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The two-point probability density function (2P-PDF) gives a full description of the first- and second-order sta-
tisties of a random process. We propose a framework for texture classification based on a distance measure
between 2P-PDF’s after equalization of first-order statistics. This framework allows extraction of the struc-
tural information of the process independently of the dynamic range of the image. We present two methods
for estimating the 2P-PDF of texture images, and we establish some eriteria for efficient computation. The
theoretical framework for noise-free texture images is validated with four texture ensembles. @ 1999 Optical

Society of America [S0740-3232(99)00807-8]
OCIS codes: 100.2960, 100.5010.

1. INTRODUCTION

Research in imaging aims to create better imaging sys-
tems and to develop methods of image processing and
analysis that utilize the most important information in an
image.! Information may take, for example, the form of
defined targets embedded in complex backgrounds such
as tumors in chest radiographs or mammograms or that
of unique statistical textures such as liver scans or mam-
mography textures.?”” We have recently focused our re-
gearch on statistical texture synthesis and analysis be-
cause the mathematical modeling and characterization of
such complex backgrounds will provide an important step
forward in the guantitative assessment of image quality
not only in medical imaging but also in material science
and perhaps in the science of art.?

In this paper we present a method of texture classifica-
tion based on an analysis and estimation of the full
second-order statistics. Effective texture classification
requires two problems to be solved: (1) defining a set of
distinct classes and (2) finding a criterion for classifica-
tion. The former is more challenging. Texture classes
will be distinguished solely on the basis of their complete
second-order statistics. Specifically, classification will be
based on a proposed distance measure between the
second-order probability density functions of the textures
equalized in first-order statistics.®'® The second-order
probability density function is referred to as the normal-
ized two-point probability density function (2P-PDF).
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Effectiveness in classification depends on how a chosen
distance measure yields distinet classes. Figure 1 illus-
trates this problem. Suppose that a set of texture real-
jzations can be classified as either class A or class B.
Each realization in the set of textures has an associated
9P-PDF. We propose that texture images be considered
elements in a metric space with a distance function d, de-
fined below by Eq. (3), that measures the distance be-
tween their 2P-PDF’s. In Fig. 1, for example, dsp de-
notes the distance hetween two ensembles of texture
images A and B. The simplest way to estimate the 2P-
PDF is the relative-frequency method described in Sub-
section 3.B. We shall show, however, that the 2P-PDF
can also be estimated with the maximum-entropy method
described in Subsection 3.C. In that case a set of mo-
ments {x;;} determines the 2P-PDF. Given the 2P-PDF
associated with each texture realization within a class en-
semble (e.g., ¢class A), it is possible to find the average set
of moments {{x;}}4 for that class. In this paper angle
brackets denote ensemble averaging. Consequently, the
average 2P-PDF’s p*(g,, g4, Ar) and p®(g,, g,, Ar) for
the texture classes A and B are estimated with the aver-
aged sets of moments for classes A and B, respectively,
where Ar is the vector separation between two points of
the random process. In this paper bold type denotes a
vector. We then take the distance between two classes to
be the distance between their average 2P-PDF’s.

Next we need to define the spread of textures within a
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given class. Let us consider a texture clags C and denote
its average 2P-PDF as p“(g,, g4, Ar). There is a prob-
ability distribution function (i.e., the cumulative probabil-
ity density function) associated with the distance between
the averaged 2P-PDF and the 2P-PDF’s of textures of
class C. The radius of the class is defined as the distance
at which the probability distribution function reaches a
specific value, for instance, 0.99. We denote this radius
as r§ o9, where the upper index indicates the class and the
lower index indicates the value of the cumulative distri-
bution. The larger the class radius, the broader the va-
riety of textures included in that class. The value of the
cumulative distribution, always less or equal to 1, can be
chosen specifically for each problem. For a given prob-
ability distribution function the radius of the class can be
related to the root-mean-square distance o between the
2P-PDF's of textures with respect to the ensemble
average 2P-PDF within that class. For instance, if the
class has a uniform distribution of distances it can be
shown that rSg = 1.730; for a Gaussian distribution
r§ee = 2.320, and for an exponential distribution o9
= 3.260. Therefore each texture class can now be de-
fined by its average 2P-PDF and its radius, which as a
pair form the basis for solving problem (1).

The criteria for diserimination, the second problem
posed, is simple. For a given texture realization the 2P-
PDF p(g,,g9, Ar) is estimated. The distances d* be-
tween p( gy, g9, Ar) and the average 2P-PDF of class A,
p*(g1.82, Ar), and d® between p(g;,g,, Ar) and the
average 2P-PDF of class B are estimated. Then the tex-
ture is assigned to belong to class A or B by, for instance,
maximum-likelihood classification.'*!? This approach
can be generalized to an arbitrary number of classes.

The question is how close can classes be in texture
space for texture realizations to be assigned correctly to
their class ensembie? The efficacy in classifying a tex-
ture realization in class A or B, for example, is naturally a
function of dapg, g, and rfge represented in Fig. 1.
From s geometrical point of view, the efficacy requires
distinct classes or

A B
dap > Toge * Tose- (1)

This condition implies that the spheres in texture space
do not overlap, as illustrated in Fig. 1. This is naturally
what we wish to obtain for a chesen distance and an as-

Texture Set A Texture Set B.
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Fig. 1. Texture space.
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sociated spread measure. The textures cannot be dis-
criminated by use of classes A and B if

A B
Toss = dag + Toge- (2)

This condition implies that sphere B is inside sphere A,
and in this case the textures are fully undiscriminable.
In these two extreme cases, the classification errors are
minimal and maximal, respectively. In general, the clas-
sification error will be proportional to the classes’ overlap.

In this paper we first review how we define the distance
d between two texture realizations.” ¥ We then propose
a method for the effective estimation of 2P-PDF’s. Given
an ensemble of texture images from a class, we then de-
rive an expression for the value of ¢ within that class.
Finally, we validate the expression found for & and test
the separability of four texture ensembles on the basis of
the proposed distance measure d and the associated
clagges’ radii.

2. DISTANCE MEASURE BETWEEN TWO
PROBABILITY DENSITY FUNCTIONS

Given a random process, the first-order, or one-point,
probability density function (1P-PDF)} gives nonstructural
information about the process (e.g., the mean value of the
gray level on the number of pixels in a given range of gray
levels). The second- and higher-order PDF’s provide
structural information about the process.'® This can be
understood by considering a representation of the joint
probability distribution function of two gray levels, for ex-
ample, p(g,,g,) given as p(gy,82) = p(gilgzlp( g2,
where p(g,) is the 1P-PDF and p{g;|gs) is the condi-
tional probability distribution. The conditional probabil-
ity distribution is related to the structural information of
the process.

In this paper we compute 2P-PDF’s using two methods
and apply the framework to texture images that we con-
sider two-dimensional stationary random processes.
While a method for the calculation of the distance be-
tween textures, based on the 2P-PDF,? ! was recently
proposed, the crucial part of the algorithm is the estima-
tion of the 2P-PDF for a given texture realization. The
2P-PDF p(g,, g2, r1, 12} of a random process g{r) is de-
fined to be equal to the joint probability distribution of
random variables g(r;) and g(ry). In the case of two-
dimensional statistical textures, the random process g(r}
denotes the gray level at a point r in a texture image.
For a stationary random process, p(g,,g3, ¥, ¥s) re-
duces to p( g, £q, Ar), where Ar is the vector separation
between two points of the texture. Suppose we are given
the texture images a and b and we let p®(g,,g5; Ar} and
pP( g1, g2; Ar), respectively, be their estimated 2P-PDF’s.
The proposed distance measure for the stationary random
processes is then given by the L, distance between prob-
ability density functions:

d = {% J-J-[pa(gnglAr)

172

- pb(gl,gz,Ar)]zdgldgg , (3)
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where the summation is over the finite set of vectors Ar
and the double integration is over the range of gray
scales. The set of vectors Ar can be considered finite for
two reasons: (1) The texture images consist of discreet
elements (i.e., pixels) whose size set a lower bound and (2)
the 2P-PDF reduces to the product of 1P-PDF’s for large
separations |Ar]. In this case, because the 1P-PDF’s are
the same for the textures, the corresponding terms in sum
(2) vanish, which sets an upper bound. The summation
over a range of distances makes it possible to avoid the
problem of selecting an optimal parameter Ar for the com-
putation of 2P-PDF’s.!*!® The adoption of this summa-
tion is critical to the method proposed because it allows
the use of the structural information at multiple scales
and orientations of the texture. Although the probability
density function is always integrable, it may not always
be square integrable. In our case, however, the methods
of 2P-PDF estimation always gave finite values of the
probability density functions, and because the image had
a finite range of gray levels, 2P-PDF estimations were al-
ways square integrable. Although various types of dis-
tance function give similar results, further investigation
is required to fully address this issue. To compute d ac-
curately, the algorithm for estimating 2P-PDF’s must pro-
vide the needed accuracy. The inaccuracy in estimating
the 2P-PDF’s would affect the distance between textures
because it is equivalent to adding noise to the PDF’s.

3. ESTIMATION OF PROBABILITY
DENSITY FUNCTIONS

We consider two methods of estimating a PDF: (1) the
relative-frequency'® and (2) the maximum-entropy (ME)
methods.)” Both methods naturally consider an en-
semble of realizations of a given random process. The
relative-frequency method is equivalent to computing the
relative frequencies of occurrence of a given parameter for
the ensemble of realizations of the random process. For
example, the relative-frequency method computes the oc-
currence of a gray-level value in the case of the 1P-PDF
and of a pair of gray-level values for the 2P-PDF.

The ME method estimates a PDF as the maximum of
the entropy functional

j p(x) - Inp(x)dx, (4)

with appropriate constraints in the form of moments
given by

Wi = jxi - p(x)dx. (5)

In these expressions, x denotes a vector of random vari-
ables, dx = dx;dx,...dx,, p(x) is the joint probability
density function of these random variables, and x!
= xlilxgiz...xnin.

For the stationary texture images considered in this
paper, p(gi,gs,Ar) is obtained with the relative-
frequency method by counting the number of occurrences
of pairs of gray levels { g;, g;) separated by Ar in the en-
semble of realizations of a given process. The ME
method can be applied directly to the estimation of the
9P-PDF distribution of texture images if we denote x as
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(g1,82) where g; and g, are the gray levels of pixels
separated by vector Ar. A question is how many samples
should be considered to estimate a probability density
function with known accuracy by use of the relative-
frequency method? Similarly, how many moments
should be considered in the ME method? We shall first
address the latter question for the 1P-PDF and then ex-
tend the method to the 2P-PDF before revigiting both
questions.

A. First-Order Probability Density Function Estimation
with the Maximum-Entropy Method

The following problem needs to be solved: Find p(g)
such that

f p(g)np(g)dg — max, ‘]’gip(g)dg = p;,

wi = E{gitr)}, i=0,N, (6

where E{} denotes the averaging over location in a single
realization. The larger the number of moments, the
more difficult the problem becomes in a computational
sense because a system of nonlinear equations needs to be
solved. In addition, a function p(x) can be overesti-
mated. For instance, in the case of a Gaussian random
process, the mean and the standard deviation constitute
sufficient parameters for estimating the PDF. If we con-
gider higher-order moments, computational errors lead to
a decrease in accuracy in the estimation of the PDF. To
find the optimal number of moments to estimate a PDF,
the first £ moments were computed from averaging over
the locations of a random process realization and the PDF
estimated. The next m moments were then calculated
with estimated PDF p(g) and compared with the mo-
ments obtained from averaging over the locations in the

process by computing an error function given by
m+k+1 2
ek = S (Bl Jg*p(g)dg) LW

isk+t b

Figure 2 shows the dependence of & with k for a realiza-
tion of a particular texture. It is observed that e{k) has
a sharp decline at £ = 4. This finding was observed for
all realizations of the random process considered (i.e.,
eight in this case). We then postulate that the opti-
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Fig. 2. e(k) defined by Eq. (7) as a function of the number of
moments used in the estimation of the first-order probability dis-
tribution for one realization of a texture image.
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Fig. 3. (a) 1P-PDF computed with the ME method. Note that
the x axis corresponds to gray levels normalized to the range 0-1.
(b) 1P-PDF computed with the relative-frequency method. This
is also known as the gray level histogram of a texture image.

mal number of moments to consider for this random pro-
cess is five (i = 0,..4). It is important to note that the
optimal number of moments for ME estimation depends
on the process: The more complex the probability distri-
bution function of the process, the more moments are
likely to be needed. Figures 3(a) and 3(b) show the PDF
calculated with the ME method on the basis of five mo-
ments and the relative-frequency method, respectively.

B. Second-Order Probability Density Function
Estimation with the Relative-Frequency Method

The 2P-PDF is now estimated for a texture random pro-
cess. [n this estimation it is assumed that the texture is
a stationary random process. The relative-frequency
method was the first employed to calculate the number of
occurrences of a given pair of a gray levels (g, g5) for a
given displacement vector r between two pixels.’® This
method is analogous to the relative-frequency method
used for estimation of the 1P-PDF. The relative-
frequency method, for a stationary random process, is il-
lustrated in Fig. 4.

C. Second-Order Probability Density Function
Computation with the Maximum-Entropy Method

The ME method is now considered with use of all mo-
ments of the form
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pi(Ar) = E{gi(r) - g/(r + AD)},  i,j=0,..4, (8

where g(r) is the value of the gray level at position r in
the texture image. The range i,j = 0,...4 leading to 25
moments was chosen because five moments allowed us to
estimate accurately the first-order probability distribu-
tion. Consequently, this range of i and j should allow us
to estimate correctly the second-order probability distri-
bution when the distance |Ar| is large and gray levels g(r)
and g(r + Ar) are independent. We assume that the al-
gorithm also gives correct results for a smaller spacing
|Ax|.

When using ME, one must find the function
p( g1, 82, Ar) that maximizes the value of the functional

jj p(81,82,Ar) - In[p(gy, 8, Ar)|dg dgs — max
(9)

and satisfies the following constraints:

jjgliggip(gl,gz, Ar)dg,dgy = u;{Ar),

i,j=0,N. (10}

The solution of this problem is given by’

.Bng1ig2i)- (11)
1,j=0

;N
p(g1, 82, Ar) = exp( 2
The coefficients 8;; can be determined by substituting the
expression for p{g, g2, Ar) given by Eq. (11) into Eq.
(10). Coefficients j;; are functions of Ar, and generally
By # Bji. In the specific case of textures considered
here, it is, however, possible to postulate that u;(Ar)
= u;(—Ar) = p;(Ar). The symmetry of the variables
g1 and g5 in Eqgs. (9)-(11) and the lack of a specific origin
for the random process yield 8; = f;;. Results of the
2P-PDF estimations are shown in Fig. 5, where Figs. 5(a)
and 5(b) show the 2P-PDF calculated with the ME
method and the relative-frequency method, respectively.
As expected, the ME method gives a smoother estimate.

Texture

Pixei 1

i
Pixel 2

Fig. 4. Dlustration of the computation of the 2P-PDF {co-
occurrence matrix) with the relative-frequency method.
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{b}

Fig. 5. (a) 2P-PDF calculated with the ME method. (b) 2P-PDF
of a textured image calculated with the relative-frequency
method.

4. ESTIMATION OF THE RADIUS OF A
TEXTURE CLASS BASED ON TWO-

POINT PROBABILITY DENSITY FUNCTION
STATISTICS

Given that 2P-PDF’s can now be estimated accurately
and efficiently, we shall compute the spread ¢ in the dis-
tances between 2P-PDF’s of textures belonging to a class
and the ensemble-averaged 2P-PDF. Given an ensemble
of d values between 2P-PDF’s of textures and the
ensemble-averaged 2P-PDF, o is defined as

o = V{d?). (12)

Suppose that we are given a realization a of a particu-
lar texture ensemble. The distance measure between its
2P-PDF and the ensemble-averaged 2P-PDF is given by
Eq. (3). Following the ME method, the 2P-PDF can be
approximated with the needed accuracy by the function
p{ g1, 89, Ar) given by Eq. (11). Let us fix vector Ar and
denote p(g,,g9, Ar) as p(g,,82). Let us suppose that
the ME approximations of the ensemble-averaged distri-
bution p = p(g;, g4, ;) and the distribution associated
with texture a, p® = p“(g,.g2, B/;), are known. Given
that texture a belongs to the ensembile, the difference be-
tween its 2P-PDF and the ensemble-averaged 2P-PDF is
assumed to be small. Distribution p® can then be decom-
posed into a Taylor expansion in the vicinity of p:

A. A, Goon and J. P. Rolland

pa(g17g27 IB.:_;) = p(glagZ, BtJ)

+ 2

i

(;p(gs g Bu)
3B,

where A,BU Bl; — By;. Substituting Eq. (13) into the
expression of d? obtained from Eq. (3} for a given Ar,

2 (?p(gl&g2s/3:j)
d® = .BU
U aﬁq

> > AByA B A ks » {14)

ikl

(A.st)], (13)

] dg.dg,

where
Aijki = fj

and N is the number of moments used in the ME method.
According to Eq. (11),

p(gy,82, Bij) 0p( g1, 82, Bur)
9B;; B

i,k Il=N (15

:|dg1dg27

ﬁp(g1!g2) AI‘)
By
Substituting Eq. (16) into Eq. (15) yields

= g1'82'p( g1, 82, Ar). (16)

Aijki = jfg?hg";'lpz(gl 82, Ar)dgdg,

= (g'™*(r)g/ ™ (r + Ar)p[g(r), g(r + Ar), Ar]).
(17

Two expressions for the computation of coefficients Ay,
are given by Eq. (17). The first expression necessitates
computing the 2P-PDF first and then computing the
value of the double integrals. The second expression al-
lows one to estimate the 2P-PDF from available data and
then find an ensemble average. The two approaches
yield the same result if the 2P-PDF is estimated with the
needed accuracy. Thus the elements of matrix A, can
be computed with Eq. (17), and the distance between a
pair of texture images can then be calculated with the
simple expression for d given by Eq. (14).

The values of the random variables A 8;; are not easily
accessible from the ensemble of textures. The values of
the random deviations Au;(Ar) of moment u;;(Ar) from
its average can be obtained instead. To obtain values of
AB;; from known values of Ay, (Ar), the system of con-
straints given by Eq. (10) is decomposed into a Taylor ex-
pansion in the vicinity of the solution

J ffg1lg2jp(§1,g2»ﬁr)dg1d€2
2 - ABy

¥l 3By

It is possible to differentiate with respect to variables 3,
under the sign of the integral in Eq. (18). With use of Eq.
(11), Eq. (18) then yields
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éiffglingp(gl,gz, Ar)dgldgz]

B

Il

jfg‘i“"gé”p(gl,gz, Ar)dg,dg,

= ptirp j+{AT} = By, (19)
From Eq. (18) and Eq. (19} it follows that

%: BiimABy = Apy(Ar). (20)

Random variables A 8;; can then be expressed as
8By = 2 (B asiph py(A). 21)

Substituting Eq. (21} into Eq. (14), it follows that

d? = 2 %: [(B™NTAB NjmlApybpe . (22)
2]

The square of the distance d? between any 2P-PDF of the
texture of an ensemble and the ensemble-averaged 2P-
PDF is a random variable and can thus be computed with
Eq. (22) for every texture in the ensemble. Equation (22)
represents d? as a quadratic form of the random variables
A;, and according to Eq. (12) the expectation value of
d? is required for computing o. Let us denote C as the
correlation matrix of Au;;:

Cint = E{ApyAppr). (23)
o 1s then expressed as
o?=Ed) =2 2 (B HTAB 1 Cijne . (24)
7 Al

To simplify, the lexicographic representation of fourth-
rank tensors A, B, and C would be used:

Ajrt = Apn s By — B, Cijpr — Conn

i,j,k, 1 <N; m,n < N% (25)

The expectation value of the square of the distance within
the texture ensemble for a given separation Ar is then
given by'®

E{d® =t[(BHT AT B! C]=c%4ar). (26

Matrices A, B, and C are functions of separation Ar.
Consequently, the distance within the ensemble is given
byIS

o =

1/2
> JZ(Ar)}
Ar

1/2

= (E tr{[B~1(Ar) ]} [A(Ar) "B~ (Ar)C(Ar)}
Ar

27

The lexicographic representation is used here to overcome
difficulties in finding an invariant form of Eq. (24) that
employs fourth-rank tensors. But, on the other hand,
use of fourth-rank tensors instead of lexicographic repre-
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sentation permits investigation of possible symmetries of
the texture classification problem and needs to be further
investigated.

It is possible to write an explicit expression for the
probability distribution function of d2 within an ensemble
of texture realizations. Again, let us fix vector Ar. In
this case, the probability distribution function can be
written as!®

P{d2 = Dz} = .[Sp( MHo1s Moz 9"'9/-1'nm)dﬂ'01dnu'02'“d#nn ’

(28)

where p( pg1, foz,s.- s liny,) 18 the PDF of the random vari-
ables u;; and S is the region of integration for points sat-
isfying the condition

> 2 B HTAB b pdu, < D% (29)

ikl

This set of points represents an n®-dimensional ellipse.
This distribution can be simplified for computational rea-
sons if we use the fact that the quadratic forms associated
with tensors (B"1)TATB ! and C can be reduced simulta-
neously to the sum of squares because at least one is posi-
tive definite. The knowledge of the distribution function
of d can be useful in texture classification problems based
on maximum-likelihood estimation.

Let us find a2 relationship between the root-mean-
gquare distance o' between 2P-PDF’s of textures and the
root-mean-square distance ¢ between 2P-PDF’s of tex-
tures and ensemble-averaged 2P-PDF. This relationship
will be used for justification of Eq. (26). Again, let us
consider a particular separation Ar. It is convenient to
consider the PDF of moments of the texture ensemble,

p( Hoos Ho1aeees nu'nn) = P({.U-}), (30)

where {u;;} denotes wgp, po1,...r Myn » the set of moments.
The mean square distance ¢ 2 between two arbitrary tex-
tures a and b in the ensemble can be found as

(012 =2, > (B TAB

T
X ff(#?j - #z‘)(ﬂgz - ubp
X op({uta)p({pts)d{puladipnls, (31)

where d{u}, denotes the product duf,dug; ...dus, of dif-
ferentials. The mean square distance between 2P-PDF’s
of textures and ensemble-averaged 2P-PDF can be found
as

2= % {(B_I)TAB_I]UMJ (p = {gih)
i
X {ppr — (pan)pu)d{ut. (32)

Because textures a and b are independent, the integral in
Eq. (31) can be evaluated as
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jf (ul — no)uh — st pUuls)duled{ uls

JJ(#%#& + #?j#gl - #?j#gz - J“'Eil"‘ﬁl)
X p(iuta)p({nts)d{mtad{aly

= 20 pympr) — (i) pan)- {(33)
The integral in Eq. (32) can be evaluated as

f Cpgy = o)) Cpenr — () p{yd{pe}

= f Catgpitrr = () mend — il e — e py0)
X op{pde} = {pgue) — (i aer) (34

Combining Egs. {34) and {32) as well as Eqs. (33) and (31)
yields the following relation:

o = 2. (35)
Consequently,
12
o = \E{Z o2(Ar)
Ar

12

\-’5(2 tr{[B~1(Ar))T[A(AT) "B (Ar)C(AR)}
Ar

(36)

5. APPLICATION TO TEXTURE
DISCRIMINATION

The problem of classification can now be more precisely
formulated. Suppose we are given two classes A and B
and some texture images to classify. The average 2P-
PDF’s for classes A and B and the distance distribution
functions given by Eq. (28) can be estimated. Given a
particular texture image X to be classified and the aver-
aged 2P-PDF distributions of classes A and B, the dis-
tances

dl = d(XsA)a
d2 = d(XsB)’
dag = d(A, B) (37

are computed. Parameters d, and d, are the parameters
used in the texture classification. These parameters are
not independent: First, they are positive, and second,
they satisfy the conditions for a distance measure, given
by triangle inequalities

dy +dy > dyp,
dy + dap = dg,
dy + dyg = dy. (38)

These inequalities restrict the values of d, and d5. Tt is
possible to use a geometrical representation of this prob-
lem. One can assign a pair (d;,d;) to a point in the
plane, and the triangle inequalities will form a region of
possible positions for these points. Figure 6(a) illustrates
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this region. Lines 1, 2, and 3 are the boundaries imposed
on the classification by the system of inequalities given hy
relations (38). Permitted (d,,d;)} pairs are located
within the dashed area.

Furthermore, let us assume that the distance distribu-
tions given by Eq. (28) within each ensemble are either
estimated or known. We shall treat the case of a uniform
distance distribution as an example. We further assume,
without loss of generality for the framework, that the ra-
dius of each ensemble, denoted r; = r,4 = r;%, is the
same for both textures. Let us consider r to be the dis-
tance between texture images and the averaged 2P-PDF
within a class. The PDF of r is then given by

1/r, r=ry

0, rery (39)

pir) =

Figure 7 illustrates an error rate of the classification pro-
cedure as a function of r,/d,5, assuming that the prob-
ability distribution function is given by Eq. (39) and r,4
= rE. To compute the error, we assume that the error

dy 4

XeClass A

e Xe Class A

7 //

/% XeClass B
X may belong
10 either
Class AorB

Fig. 6. (a) Space of the discrimination parameters. Points
within boundaries 1, 2 and 3 satisfy Eq. (38). (b) Shaded regions
show permitted points in space (d;, d;). Classes A and B are
fully discriminable. dug > r} + r¥. () Classes A and B have
common points and are not fully discriminable. dap < r‘f‘

+ry.
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0% T ! T T

The error rate

rldug

Fig. 7. Error rate of the classifications between two ensembles
with uniform distance distribution and the same radii. Point
T{r,/dsg = 0.5) corresponds to the moment when Eq. (1) be-
comes an equality.

rate is proportional to the area of the overlapping region.
Figures 6(b) and 6(c) show configurations of the plane
(dq,dy) corresponding to various error rates of the clas-
sification procedure. Figure 6(b) illustrates that, given
the selected values of r1* and r ®, classes A and B are
fully discriminable. Figure 6(c) shows an example of a
choice of ry# and r,® that yields overlap in the two classes
and thus a nonzero error rate.

6. RESULTS AND DISCUSSION

A. Computation of ¢’ for Four Texture Ensembles—
Validation of Equation (36)

We compare the root-mean-square distance within an en-
semble of textures caiculated by using Eq. (36) with that
obtained by averaging the distances between textures
within an ensemble of texture realizations. Four texture
ensembles were chosen: granite 1, granite 2, grass, and
residue, shown in Fig. 8 before equalization of their first-
order statistics. The residue image was obtained from a
mammographic image.® The first-order statistics (ie.,
the histogram) of granite 1, granite 2, and grass were
equalized to that of the residue image, which was Gauss-
ian. Each ensemble was composed of twelve 256 X 256
texture images of 256 gray levels. Results of the compu-
tation are shown in Table 1. The slope of a regression
line through the data is equal to 1.067, validating the ex-
pression found by Eq. (36).

B. Application of the Proposed Method to Texture
Classification

The same texture ensembles were chosen to test the pro-
posed texture classification method. For classification ef-
ficacy the texture classes must have variations between
classes greater than the variations within classes.

Table 2 represents the distances calculated with Eq.
(3). The ME method was used to compute the 2P-PDF.
The pixels’ separation were chosen to be (Ar),
= {-2,-1,0,1,2},(Ar), = {-2,-1,0,1,2}. To find
the 2P-PDF for each pixel separation, twenty-five
(5 X 5) moments should be used as explained in Section
3. We limited ourselves to nine (3 X 3) moments be-
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cause of computational speed. The data on the diagonal
represent the variation of the distance parameter within
aclass. The distance between classes is shown in the off-
diagonal cells, These results show that the variation of
the distance between classes is greater than the variation
of the distance within each class.

Although the framework needs to be applied to a larger
set of texture ensembles, including texture ensembles
with subtle texture differences, these results provide
some early experimental support for the mathematical
model that we proposed to effectively classify textures on
the basis of the full normalized 2P-PDF. Future work
may also generalize the proposed framework to include
higher-order statistics and test their benefit in solving the
problem of texture classification. When the complete
normalized second-order statistics are considered as pro-

Granite 1

Residue

Granite 2

Tig. 8. Some realizations of the four texture ensembles used in
the computations before equalization of their first-order statis-
tics.

Table 1. Values of ¢’ Computed with Either
Eq. (36) or Direct Averaging

Ensemble Eq. (36} Direct Averaging
Granite 1 0.088 0.123
Granite 2 0.094 0.110
Grass 2.882 3.085
Residue 0.067 0.068

Table 2. Values of Interdistances and
Intradistances for Four Textures Classes

Class Granite 1 Granite 2 Grass Residue
Granite 1 0.123 1.144 5.025 1.521
Granite 2 1.144 0.110 5.216 1.721
Grass 5.025 5.216 3.085 4.179
Regidue 1.521 1.721 4.179 0.068
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posed in this paper rather than as a subset of features ex-
tracted from nonnormalized second-order statistics, a
question for investigation is whether higher-order statis-
tics are required.

7. CONCLUSION

We presented a method of texture classification based on
a distance measure between normalized 2P-PDF’s. The
method proposed here differs from previous approaches in
that it considers the complete second-order statistics in-
stead of a subset of features from the second-order statis-
tics, The mathematical framework for computation of
this distance as well as the radii of texture classes was
presented. Early experimental results were presented in
support of the mathematical framework presented.
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