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Abstract. The statistical characterization of realistic, complex back-
grounds where targets may be embedded is essential in the optimization
of methods for target acquisition. A modeling framework for complex
backgrounds that yields perceptually realistic images may provide a path
towards such essential characterizations. To this end, we developed a
framework for the synthesis of statistical textured backgrounds. The re-
sults of the syntheses of three rock-like structures and that of grass
indicate some of the capabilities of the framework. We further extended
the methods to synthesize biological tissue samples which present two
forms of background complexity: a slowly, spatially varying mean-
background and a residual texture image. The extended framework al-
lows synthesis of each component independently. A mathematical phan-
tom for modeling inhomogeneous backgrounds is then proposed. First
and second order statistics of various textures are then presented and a
measure of distance between two images is proposed. Finally we dis-
cuss how such a framework may lead to effective statistical descriptions
of such complex backgrounds for target acquisition. © 1998 Society of
Photo-Optical instrumentation Enginesrs. [S0091-3286(98)01807-8]
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1 Introduction

Research in imaging aims to create better imaging systems,
and to develop methods of image processing and analysis
that utilize the most important information present in an
image. In the case of target acquisition in natural back-
grounds, such methods are required for accurate and timely
detection of relevant targets. Realistic numerical models of
compiex backgrounds as well as models of imaging sys-
tems are key components to achieving these goals. In this
paper, we present a framework for synthesizing three types
of complex statistical backgrounds: lumpy backgrounds,
statistical textured backgrounds, or a combination of the
two. Lumpy backgrounds denote specifically slowly vary-
ing backgrounds that are wide-sense stationary and present
a Gaussian autocorrelation function.'* Statistical textures
are textures that present no apparent periodic pattern.

Texture synthesis is the ability to generate from one
sample texture image a statistical ensemble of texture im-
ages, One synthetic image is a realization of the underlying
random process that could be employed to generate the
texture. While texture synthesis finds applications in com-
puter graphics where textured scenes bring additional simu-
lation realism, we hope to demonstrate that texture synthe-
sis also finds important application to the domains of
imaging and image analysis, which require models of com-
plex background images.*® Progress in image understand-
ing and effective analysis requires the specification of a
task, The task of target detection and classification in com-
plex statistical backgrounds is the focus of the work pre-
sented here.

A synthesis framework that accounts for slowly varying
backgrounds as well as smaller scale statistical textures
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leads to a digital complex-background phantom that may
find important use in the development of methods for the
optimization of target acquisition in complex backgrounds.
We demonstrate synthesis methods with statistical textured
backgrounds such as three types of rock and grass images.
We further show synthesis of even more complex back-
grounds such as radiological breast tissues. Radiological
tissues are more complex in the sense that they include
various types of statistical textures that have failed to be
synthesized by existing methods. However we demon-
strated in a recent investigation that they can be decom-
posed effectively into the sum of a slowly varying mean
background, which we have proposed to model using
lumpy backgrounds, and a statistical texture.” Breast tissue
images thus provide good images to investigate a proposed
framework that accounts for these two kinds of statistics.
It is important to note that current methods for detection
of lesions in complex medical backgrounds were originally
based on methods developed for target acquisition in radar
images developed in the 1960's. The cases of lesion detec-
tion in medical and biomedical images, as well as that of
military target acquisition, involve targets embedded in
complex backgrounds that require ‘‘economical’’ statistical
descriptions for the development of figures of merits for
effective target detection and more generally target classi-
fication. While we are currently investigating such statisti-
cal descriptions, we shall present a framework for texture
synthesis as well as its application to five texture types. We
shall present results of first and second order statistical de-
scriptions for those textures and propose a measure of dis-
tance between two images. We shall finally discuss how a
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Fig. 1 lllustration of the steerable pyramid transform used in the
texture synthesis algorithm. The input image in the upper left corner
would be either the texture sample or the white noise image. The
output image in the upper right corner will be either the reconstruc-
tion of a decomposed image if only one input image is considered,
or a synthesis image if two pyramid layers are combined as de-
scribed in Section 4. The left hand side of the pyramid is used for
decomposing the two images and the right hand side of the pyramid
is used tor image reconstruction or synthesis.

synthesis framework may help unravel effective statistical
descriptions of such complex backgrounds.

2 A Framework for Texture Synthesis

The algorithm for texture synthesis we propose is based on
a multiple scale decomposition of a sample texture image
and the same decomposition of a realization of a uniformly
distributed white noise image. The algorithm is composed
of four essential components: the pyramid transform, the
image decomposition, the histogram matching procedure,
and the texture synthesis. Texture synthesis based on a mul-
tiscale and multiorientation decomposition followed by his-
togram maiching of the decomoposcd images was first pro-
posed by Heeger and Bergen.'® The algorithm we propose,
depicted for one scale level in Fig. 1, includes a recursive
steerable pyramid transform with a set of quadrature mirror
filter banks."""!* By recursive we mean that once a first
synthesis is obtained through the steerable pyramid, we re-
apply the algorithm but using the original sample texture
and the last synthesis instead of the noise image first con-
sidered. The algorithm for one iteration employs a four-
layer scale-space decomposition. In previously related cited
work an overall description of the algorithm was given but
various specifics were not provided (e.g. filter sizes, the
number of scale levels considered in the pyramid descrip-
tion, details of decimation and undecimation). The decom-
position of the images yields subband images that are pro-
cessed independently. The histograms of the subband
images of the model and the noise are then matched. After
multiscale and multiorientation decomposition and histo-
gram matching at all scales and orientations, the noise sub-
band images are recombined using a quadrature mirror fil-
ter bank to yield a synthetic image.

The algorithm was implemented in IDL language and is
best described by considering the four individual compo-
nents:

The Pyramid Transform. The proposed algorithm for the
synthesis of the residual texture is based on a four-layer
steerable pyramid transform. One layer of the pyramid is
depicted in Fig. 1. Layers are connected by a factor-of-two
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downsampling also known as decimation of the image."
Within each layer, the image is filtered by a set of bandpass
filters and followed by a set of orientation filters that form
a quadrature mirror filter bank."*"'” Four (scales) by four
{orientations: 0 degree, 45 degree, 90 degree and 135 de-
gree) 17X 17 size filters were adopted.

Image Decomposition. The texture image is processed
through the left hand side of the pyramid transform shown
in Fig. 1. Tt is represented in Fig. 1 as an input to the
pyramid in the upper left corner. In parallel, a realization of
uniformly distributed white noise, referred thereafter as
white noise, is also processed by the same pyramid trans-
form, that is, it is also fed independently to the pyramid
transform in the upper left corner. The role of the white
noise image is to provide a starting point for the synthesis.

Histogram Matching at Multiple Scales. After decompo-
sition of a texture sample and a realization image of white
noise, the histograms of the subband images (i.e. output
images of the filters on the left hand side of the pyramid) of
the texture image and of the noise image are matched,™
Histogram matching is an image processing technique, spe-
cifically a point operation, which modifies a candidate im-
age so that its histogram matches that of a model
ima,ge.ls’2

Texture Synthesis. The histogram-matched noise sub-
band images obtained at multiple scales are then recom-
bined according to the right hand side of the pyramid trans-
form shown in Fig. 1. The synthesis operation is a
bottom-up reconstruction that includes upsampling by a
factor of two, also known as undecimation, and Gaussian
blur between scales. Moreover, the grey levels of the un-
decimated image must be multiplied by a factor of four at
each stage of the synthesis to account for the loss in bright-
ness the image previously underwent upon decimation by a
level of two. This process repeated at multiple scales yields
a synthetic image. If another realization of white noise is
processed instead, the synthesis yields another realization
of the synthesized image as shown in Section 3.

3 Examples of Texture Synthesis of Natural
Structures

Application of the texture synthesis framework is demon-
strated in Figs. 2 and 3 for four different model texture
images: three different granite samples and a grass sample.
The original samples and the synthesized images are shown
as well as their histograms. Two realizations of image syn-
thesis were generated for each texture of model using two
different realizations of the noise input image that was cho-
sen to be uniformly distributed white noise. The framework
was extended to allow for the synthesis of biological
samples. We investigated the specific application of texture
synthesis of mammogram images. Based on our experi-
ence, application of the steerable pyramid transform to
mammogram images does not yield perceptually resem-
bling marr:tmograms.21 A two-component model synthesis
framework to handle more complex backgrounds such as,
but not limited to, mammograms is now described.

4 A Two-Component Model Synthesis
Framework

Investigations of the statistics of texture backgrounds may
guide approaches to their synthesis. It has been suggested
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Fig. 2 Results of texture synthesis for two textures denoted as Granite-1 and Granite-2. The histo-
grams of the original sampies as well as of the syntheses for two realizations of uniformly distributed

white noise are shown.

that various classes of images, including mammograms,
have power spectra of the form 1/f%.2*% For mammo-
grams, estimated values of a in the range of 1.5 to 2 have
been reported.’** A power-law spectrum exponent be-
tween 1.5 and 2 indicates that mammograms are not frac-
tals. A two-dimensional fractal would yield an exponent
greater than 2. This finding further suggests that such back-

grounds cannot be synthesized using fractals.”® Therefore,
while some investigations have demonstrated that different
mammographic tissue types can be classified according to
their estimated fractal dimension,?® some of these investi-
gations have further demonstrated that the addition of an-
other  parameter  significantly  yields  improved
classification.”®?” An additional complication with model-
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Fig. 3 Results of texture synthesis for two textures denoted as Granite-3 and Grass. The histograms
of the original samples as well as of the syntheses for two realizations of unifoermly distributed white

noise are shown.
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ing biological tissue as a fractal is that it is difficult to
accurately estimate a fractal dimension from digitized
data.®

The indication that the power spectra of mammograms
and various natural images follow some power law may be
significant. It is however important to note it has been dem-
onstrated that the power spectrum of a statistical complex
background is not a complete descriptor of the required
background statistics to predict human observer perfor-
mance in various detection tasks, Specifically, two studies
demonstrate that two sets of images with equal power spec-
tra, yet having Fourier spectra that differ in phase, yield
different detectability performance and thus require differ-
ent predictive mathematical models.”>** An ensemble of
images with the same power spectrum as that of another
ensemble of images but with a Fourier spectrum of random
phase was obtained by filtering various realizations of
white noise with the desired power spectrum.

While power spectra calculations are commonly em-
ployed to characterize complex backgrounds, it must be
noted that only Gaussian random processes can be fully
characterized by their first order statistics and their autocor-
relation function. Knowledge of these quantities is suffi-
cient to compute the statistical property of the random pro-
cess to any order. The second order statistics, however, for
non-Gaussian random processes are defined as the two-
point probability density function (2P-PDF). The power
spectrum computation can be conducted knowing the 2P-
PDF but the reverse is not true. We are currently further
investigating the relative role of power spectra versus the
2P-PDF for detection of targets in complex backgrounds
with non-Gaussian statistics.

Knowing that complex backgrounds such as mammeo-
grams cannot be modeled either as a fractal or as filtered
white noise to yield a given ensemble power spectrum, we
propose an alternative approach to modeling such back-
grounds. The model is established from knowledge of the
anatomy of such tissues and their radiographic
appearance.” Radiographic contrast in mammography
arises from differing attenuation between tissues that com-
prise the breast. The breast is made essentially of a mixture
of fatty tissue, which appears dark on radiographs, connec-
tive and epithelial tissue which produce bright radiographic
appearances also referred to as mammographic densities,
and prominent ducts which yield cord-like structures or a
beaded appearance.”

Overall, a set of mammographic radiographs from the
same type of breast tissue may be described as a stochastic
process with fairly large scale structures that account for
mammographic densities on black backgrounds, and
smaller scale structures that give the tissue the appearance
of texture. We thus propose a model that is based on the
decomposition of such complex backgrounds into two com-
ponents: a mean background (i.c. the slowly, spatially vary-
ing component) and a mean texture image. The background
accounts for large-scale inhomogeneity in the mammo-
graphic background and the texture characterizes the fluc-
tuations of that image around the mean background.

A realization of the mean background is typically ob-
tained by convolving a sample of a mammographic sample
image with a two-dimensional Gaussian kernel, 031 An ex-
ample of the sample image and the resulting blurred image
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Fig. 4 Mammography breast image decomposition: (a) the original
sample; (b) the slowly, spatially varying mean background; (c) the
residual texture image.

are shown in Figs. 4(a) and 4(b), respectively. The sample
tmage is a 256X256 pixel section extracted from a mam-
mogram from the database of N. Karssemeijer of Univer-
sity Hospital Nijmegen, The Netherlands.*> A sample of the
residual texture image is obtained by subtracting the mean
background from the original image. The residual texture
image corresponding to the sample image shown in Fig.
4(a) is shown in Fig. 4(c).

We first propose to model the mean background as a
lumpy background that is defined as a wide-sense station-
ary stochastic process with a Gaussian autocorrelation
function.’*>** We thus assume that the stochastic process
describing an ensemble of mean backgrounds extracted
from several sub-images of a set of mammograms is wide-
sense stationary as well. While the validation of this as-
sumption is ultimately required, our experience with mam-
mograms suggests that wide-sense stationarity is a
reasonable assumption to make. We propose to synthesize
the texture image using a four-layer pyramid framework
described earlier. Finally, we propose that various linear
weighted sums of the two model components, the lumpy
background and the synthesized texture, yield mammo-
grams with typical radiographic characteristics.

While this model is being further investigated, current
literature provides some support for the proposed model.
First, Hunt and Cannon demonstrated that nafural scenes
can be decomposed into intensity fluctuations around a
nonstationary ensemble mean where the mean is estimated
by blurring a typical ensemble member.** Our model dif-
fers from that of Hunt and Cannon as we hypothesize that
the mean background arises from an underlying wide-sense
stationary process. Moreover, in support of this model, sev-
eral investigations by Byng and colleagues suggest that at
least two parameters are required to characterize mammo-
grams: one parameter to describe the distribution of breast
tissue density as reflected by the brightness of the mammo-
grams, and another parameter to characterize the texture.”’
The mean background and texture compenents of the pro-
posed decomposition are reminiscent of the first and second
parameters in Byng’s model, respectively.

4.1 Synthesis of the Slowly Varying Mean
Background

We propose to model the mean background as a stochastic
process known as the lumpy background which has been
developed to specifically account for spatially varying
backgrounds in medical images as a result, for example, of
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anatomical structures,!™* In the case of marmmography, the
mean background may account for the relative amount of
fat and densities in the breast tissue.

The lumpy background, detailed in Rolland,' was de-
vised to be mathematically tractable for computing signal-
to-noise ratio predictions for various medical imaging
tasks.!>** The lumpy background is designed to be wide-
sense stationary, that is, stationary over the ensemble of
images, where the autocorrelation function is only a func-
tion of the shift variable r. A second important character-
istic of the lumpy background is that its autocorrelation
function 1s a Gaussian function. The power spectrum W(p)
is then defined as the Fourier transform of the autocorrela-
tion function and is given by

W(p)=W(0}exp(—27r;|p|?), (1)

where p is the 2D frequency variable in the Fourier domain
conjugate to r, ry is the correlation length of the autocor-
relation function, and W(0) is the value of the power spec-
trum at zero frequency that we refer to as the lumpiness
measure.

Two models of the lumpy backgrounds were presented
in Rolland.! The first approach consisted of superimposing
2D Gaussian functions, referred to as Gaussian blobs, on a
constant background of strength By. To keep the math-
ematics simple, we assumed 2D Gaussian blobs of constant
amplitude by /7, and constant half-width r,, . In this case,
the lumpy background can be shown to be mathematically
specified as

& by |r_1"j¥2
b(r)= 2 =5 exp| — — x|, (2)
j=1 Ty s

where r; is a random variable uniformly distributed over
the background area, and K is the number of Gaussian
blobs in the background. Rolland further showed that to
yield a Gaussian autocorrelation function, the number of
Gaussian blobs X must also be a random variable with the
mean of K equal to its variance. We thus chose K to be
Poisson distributed for this condition to be satisfied.'? A
measure of lumpiness in the background is given by

K
W(O)=:‘Eb . (3)

where K/A,; is the mean number of Gaussian functions per
mm?.

By varying the background lumpiness, one can simulate
various types of tissue inhomogeneities. We hypothesize
that the width of the Gaussian blobs can be chosen to rep-
resent existing correlation lengths of the tissue densities in
various types of tissues.

We conducted some simulations with the mammeo-
graphic background where the mean background was ex-
tracted from the mammographic images by convolving the
latter with a Gaussian kernel of standard deviation six
pixels.’ For the lumpy stochastic process, eighteen
images were simulated of lumpiness value 10° counts’/

(sec® pixels) (i.e. mean number of blobs was 400, the

@ ® © ()

Fig. 5 Syntheses of a residual mammaographic texture image: (a) a
typical sample of a uniformly distributed white noise image used as
a starting point for one synthesis; (b) original mammographic re-
sidual texture; (c) synthesis 1; {d} synthesis 2.

strength of a blob 50 was 12,800 counts/sec) and of corre-
lation length r» equal to 15 pixels. For the synthesized
texture images, cightcen syntheses were obtained using
three of the residual texture images from the ensemble.
While the simulated lumpy backgrounds visually appeared
as fairly good models of the mammographic slowly varying
component, further investigations are needed to compare
the underlying statistics. As discussed in Section 6, a sta-
tistical analysis leads us to also consider other models be-
sides the lumpy backgrounds.

4.2 Synthesis of the Residual Texture Image

The framework detailed in Section 2 was applied to synthe-
size the residual texture compoenent. Results of the synthe-
sis are shown in Fig. 5. On the left, a realization of the
noise is shown. It is followed to the right with the residual
texture. The two rightmost images are two realizations of
the synthesis corresponding to two different realizations of
the noise.

5 A Proposed Mathematical Phantom

The synthesis of an ensemble of images. M ,(x,y) according
to the described mathematical phantom can be established
using an adaptive linear combination of realizations from
the two model components: a realization of a lumpy back-
ground component denoted as L,(x,y) and a realization of
the synthesized texture component denoted as T;(x,y). The
resulting synthesized image will then be given by

M (x,y)=BLi(x,y)+(1—B)T{x,y), {4)

where 8 ranges from 0 to 1. Such a combination will allow
us to span a wide range of tissue types with relative
amounts of lumpy backgrounds and texture backgrounds.
We hypothesize that by choosing the parameters of the
lumpy background (i.e. comrelation length and lumpiness
values) and the types of texture to synthesize, various tissue
types as described by Wolfe for example can be
synthesized.”® On a more theoretical basis, one can also
study a wide range of combinations of such backgrounds
by varying 8 and the parameters associated with each com-
ponent. Such a framework may naturally find application to
a wide range of complex backgrounds.

6 First and Second Order Statistics

It has been shown that accounting for second order statis-
tics measured with power spectra is insufficient to predict
target detectability in complex backgrounds. We are thus
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Fig. 6 (a) 2P-PDFs for Granite-1 with no histogram matched to the mammographic residue image.
From upper left to upper right corners the directional distance d takes values of (—5,-5), (—3,-5),
(3,—5), (5,—5), from top left to bottom left, d takes values of (—5,-5), (—5,—3), (—5,3), and (—5,5). (b}
2P-PDFs for Granite-1 with histogram matched to the mammographic residue image. From upper lett
to upper right comers the directional distance d takes values of (—5,-5), (—3,—5), (3,—-5), (5,—5);
from top left to bottom left, d takes values of (—5,—5), (—5,—3), {(—-5,3), and {—5,5).

investigating the complete second-order statistics of com-
plex backgrounds as described by the 2P-PDF with the aim
in mind to foster the future establishment of more effective
figures of merit for target detectability in complex
backgrounds.>* The 2P-PDF and often components of the
2P-PDF are also known as the co-occurrence matrix, espe-
cially in the literature on texture segmentation. Julez first
used grey tone spatial dependence co-occurrence statistics
in texture discrimination experiments.’> Various statistical
measures have been extracted from the 2P-PDF for use in
automatic texture discrimination.’® The autocorrelation
function has been one of the measures most widely em-
ployed in analyzing statistical backgrounds like natural
scenes. For our purpose, effective detection of targets in
complex textured backgrounds, we propose to work with
the complete 2P-PD instead of extracted features.*

A 2P-PDF is computed as the frequency of simultaneous
occurrence of two grey levels from two pixels separated by
a directional distance d. A 2P-PDF is computed for each
value of the vector d. We present computations of 2P-PDFs
for some of the textures considered in this paper. For both
the original mammographic texture image and its synthesis,
the first order statistics were naturally matched. This also
applies to the mammographic mean backgrounds and
lumpy backgrounds. We then define a distance measure
between two 2P-PDFs as

1
D(p@ p®)= o ; EJ [(p“NGL;,GL;d)~p®)

2060 Optical Engineering, Vol. 37 No. 7, July 1998

12
X(GL,,GL;;d)]*| , (5)

where ij is a pair of grey levels, p® and p‘® are the
2P-PPFs for texture (a) and texture (&), respectively, and
Ng is the number of directional distances considered. It
must be noted that D defines a distance because it satisfies
the three following properties of distance:

D(p(“),p(“))=0
D(p'9.p®y=D(p®),p) (6)
D(p.p®)+D(p™,p9)=D(p'),p))

Computations of 2P-PDFs for some of the textures consid-
ered in this paper are shown in Figs. 6-10. It can be shown
from Figs. 6(a) and 6(b) that the first order statistics have a
significant impact on the form of the 2P-PDF. It can be
indeed shown that in the limit of large d the 2P-PDF be-
comes the product of the 1P-PDFs (i.e. first order statistics).
However, while the form of the 2P-PDF of Granite-1 re-
semble that of the residue image after matching of its first
order statistics to that of the residue image, some asymme-
try along the diagonal in the 2P-PDF can still be observed.
Table 1 also confirms that the two textures are still fairly
far apart compared to the distance between the residue im-
age and its syntheses. While we do not show the 2P-PDFs
for the mean and lumpy backgrounds, our investigation
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Fig. 7 2P-PDFs for Granite-2 with histogram matched to the mam-
mographic residue image. From upper left to upper right comers the
directional distance d takes values of {—5,—-5), (—3,-5), {3,-5),
(5,—5); from top left fo bottom left, d takes values of (—5,-5), (-5,
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yields visual good agreement. However, we also recently
investigated that the mean background can be effectively
synthesized using the steerable pyramid transform frame-
work which is attractive because it provides a natural way
to synthesize those backgrounds with no need to heuristi-

L] i) n0 9 10 00 L] 109 20
Fig. 8 2P-PDFs for Grass with histogram matched to the mammo-
graphic resigue image. From upper left to upper right comers the
directional distance d takes values of (—5,~5), (—3,—5), {3,~5},
(5,—5); from top left to bottom left, d takes values of (—5,—-5), (-5,
-3), {—5,3}, and {-5,5).
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Fig. 9 2P-PDFs for the residue mammogram. From upper left to
upper right corners the directional distance d takes values of (-5,
=5), {(—3,~5), (3,—5), (5,~5); from top left to botom left, d takes
values of (—5,—5), (~5,—3), (—5,3), and {(-5,5).
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cally choose the best parameters of the lumpy background.
Therefore we are now investigating the 2P-PDFs of those
new syntheses,

The distances between various textures are given in
Table 1. Some of the distance computations are conducted

B g g g
# ¥ | E
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Fig. 10 2P-PDFs for the synthetic residue image with histogram
naturally matched to the mammographic residue image. From upper
left to upper right corners the directional distance d takes values of
(—5,-5), {—3,-5), (3,—5), (5,—5); from top left o bottom left, d
takes values of {(—5,~5), (—5,—3), (-5,3), and (—5,5).
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Table 1 Values of the distance between two 2P-PDFs are given.
The measure of distance is defined by Eq. (8).

Textures Distance
Mammo-syn1 to residue 0618
Mammo-syn2 to residue 0.621
Mamme-syn3 to residue 0.623
Mammeo-syn1 to Mammeo-syn2 0.538
Granite-1 to residue 2.370
Granite-2 to residue 3.386
Granite-3 to residue 2.487
Grass to residue 2.438

after the first-order statistics of the textures were matched.
For computational accuracy, all 2P-PDFs were first scaled
to satisfy a normalization of 100 instead of 1. Preliminary
results indicate that a small distance compared to the dis-
tance resulting from other textures separates the mammo-
gram texture and its syntheses. Future work includes map-
ping the space of distances for a large number of textures
and their syntheses, including white noise. This investiga-
tion is now under investigation and will be reported else-
where.

7 Role of Background Synthesis for Effective
Target Acquisition Methods

The ability to synthesize a large number of texture images
that share common underlying statistical characteristics is a
first step towards the extraction of effective statistical de-
scriptions of complex backgrounds for use in specific
tasks. 2?3934 If the end user is a human observer, the ulti-
mate test will be to conduct a set of psychophysical studies
using real images and mathematically simulated images to
validate the performance predictions. A statistical ensemble
of images is required for such studies and availability of a
mathematical phantom to generate an ensemble with speci-
fied targets embedded can be an effective way to conduct a
large number of experiments. Such methods can be gener-
alized to mathematical observers for automatic target ac-
quisition.

Current state-of-the-art Figures of Merit for predicting
the detection of targets in complex backgrounds that we
have participated in developing include solely the compu-
tation of the covariance matrix of the underlying random
process associated with the background.* While the cova-
riance matrix has been extensively and is still considered
for developing Figures of Merit for detection of target in
textured backgrounds, we currently hold the vision that
Figures of Merit based on the 2P-PDF should be considered
in addition. 2P-PDFs bring forward information about the
mutual spatial relationship between grey levels at multiple
scales and orientation. The covariance matrix which is re-
lated to the power spectrum for stationary random pro-
cesses provides only a global measure of spatial frequency
content in a texture image. For nonstationary random pro-
cesses, the power spectrum is not defined but the covari-
ance matrix is and can be considered. However, the cova-
riance matrix is only one moment of the 2P-PDF that
characterizes how two pixel grey level values at two points
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in the image covary. The 2P-PDF to the contrary fully char-
acterizes the second order statistics and likely provides a
more powerful tool to characterize detection in complex
backgrounds.

8 Conclusion

We presented a two-stage framework for the synthesis of
complex texture backgrounds and demonstrated its applica-
tion to the synthesis of rock, grass, and mammographic
tissue. In the latter case, a tissue sample was described as
the sum of a slowly, spatially varying mean background
{i.e. mean background) and a residual texture image. We
proposed to synthesize the mean background using a sto-
chastic process known as the lumpy background that one of
the authors (Dr. Rolland) and colleagues established in pre-
vious investigations.3 =3 The fine scale textures were synthe-
sized vsing a four-layer pyramid decomposition framework
we developed over the last year. The first and complete
second order statistics {2P-PDFs) of the various ensembles
of images were presented. A measure of distance between a
pair of 2P-PDFs associated with two textures is given that
may find application in texture discrimination and also tar-
get detection in such backgrounds. Work in progress in our
laboratory includes development of Figures of Merit for
target detection based on the 2P-PDFs.
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