ABSTRACT

Vertical scanning interference microscope measurements of the
mean radius of curvature (ROC) of both surfaces of constant-volume,
deformable, water-filled lenses were obtained before and during small
displacement stepped equatorial stretching in the plane perpendicu-
lar to the optical axis. Each lens demonstrated a marked decrease of
the ROC at its optical center. However, the ROC increased in a region
halfway between the center and the outer diameter of the lens. This is
indicative of central steepening with peripheral flattening. This is con-
trary to the assumption that stretching of the equator of a deformable
lens will only reduce its optical power.
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Paradoxical Optical Power Increase of a
Deformable Lens by Equatorial Stretching

Ronald A. Schachar, MD, PhD, Donald P Recently, it has been suggested that small dis-

Cudmore, MS, Truman D. Black, PhD, James C. placement equatorial stretching of a biconvex

Wyant, PhD, Victor W. Shung, MS, Tseng Huang, deformable lens actually produces central steepening

PhD, Ryan T. Mckinney, BS, & Jannick P with a large increase in optical power,' contrary to

Rolland, PhD prior assumptions.?® To test this hypothesis, a vertical
scanning interference microscope*® was used to mea-
sure the mean radius of curvature of the surfaces of
deformable lenses during small displacement equato-
rial stretching.

Each of four transparent, constant-volume, water-
filled, biconvex deformable lenses (Fig la) were sus-
pended in the center of a ring by clamping their
equatorial lip to eight equally spaced opposing
micrometers with nonrotating spindles (Fig 1b). The
ring with the attached lens was placed on the stage of
a vertical scanning interference microscope (RST
Plus, WYKO Corporation, Tucson, AZ) (Fig 1c). A ver-
tical scanning interferometer was selected for the
measurement because it provides a good way of mea-
suring both radius of curvature and changes in the
radius of curvature without any ambiguity in the sign.
In the vertical scanning interferometer, an unfiltered
white- light source is used. Due to the large spectral
bandwidth of the source, the coherence length of the
source is short, and good contrast fringes are obtained
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Fig 1a—Photograph of a water-filled deformable fens in the center of a teething ring.
The water-filled deformable lenses were made from transparent teething rings that
did not have the imprinted design.

Fig 1h— Photograph of a water-filled deformable lens mounted in the center of a
ring by clamping its equatorial lip to eight, equally spaced, opposing micrometers
with nonrotating spindles.

only when the two paths of the interferometer are
closely matched in length. Thus, if in the interference
microscope the path length of the sample arm of the
interferometer is varied, the height variations across
the sample can be determined by looking at the sam-
ple position for which the fringe contrast is maximum.
In this measurement, the height ambiguities that can
be present if a quasi-monochromatic light source is
used are eliminated.*®

Materials & Methods

Four transparent, constant-volume, water-filled,
biconvex deformable lenses, with a wall thickness of
0.5 mm were made by cutting out individual balloon
elements of transparent water-filled polyvinylchloride
teething rings (Safety Ist, Chestnut Hill, MA). The bal-
loon element was heat sealed around its periphery to
leave a closed, biconvex cross-section lens envelope
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Fig 16—Schematic diagram of the vertical scanning interference microscope, WYKO
Corporation, model RST Plus.

with a 1.0 mm thick lip extending approximately 6.0
mm around the entire equator (Fig la). The lenses
were then filled with water, using a hypodermic nee-
dle whose entrance holes were sealed by heating. All
of the resulting lenses had approximately the same
equatorial diameter: 25.3 * 0.5 mm. Their central
thicknesses were 11.95, 8.41, 11.07, and 6.50 mm,
respectively.

The magnification of the interference microscope
objective was selected so that the interferometer mea-
sures over a 3.68 x 2.68 mm area centered on a point on
the surface of the lens. The resolution was 6 microns
laterally and 3 nanometers vertically. Using a least
squares parabolic fit, a mean radius of curvature
(ROC) was calculated for the entire selected area. The
ROC was obtained at the optical center of each lens
surface. Each of three lenses was stretched at its equa-
tor by turning each micrometer outwardly a total of
0.252 mm in four equal 0.063 mm increments. Then,
the direction was reversed in four 0.063 mm incre-
ments. This process was repeated three times for each
surface. The ROC was measured after each incremen-
tal expansion of equatorial diameter and after each
incremental relaxation, using the vertical scanning
interference microscope.

In addition, in Lens 4, measurements of the ROC
were made of both surfaces at the optical center, and
at 3 mm and 6 mm from the optical center. These mea-
surements were made before and after the microme-
ters were turned outwardly 0.178 mm.

Independently, a finite element analysis of an
unstretched deformable lens similar to Lens 4 was
modeled. The measured ROCs of the back surface of
Lens 4 (Fig 3b) in the unstretched state were used.
This segment of lens profile was best fit to a fourth-
order polynomial equation:

y=6—(a; X2+ a, x* + ag x*)
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Fig 2a—Plot of the mean of three measurements of the ROC, measured by the ver- 24 Change in Equatorial Diameter
tical scanning interference microscope, of the front and back surfaces of three water- Lens 3 (mm)
filled deformable lenses versus their change in equatorial diameter for stretching (e) 23
and relaxation () back to their initial equatorial diameters. Note that equatorial
stretching produced central steepening. The least squares line is shown. R? is the g 2
square of the linear correlation coefficient. g 2
] . . T=20
The three coefficients of the equation were obtained gj
from the following three conditions: 5 é‘ 19
@ x = 0 mm; r, = 43.56 mm {-'18
@ x =3 mm; r, =41.89 mm 3 17
@ x=6mm;r;= ?7.17 mm ' . _«é 16 % Ro=0.95
where the equation for the radius of curvature is: s 15
1 ly; "l
T = [1+(yl)2]1 5 14 : 1 T 1 1 1
. ' : y . 0 0.1 0.2 0.3 0.4 0.5
The mathematical lens profile was obtained by solving Change in Equatorial Diameter
the above nonlinear equations. The coefficients were (mm)
found to be:
a; =0.0114784 - ——— = — = —_—
Fig 2b— Plots of the calculated mean optical power versus change in equatorial diam-
a, = -0.0003031576963475039 eter for stretching (@) and relaxation (%) back to their initial equatorial diameters. The
a; = 0.00006050020561257952 least squares line is shown. R2 is the square of the linear correlation coefficient.
The profile of the lens surface beyond 6 mm off center
was drawn from visual inspection of the lens. For this as follows:
analysis, the lens was assumed to be symmetrical, W =A(T,—3) + B(T,~ 3) + B(Tg2— T32)?
with an equatorial diameter of 25.4 mm and a thick- where
ness of 12.0 mm (Fig 4a). T,= reduced strain invariants in the i* direction,
The material properties of the polyvinylchoride shell which are given by :
were obtained from the strength tests performed by Ti=1y 13"
GenCorp. A summary of the stress-strain relationships T, =1, 132
are shown in Table 1. The Poisson’s ratio was deter- Ty=15"
mined by the authors through a uniaxial tension test. A, B = Mooney-Rivlin material constants where
The material properties of water were simulated by 1+v) A+B
using Mooney-Rivlin constitutive law®” and are given B= (1-2v) 24
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TABLE 1

Stress-Strain Data for Polyvinylchoride

0.8333
12.7035

1.3333
15.4534

2.3333
18.7372

0.1667
4.5505

0.5000
9.8595

0.0000
0.0000

Strain, &
Stress, o (N/mm?)

Poisson’s ratio, v = 0.411
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Fig J3a—Vertical scanning interference microscope contour maps of the front surface of Lens 4. Red represents the high points and blue the low points. The ROC is given in mil-
Iilneters at the center, at 3 mm, and at 6mm from the center. The equatorial stretching of the water-filled deformable lens resulted in central steepening with peripheral flattening.

v = Poisson’s ratio
I; = invariants of the right Cauchy-Green deformation
tensor C;

Iy = Cii

lp="% (I = C; Cy)

I = Det C;; = volume change ratio

Therefore, A, B, and v were the only three material
constants for the HYPER84 element.

To simulate water, the hyperelastic element must
satisfy three distinct characteristics. First, the hypere-
lastic element must be very flexible under uniaxial
loading while there is no confinement in the other
directions perpendicular to the loading direction. Sec-
ond, the element must have a very small shearing
resistance so that its shape can be changed easily.

Third, the element must be able to maintain a constant
volume so it can sustain pressure when it is under a
total 3-D confined environment. In other words, the
bulk modulus must be large. These characteristics can
be accomplished by assigning an extremely small
value to the Mooney-Rivlin constants (A and B) and a
Poisson’s ratio approaching 0.5. Since for small strains,
the shear modulus and the Young’s modulus can be
approximated as 2¢(A+B) and 6°(A+B), respectively
and the bulk modulus can be represented as 2¢(A+B) /
(1-2°v). If both constants A and B are small, the shear
modulus and Young’s modulus will also be small. The
bulk modulus is not solely dependent on constants A
and B; it is also dependent on Poisson’s ratio. If Pois-
son’s ratio approaches 0.5, the bulk modulus can still
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Fig 3b—Vertical scanning interference microscope contour maps of the the back surface of Lens 4. Red represents the high points and blue the low points. The ROC is given in mil-
limeters at the center, at 3 mm, and at 6mm from the center. The equatorial stretching of the water-filled deformable lens resulted in central steepening with peripheral flattening.

be very large. A computer model using several
Mooney-Rivlin constants and Poisson’s ratios was test-
ed. The results indicated that the stress distribution of
a deformable lens under equatorial stretching would
not have any significant change if the Mooney-Rivlin
constants were limited to under 0.0003. Therefore, in
this analysis, water was represented by Mooney-Rivlin
constants A = B = 0.0003 N/mm?, v = 0.499999, and a
bulk modulus = 600 N/mm?.

The finite element model was constructed using
ANSYS 5.3, a general-purpose finite element pro-
gram.%” Due to the symmetrical nature of the geometry
and loading, a 2-D axisymmetrical model was used for
the analysis. The deformable lens, made of
polyvinylchloride, was modeled using a PLANES2 ele-
ment. This 2-D eight-node quadrilateral element had
two degrees of freedom at each node: translation in the
nodal x and y directions. Three layers of elements were
used through the thickness of the lens, which provid-
ed a total of seven nodal points across the thickness.
This allowed the shell to form a smooth parabolic dis-
placement shape. Due to the nonlinear stress-strain
material properties, a material data table was estab-
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Fig 4a.—Geometric model of the deformable lens used for the finite-element analysis.

lished to define its material properties at different
stress levels. The constant volume liquid filling the
lens was modeled using a HYPERS84 element. This 2-D,
eight-node Hyperelastic quadrilateral element had two
degrees of freedom at each node: translation in the
nodal x and y direction. The axisymmetric option had
an additional degree of freedom at each node: transla-




Fig 4c.—The boundary conditions of the finite-element model when the mesh density for water was doubled.

tion in the z direction, allowing torsion in the model.
However, the torsion mode was eliminated in this
analysis because of its symmetrical nature. Also, a 2-D
6-node Hyperelastic triangular element was used in a
few locations, as needed. Note that only two layers of
fine elements were generated near the surface of the
Hyperelastic element; the rest of the elements were
coarse (Fig 4b). Because we were not interested in the
stress distribution in the water, the Hyperelastic ele-
ments were treated as boundary control devices to
obtain a constant volume inside the shell. The possible
error caused by the mesh density was examined by
doubling the number of the Hyperelastic elements (Fig
4c). Geometric nonlinearity must be included in the
computation because of the relatively large displace-
ments that may occur in the deformation. By using the
Mooney-Rivlin strain energy density function, a near-
ly incompressible material was modeled.

A diagram of the boundary conditions for the
model are shown in Fiig 4a—4c. As shown in the figures,
the symmetry boundary conditions were applied
along the x and y axes. In order to eliminate the tor-
sion mode, a displacement constrain of UZ was
applied to all HYPERS84 elements. A total of 0.356 mm
of horizontal displacement in the + x axis direction
was imposed along the equator in order to simulate
stretching. Since the solution was highly nonlinear (it
involves both nonlinearity of the geometric and mate-
rial properties), a discrete load step was applied to
ensure convergence of the solution.

An independent geometric element analysis was
used to analyze a solid deformable lens of the same
shape and size as the human crystalline lens (Fig 4e).
The profiles of the anterior and posterior surfaces of a
human crystalline lens with a diameter of 8.6 mm
were best fit to fifth polynomials.?

ANN OPHTHALMOL. 1998;30(1) [15]




Fig 4d—The displacement plot of the finite-element model for a maximum displacement of 0.356_mﬁ with a scaIeT)f L:1. Th;, blue mesh is the deformed state as a result of

equ_atorial stretching. The black line is the unstretched state.

Fig 4e—Computer image of the solid polyvinylchloride model created from the 5th
polynomials of the anterior and posterior surfaces of the human crystalline lens used
for the geometric element analysis.

For the anterior surface:

z, = 1.3727-0.373134 x2— 0.0259909 x°+ 0.0102632 x*-—
0.00123879 x°

For the posterior surface:

zp = 2.3373 — 0.053191 x2 — 0.032101 x* + 0.032101 x* —
0.0039910 x°

Pro-Engineer software with the Mechanica module
was used to model the effects of 80u of equatorial
stretching of a solid piece of polyvinylchloride with
the same dimensions and shape as the human crys-
talline lens. A Young’s modulus of 3000N/mm? and a
Poisson’s ratio of 0.4 were used for this analysis.

A computer calculation of the spherical aberration

of Lens 4 was made using a 10" order equation for an
aspheric surface:
z = [Cp¥1 + V1—(1+k)c?p?] + i4p? + OLP* + 3P° + oyp® + P’
where: Z is the sag, C is the curvature of the surface at
the apex, p is the normalized height on the lens with
respect to the effective diameter of the lens ( i.e., 15
mm in this case), and k = 0. The o coefficients are
given in Table 2.

Results & Discussion

The means of the three measurements of the central
ROC, from both surfaces of each lens, are plotted in
Fig 2a. There was a marked decrease in the central

ANN OPHTHALMOL. 1998;30(1)

ROC, and thus an increase in the central optical
power, associated with stretching of the equatorial
diameters of the water-filled deformable lenses.

The effective increase in optical power of these
lenses for each incremental change with equatorial
stretching was calculated. Each interface of the lenses
was treated as an independent refracting surface
using the Gaussian formula:®

n/s + n’/s’ = (n’-n)/r

where: n = index of refraction of the first medium
n’ = index of refraction of the second medium
s = object distance
s’ = image distance

= mean ROC of each surface

The indexes of refraction of air, water, and
polyvinylchloride were taken to be 1.00, 1.33, and 1.55,
respectively. The results of these calculations are plot-
ted in Fig 2b. There was a 1 diopter increase in optical
power for each 0.109 + 0.035 mm of equatorial stretch-
ing. This is comparable to the measured change in
optical power reported for small-displacement equato-
rial stretching, 1 diopter/0.1 mm, of similar water-filled
deformable lenses.! The surfaces of Lens 4 steepened
during equatorial stretching at the optical center and
3 mm from the optical center but flattened at 6 mm
from the optical center (Fig 3a).

The deformed shape for the water-filled deformable
lens under a 0.356 mm stretching of the equator as
predicted by the finite element analysis is shown in
Fig 4d. The plot indicates that the volume of the lens
increases centrally. These results may look strange at
first. However, the fact is that the volume increase at
the periphery of the lens due to the stretching is less
than the reduction in volume of the middle section of
the lens. On the other hand, since the volume under
the shell still remains constant, the extra volume must
go somewhere else. The center of the lens, which is
furthest from the boundary, seems to be the most vul-
nerable place for inheriting the extra volume.

_‘
|




Coefficients
23]
Oy
O3
Oly

O

o Goefficients for 10th Order Equation

Unstretched Water-Filled Lens

Front surface

5.00417E-06
-4.8926E-06
3.56267E-07
-1.0837E-08

1.13529E-10
40.23 mm

Back surface

-1.45961E-05
1.0174E-05
-1.0341E-06
3.0894E-08
-3.17657E-10
43.56 mm

Stretched Water-Filled Lens
Front surface
1.3767E-06
-3.3299E-06
1.04037E-07
-3.7102E-09
4.48576E-11

36.84 mm

Back surface
4.1364E-06
7.8600E-07
2.4961E-07

-3.89432E-09
-9.61766E-13
34.06 mm

TABLE 3

Calculated Radii of Curvatures of the
Water-Filled Deformable Lens

Distance from 3 mm 6 mm

the center
Radii of
curvatures of
the unstretched
lens

Calculated radii 24.93 mm 25.61 mm 37.92 mm
of curvatures

after equatorial

stretching

Calculated radii 24.91 mm 25.60 mm 37.92 mm
of curvatures

after equatorial

stretching

(using double

the mesh densi-

ty for water)

0 mm

43.56 mm 41.89 mm 27.17 mm

PUPIL RADIUS: 7.520@ MILLIMETERS

T

1 T T T T T T T T T 1
0.00 7.00
MILLLIMETERS

-7.00

Fig 53.—A plot of the longitudinal aberration_ of the unstretched water-filled
deformable lens.

The radius of curvature at the surface of the lens is
calculated using a finite difference method. It should
be noted that the change of the radius of curvature,
which involved the second derivative of the displace-
ment function, was very sensitive to a numerical trun-
cated error. Therefore, eight digits of numerical
accuracy were used throughout the analysis. Further-
more, the first and second derivatives calculated by
the finite difference method has an error of (o)h,
where h (h = % mm) is the interval. The calculated
radii of curvatures before and after stretching are
given in Table 3. There was essentially no effect on the
calculated radii of curvatures by increasing the mesh
density for water.

One other concern of this finite element analysis
was the numerical error that may occur because of the
significant difference between the modulus of elastic-
ity of polyvinylchloride and water. In order to mini-
mize this error, which would occur from the shear
stress not being transferred correctly between the sur-
faces of the two materials, we used very fine elements
at the transition area.

PUPIL RADIUS: 7.5000 MILLIMETERS

C Iﬂ .00 '
MILLIMETERS

I-Er gb.—A plot of the longitudinal aberration of the stretched water-filled
deformable lens.

The geometric element analysis predicted that the
behavior of the solid deformable lens mimics that
found with the water-filled deformable lens during
small-displacement equatorial stretching (Table 4).

The computer calculation of optical ray tracing
through Lens 4 demonstrated that equatorial stretch-
ing reduced its spherical aberration (Fig 5). The longi-
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TABLE 4

Calculated Radii of Curvatures of the Solid Deformable Lens

Distance from the Center 0 1.37 mm 2.75 mm

Unstretched state
Stretched state

Unstretched state
Stretched state

Radii of curvatures of
the anterior surface

Radii of curvatures of
the posterior surface

12.84 mm
14.39 mm

8.93 mm
10.97 mm

9.10 mm
8.28 mm

4.94 mm
5.00 mm

13.40 mm
7.76 mm

9.40 mm
3.40 mm

tudinal spherical and wave-front aberrations
decreased from -5.6 mm and 44 waves to -3.15 mm and
38 waves, respectively.

The observed central steepening and peripheral
flattening during small-displacement equatorial
stretching of a biconvex deformable body is counter-
intuitive. However, the phenomenon is readily demon-
strated by observing the reflections from the surfaces
of a biconvex air-filled mylar balloon during equatori-
al stretching. The fact that the phenomenon occurs in
biconvex structures, which are made of two materials,
or a solid, which is made of one material, suggests that
a universal principle is applicable.
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