOF. To bend the fiber, the input
end of the GALOF is fixed, whereas the output end of the
GALOF is moved by an offset distance. The amount of bending
is quantified by the offset distance from the end of the bent fiber
to the position of the straight fiber (equal to the length of the
dashed line). The relation between the offset distance d and
the corresponding bending angle of the fiber θ is given by d ¼
L½1 − cosðθÞ�∕θ where L is the total length of the GALOF.

Figure 1(c) shows the detailed structure of the DCNN. The
raw image, which is resized to 420 × 420 using zero paddings,
is the input layer. The input layer is decimated by five down-
sampling blocks (blue and black arrows) to extract the feature
maps. Then five up-sampling blocks (white arrows) and one

convolutional block (yellow arrow) are applied to reconstruct
the images of cell samples with a size of 418 × 418. To visualize
the image reconstruction process, some sample feature maps are
shown in Fig. S6 in the Supplementary Material. The skip con-
nections (dark green arrows) pass feature information from fea-
ture-extraction layers to reconstruction layers by concatenation
operations. The mean absolute error (MAE)-based loss metrics
are calculated by comparing the reconstructed images with the
reference images. The MAE is defined as jIrec − Iref j∕ðwhÞ,
where Irec, Iref , w, and h are the reconstructed image intensity,
the reference image intensity, the width, and the height of the
images, respectively. The parameters of the DCNN are opti-
mized by minimizing the loss. Detailed block operation dia-
grams corresponding to the respective arrows are shown on
the right side of Fig. 1(d) (BN, batch normalization; ReLU, rec-
tified linear unit; Conv, convolution; D-Conv, dilated convolu-
tion; T-Conv, transposed convolution; concat, concatenation).
The Keras framework is applied to develop the program code
for the DCNN. The regularization applied in the DCNN is de-
fined by the L2-norm. The parameters of the DCNN are initial-
ized by a truncated normal distribution. For both training and
evaluation, the MAE is utilized as the metric. The Adam opti-
mizer is adopted to minimize the loss function. During the train-
ing process, the batch size is set at 64 and the training is run
through 80 epochs with shuffling at each epoch for all of the
data shown in this paper. The learning rate is set at 0.005. Both
training and test processes are run in parallel on two GPUs
(GeForce GTX 1080 Ti).

3 Results

3.1 Imaging of Multiple Cell Types

To demonstrate the imaging reconstruction capability, two dif-
ferent types of cells, human red blood cells and cancerous
human stomach cells, serve as objects. By scanning across dif-
ferent areas of the cell sample, we collect 15,000 reference and
raw images as the training set, 1000 image pairs as the validation
set, and another 1000 image pairs as the test set for each type of
cell. During the first data acquisition process, the GALOF is
kept straight and at room temperature of about 20°C. The im-
aging depth is 0 mm, meaning that the image plane is located
directly at the fiber input facet. The training data are loaded into
the DCNN [see Fig. 1(c) for DCNN structure] to optimize the
parameters of the neural network and generate a computational
architecture that can accurately map the fiber-transported im-
ages to the corresponding original object. After the training pro-
cess, the test data are applied to the trained model to perform
imaging reconstruction and evaluate its performance using
the normalized MAE as the metric. In the first round of experi-
ments, we train and test each type of cell separately. With a
training data set of 15,000 image pairs, it takes about 6.4 h
to train the DCCN over 80 epochs on two GPUs using a per-
sonal computer. The accuracy improvement curves for both
training and validation processes over all 80 epochs are pro-
vided in Fig. S1 in the Supplementary Material. After training,
the reconstruction time of a single test image is about 0.05 s.
Figure 2 shows some samples from the test data set. In
Figs. 2(a)–2(c), reference images, raw images, and recovered
images of three in succession collected and reconstructed im-
ages of human red cells are shown, whereas in Figs. 2(d)–2(f),
three images of cancerous stomach cells are presented.
Comparing the reference images with the reconstructed images,
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it is clear that the separately trained DCNNs are able to recon-
struct images of both cell types remarkably well. The averaged
normalized test MAEs are 0.024 and 0.027 for the human
red blood cells and the cancerous human stomach cells,

respectively, with standard deviations of 0.006 and 0.011. To
further highlight the real-time imaging capability of our system,
we visualize the test process for these two cell types in Video S1.
This real-time imaging capability is highly desirable for many

Fig. 1 Schematic of the cell imaging setup and the architecture of the DCNN.
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practical applications, such as in situ morphologic examinations
of living tissues in their native context for pathology.

3.2 Cell Imaging at Various Depths

Distal optics located at the fiber input end hinders conventional
FOIS from miniaturizing the size of the imaging unit. Here we
are investigating the ability of our Cell-DCNN-GALOF system
to image objects located at various distances from the fiber input
facet without distal optics. As illustrated in Fig. 3(g), the images
of cells located at different imaging planes are collected by the
bare fiber input end. The depth ranges from 0 to 5 mmwith steps
of 1 mm. The changing of depth is performed by moving the
fiber input tip. Under our experimental conditions, the defocus-
enhanced phase-contrast effect45 can be ignored due to the in-
coherent illumination and the stained cell samples. For each
individual depth, 15,000 reference and raw images are collected
as the training set, and another 1000 image pairs serve as the test
set. The GALOF is kept straight and at room temperature during
data collection. The DCNN is trained separately for each depth
resulting in depth-specific parameters. Examining reference and
reconstructed test images shown in Figs. 3(a)–3(f), high-quality
image transmission and reconstruction can be achieved up to
depths of at least 3 mm. The first visual degradation of the im-
aging quality appears around 4 mm, and the visual quality of the
reconstructed images drops further at 5-mm depth. The corre-
sponding quantitative image quality evaluation is shown in
Fig. 3(h). The normalized MAE increases almost linearly with
a slope of about 0.008 per mm. Based on these data, we con-
clude that our system can transfer high-quality cell images for
objects being several mm away from the fiber input facet with-
out the need for any distal optics. Therefore, the size of an image
transmitting endoscope based on our system could be poten-
tially minimized to the diameter of the fiber itself and the pen-
etration damage could be reduced to a minimum without

degrading the quality of the image of biological objects. The
fiber could collect images of organs without touching them di-
rectly, enabling a minimally invasive, high-performance imag-
ing system.

3.3 Cell Imaging with Temperature Variation and Fiber
Bending

In practical applications, the optical fiber of the FOIS often
needs to be inserted deeply into the cavity of living organs.
This requires the imaging system to tolerate thermal variation
and fiber bending. For MMF-based FOIS, the increase of tem-
perature or bending of the fiber when inserting the fiber into
organs or tissues induces strong variations of the mode cou-
pling. These variations decrease the performance of MMF-
based imaging systems due to induced changes of the TM.9

This problem can be overcome using GALOF since most of
the modes embedded in GALOF show single-mode character-
istics, which increase the system tolerance and can make it im-
mune even to rather strong perturbations. We first investigate
the effect of temperature variation on our Cell-DCNN-GALOF
system by changing the temperature of a 10-mm-long GALOF
segment with a heater. During the data collection, we keep the
GALOF straight and at 0-mm imaging depth. We collect 15,000
image pairs at 20°C as the training data. For test data, we record
three sets of test data where the GALOF segment is heated to
20°C, 35°C, and 50°C, respectively. Each set of test data consists
of 1000 image pairs. The DCNN model is only trained utilizing
the training data collected at 20°C. Subsequently, the trained
model is applied to perform test image reconstruction of data
acquired at all three temperatures. In Figs. 4(a)–4(c), some sample
images are shown. Comparing the reference with reconstructed
images, the visual imaging quality is not affected by the thermal
change even for a 30°C variation. Most body temperatures of
humans and animals fall into this range. This confirms the

Fig. 2 Cell imaging of different types of cells: (a)–(c) test data for human red blood cells and
(d)–(f) test data for cancerous human stomach cells. All data are collected with straight GALOF,
at room temperature with 0-mm imaging depth. The length of the scale bar in (a1) is 4 μm. (a1)–(f1)
The reference images. (a2)–(f2) The corresponding raw images. (a3)–(f3) The images recovered
from the raw images. [Video S1, avi, 10 MB (URL: https://doi.org/10.1117/1.AP.1.6.066001.1)].
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remarkable robustness of our Cell-DCNN-GALOF system re-
garding temperature fluctuations, which makes the system par-
ticularly suitable for in vivo imaging.

Next, we test the effect of fiber bending on the performance
of our Cell-DCNN-GALOF system. We keep the temperature of
the fiber at room temperature and the imaging depth at 0 mm.
We collect 15,000 image pairs with straight GALOF as the train-
ing data and record five sets of separate test data corresponding
to five different bending states. Each test set consists of 1000
image pairs. Experimentally, the bending is induced by moving
the fiber end by a specified offset distance as illustrated in
Fig. 1(b). The relation between the offset distance and the

bending angle of the fiber is explained in Sec. 2. We first train
the model only using the training data collected from straight
GALOF. Then test images from all five different bending states
are reconstructed by the nonbending-data trained DCNN model
and evaluated using the MAE. The results are shown in Fig. 5.
Based on the recovered images in Figs. 5(a2)–5(e2), high-fidelity
cell imaging transfer and reconstruction could be performed
without any retraining for offset distances smaller than 2 cm
(a bending angle of ∼3 deg). The corresponding change of
the normalized averaged MAE with bending is depicted in
Fig. 5(f). The MAE increases by about 0.02 for every centimeter
(∼0.013 per deg) of bending. In contrast, any tiny fiber

Fig. 3 Multiple depth cell imaging: (a)–(f) Test data for human red blood cells. All data are col-
lected with straight GALOF at room temperature. All three images in each column are from the
same depth. The length of the scale bar in (a1) is 4 μm. (a1)–(f1) The reference images; (a2)–(f2) the
corresponding raw images. The distance between the image of the object and the fiber input facet
is defined as the depth. Initially, the image of the object is located at the GALOF’s input facet with
0-mm depth. Then the imaging depth is increased in steps of 1 mm by moving the fiber input end
using a translation stage. As illustrated in (g), (a2)–(f2) are obtained by varying the imaging depth
from 0 to 5 mm with steps of 1 mm. (a3)–(f3) The images recovered from the corresponding raw
images. (h) The averaged test MAE for each depth with the standard deviation as the error bar.
More sample results, including reference, raw, and recovered images, are shown in Fig. S2 in the
Supplementary Material.
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movement (a few hundred micrometers for MMF or a few milli-
meters for MCF) in MMF- or MCF-based systems requires ac-
cess to the distal end of the fiber to recalibrate the TM.6,9,15 For
biomedical applications, the flexibility of the Cell-DCNN-
GALOF system shows the potential to satisfy the imaging re-
quirements for observing real-time neuron activity in free-be-
having objects.2,9

3.4 Cell Imaging Transfer Learning

We have shown that our DCNN is able to perform high-fidelity
image restoration when training and testing are performed
with the same types of cells. In practical applications, the
Cell-DCNN-GALOF system would be a more efficient and
higher functionalized tool if it was able to transfer its learning

capability to reconstruct different types of cells that never ap-
peared in the set of training data. To enable transfer-learning
reconstruction with high fidelity, a training dataset with high
diversity would certainly be beneficial. As a proof-of-concept
experiment, we apply a training set with just three different
types of images. Sample images are shown in Figs. 6(a)–6(c).
These are images of human red blood cells, frog blood cells, and
polymer microspheres. During the recording of data for training,
validation, and testing, we keep the GALOF straight and the
imaging plane at 0-mm depth and at room temperature. To gen-
erate data sets for training and validation, we first collect 10,000
image pairs of human red blood cells, frog blood cells, and pol-
ymer microspheres, respectively. Subsequently, all 30,000 im-
age pairs of the three different types are mixed randomly. We
extract 28,000 image pairs from those randomly mixed images

Fig. 4 Cell imaging at different temperatures. (a1)–(c1) Test raw images of human red blood cells
collected at 20°C, 35°C, and 50°C, respectively. The scale bar length in (a1) is 4 μm. (a2)–(c2)
Images recovered from (a1)–(c1); (a3)–(c3) the corresponding reference images. All data are col-
lected with straight GALOF at 0-mm imaging depth. (d) The averaged test MAE for each temper-
ature with the standard deviation as the error bar. More test sample results, including reference,
raw, and recovered images, are provided in Fig. S3 in the Supplementary Material.
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as the training dataset and 1000 image pairs as the validation
dataset. To characterize the training process, the accuracy im-
provement curves during training and validation are tracked
and shown in Fig. 6(g). Both curves show convergence to

low values after about 20 epochs. The differences between
the validation and the training accuracy improvement curves
are very small. These characteristics indicate that our DCNN
is not overfitting with respect to the training dataset.

Fig. 5 Cell imaging under bending. (a)–(e) Data in each column correspond to examples with the
bending offset distance listed above. The definition of offset distance is illustrated in Fig. 1(b). The
bending angle range corresponding to offset distances between 0 and 2 cm is about 3 deg. For
more details, see Sec. 2. (a1)–(e1) Raw images collected at different bending offset distances. The
scale bar length in (a1) is 4 μm. (a2)–(e2) Images reconstructed from (a1)–(e1); (a3)–(e3) the corre-
sponding reference images. (f) Averaged test MAE for five different bending states with the stan-
dard deviation as the error bar. More sample results of human red blood cells, including reference,
raw, and recovered images, are provided in Fig. S4 in the Supplementary Material.

Zhao et al.: Deep-learning cell imaging through Anderson localizing optical fiber

Advanced Photonics 066001-8 Nov∕Dec 2019 • Vol. 1(6)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 19 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.AP.1.6.066001.s01


Fig. 6 Cell imaging transfer learning. (a)–(c) Sample cell images in the set of training data. The
scale bar length in (a) is 4 μm. There are three different types of cells in the set of training data:
(a) an image of human red blood cells, (b) an image of frog blood cells, and (c) an image of polymer
microspheres. (d)–(f) Test process using data from images of bird blood cells. (d1)–(d4) Raw im-
ages of bird blood cells transported through straight GALOF taken at 0 mm imaging depth and at
room temperature. (e1)–(e4) Images reconstructed from (d1)–(d4); (f1)–(f4) the corresponding refer-
ence images of bird blood cells. (g) Training and validation accuracy improvement curves using
MAE as the metric over 80 epochs. (h) Averaged test MAE of the bird blood cell images with the
standard deviation as the error bar.
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As the test data, we record 1000 image pairs from a totally
different type of cell, namely bird blood cells. The raw images
of the bird blood cells obtained after passing through straight
GALOF are shown in Fig. 6(d). These data are fed into the
trained DCNN to perform the transfer-learning reconstruction.
The reconstructed and reference images are shown in Figs. 6(e)
and 6(f), respectively. To enable quantitative analysis, the aver-
aged test MAE and its standard deviation are provided in
Fig. 6(h). A visual inspection demonstrates that within the re-
constructed images of bird blood cells one can clearly locate
the position and orientation of the nucleus for every single cell.
Being trained by a fairly limited set of training data, our DCNN
is still able to approximately reconstruct complex cell objects of
a totally different type. This transfer-learning capability of the
Cell-DCNN-GALOF system demonstrates that the underlying
physics of the imaging process is captured well by the trained
DCNN and should prove beneficial for practical applications,
such as real-time cell counting with a mixture of different cell
types.

4 Discussion and Conclusion
The system performance of an FOIS is mainly determined by
the imaging processing method and the physical properties of
the optical fiber. Recently developed FOISs using MMFs and
MCFs heavily rely on the TM method, which requires phase-
shifting interferometry and adaptive optic devices, such as spa-
tial light modulators (SLMs) or digital micromirror devices
(DMDs).5,9,14,19 Although TM-based systems have demonstrated
remarkable performance, several inherent shortcomings are as-
sociated with this approach.17,20,22 First, TM-based systems re-
quire phase-shifting interferometry for calibration, which
results in complicated configurations, vulnerability to environ-
mental noise, and incompatibility with incoherent broadband il-
luminations. Second, the slow refresh rate of the wavefront-
shaping device (SLM or DMD) limits the calibration and imag-
ing speed (∼10 Hz for most systems). The wavefront-shaping
method using an iterative optimization algorithm without meas-
uring the TM is even more time-consuming.15 Third, the imag-
ing quality demonstrated by these FOISs is impaired by evident
artifacts, such as defective background, ghost images, and
pixelations.9,10,16,19 Moreover, the evaluation of system perfor-
mance is often based on the imaging of simple binary objects,
such as numbers or letters, rather than grayscale complex bio-
logical objects, which is far from practical applications.16,33

Finally, the physics properties of MMFs or MCFs result in vari-
ous challenges in these state-of-the-art systems. Although for
different mechanisms, both MMFs and MCFs require narrow-
band illumination for the imaging process. These types of fibers
are also very sensitive to perturbations.5,9,12,15 For instance, fiber
movements of a few hundred micrometers or temperature var-
iations of about 15°C can severely disturb the MMF-based im-
aging process.9 Although an insightful complex theoretical
framework has been developed recently to predict the TM of
MMFs in a straight or bent state, this model is difficult to imple-
ment in a practical system.46 Very precise knowledge of the fi-
ber’s parameters, such as length, refractive index distribution,
and bending shape, is required. In addition, this method still ne-
cessitates an SLM resulting in problems similar to other wave-
front-shaping methods.

The Cell-DCNN-GALOF system overcomes many of the
abovementioned drawbacks of current FOISs through the
combination of DCNN and GALOF. Regarding the image

processing technique, the DCNN does not impose restrictions
on coherence, bandwidth, or polarization of the light.
Training and test data are intensity images recorded by conven-
tional CCD cameras without any wavefront shaping device or
interferometric measurement process. On the other hand, the
unique properties of the GALOF make high-quality imaging
possible. Schirmacher et al.44 confirmed that the localization
lengths of modes in transverse Anderson localizing fiber remain
almost constant over a very broad spectral bandwidth of
∼500 nm. This means broadband illumination does not impair
the point spread function of the GALOF,44 in contrast to MMFs
and MCFs. Furthermore, unlike MCFs, the point spread function
of GALOF also does not degrade with the propagation distance.41

One of the fundamental reasons for the GALOF’s potential for
quality imaging is the exceptionally high-mode density. For
example, our GALOF features about 10 modes per μm2 at
∼600 nm. This is contrasted with about 1 mode per μm2 and
0.1 μm2 for MMFs and MCFs under similar conditions, respec-
tively. The rather low-mode density represents a general bottle-
neck to the image transmission performance of MMFs and
MCFs. It should be further noted that our latest research on
the GALOF demonstrates that most of the strongly localized
GALOF modes have a nearly diffraction-limited wavefront
and high spatial coherence.42 These single-mode-like character-
istics of the GALOF modes together with the high-mode density
are the enabling properties for the robustness of the high-quality
imaging process.38,42 Finally, we would like to point out that
GALOFs are also cost-effective since it only requires undoped
conventional silica material and simple two-step stack-and-draw
fabrication.32 In contrast, the doped material necessary to fabri-
cate both MMFs and MCFs leads to higher costs of such for
fibers.

Due to the combination of DCNN and GALOF, the imaging
system performance makes a big leap forward. High-speed
(∼20 Hz) artifact-free biological cell imaging is realized under
broadband incoherent illumination based on a very simple, sta-
ble, and affordable system. In particular, the imaging speed is
just determined by the cheap hardware of a personal computer.
For the same setup as presented in this paper, an even faster
speed can be easily achieved by investing in better GPUs.
The demonstrated tolerances of 3-deg bending and 30°C tem-
perature change stand for significant progress compared with
other state-of-the-art systems.9,19,33 Lensless imaging and trans-
fer learning represent important additional improvements com-
pared with previous systems. Using the Cell-DCNN-GALOF
system, we show lensless high-quality imaging of stained bio-
logical objects that are several millimeters away. This is com-
pared with previous FOISs that demonstrate lensless imaging
with rather low imaging quality of objects at a depth of only
a few hundred micrometers.9,16 It is worth noting that the dem-
onstrated lensless imaging capability is based on stained cell
samples under incoherent illumination. For lensless imaging
of unstained transparent living cells under coherent illumina-
tion, further investigations need to be performed, which is be-
yond the scope of this work. Regarding the transfer-learning
performance, previous DCNN-based FOISs demonstrate quite
limited capabilities using test objects with morphologies quite
similar to that of the training objects (simple binary numbers
or letters).32,33 Reconstructing different types of cell objects
that are not part of any training procedure shows the trans-
fer-learning capability of our imaging system in practical
scenarios.

Zhao et al.: Deep-learning cell imaging through Anderson localizing optical fiber

Advanced Photonics 066001-10 Nov∕Dec 2019 • Vol. 1(6)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 19 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Although the Cell-DCNN-GALOF system has demonstrated
superior system performances, optimizations on both GALOF
structure and DCNN design can potentially enhance its perfor-
mance further. The current setup uses a transmission mode,
whereas reflection mode operation is more suitable for practical
in vivo imaging. Reflection mode operation could be imple-
mented using illumination coupled into the GALOF proximal
end and guided either by parts of the disordered structure or
by separate channels integrated into the GALOF’s nondisor-
dered cladding.42,47 Even if the lensless imaging depth of the
Cell-DCNN-GALOF system is able to satisfy lots of practical
applications, extending the depth further is always desired.
The imaging quality of the current system gradually reduces
with increasing depth. This might be attributed to the fact that,
under incoherent illumination, high-frequency features of the
intensity objects are gradually lost with increasing depth, lead-
ing to a corresponding rise of the MAE. In future work, this
problem might be relieved by optimizing the structural param-
eters of the GALOF. Perhaps the robustness of the system
performance, for instance, the bending tolerance, can also
be improved in next-generation Cell-DCNN-GALOF systems.
Since this environmental stability is strongly related to the
presence of transversally extended modes, the path to more ro-
bust performance might be further optimization of the random
structure inside the GALOF with a maximized scattering in the
transverse plane and, therefore, further enhanced Anderson
localization. Maximizing the scattering should be achieved
by adapting new materials with different refractive indices
and optimizing the air–hole filling fraction and the air–hole
size distribution. Enhanced Anderson localization creates
transverse localization sites with smaller radii and fewer
variations.31,42,48 Finally, more universal transfer-learning imag-
ing can be achieved using training data with larger diversity.
However, generating highly diverse biological training data for
an FOIS remains a formidable practical challenge, and the
computational power available to process large amounts of
training data is often an additional bottleneck. We believe that
these challenges can be addressed in next-generation FIOSs for
biological objects with the help of further optimized DCNN
architectures.

In conclusion, it is the combination of unique GALOF prop-
erties and tailored DCNN design that enables the remarkable
capabilities of the presented Cell-DCNN-GALOF imaging sys-
tem. Both components, GALOF design and DCNN architecture,
still have room for improvements, and future research will con-
sider both components and their interplay. We are very optimis-
tic that the presented architecture can be the basis for future
high-fidelity imaging systems that are minimally invasive and
demonstrate robust performance in dynamic environments.
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