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Aperture optimization for emission imaging: effect of a
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A method for optimizing the aperture size in emission imaging is presented that takes into account limitations due to
the Poisson nature of the detected radiation stream as well as the conspicuity limitation imposed by a spatially
varying background. System assessment iz based on the calculated performance of two model observers: the beat
linear observer, also called the Hotelling observer, and the nonprewhitening matched-filter observer. The tasks are
the detection of a Gaussian signal and the discrimination of a single from a double Caussian signal. When the
background is specified, detection is optimized by enlarging the aperture; an inhomogeneous background results in
an optimum aperture size matched neturally to the signal. The discrimination task has a finite optimum aperture
for a flat background; a nonuniform background drives the optimum toward still-finer resolution.

INTRODUCTION

An emission imaging system generally consists of an x-ray or
gamma-ray source, an aperture element, and a detector.
Radiation travels in a straight line from the object through
the aperture, and a shadow of the object as seen through the
aperture is cast onto the detector plane. A fundamental
unsolved problem in planar emission imaging is that of spec-
ifying the optimal photon-collecting aperture. Large aper-
tures yield high photon counts with great positional uncer-
tainty or poor resolution. Conversely, small apertures yield
small positional uncertainty or good resolution but with low
photon counts. Clearly, thereisa choice between resolution
and collection efficiency that must be made each time a
aystem is designed.

Finding the optimal trade-off between resolution and col-
lection efficiency requires some quantitative specification of
the performance of the imaging system. Early attempts in
this direction focused on the caleulation of the mean and the
variance of the image, both of which, in general, depend on
the object and its position in the image. A formalism called
the noise kernel was developed from which these quantities
as well as the noise autocorrelation function could be calcu-
lated. (For a review, see Barrett and Swindell.!) Results of
these calculations are frequently given in terms of a position-
dependent signal-to-noise ratio (SNR) or pixel SNR. This
SNR may be interpreted as the reciprocal of the relative
statistical error in an estimate of the object activity at each
point. Though the noise-kernel formalism yields a com-
plete statistical description of the image, at least through
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second-order statistics, it is nevertheless an incomplete
statement of imaging system performance, The difficulty is
that it is not clear how to relate the pixel SNR, or the
statistical quantities that underlie it, to the performance of
any specific task of interest.

A preferred approach to image assessment is to determine
the performance of a model observer on some specified task.
For example, there is considerable literature on the ideal or
Bayesian observer, defined as one who has full knowledge of
all relevant statistical properties of the images and of the
task at hand and who uses that information in such a way as
tominimize a suitably defined risk.2? Bayesian theory gives
a prescription for calculating the optimum strategy for a
particular decision tesk. The model observer that carries
out the optimum or Bayesian strategy is termed the ideal
observer. For example, in cases that are both signal known
exactly (SKE) and hackground known exactly (BKE) and
for which the noise is additive and Gaussian, the ideal chser-
ver'’s strategy is readily shown to be equivalent to a prewhi-
tening matched filter (PWMF). The performance of the
ideal observer is easily calculated in this case and can there-
fore be used as a basis for system assessment and optimiza-
tion. Tt is implicitly assumed in this approach that a system
optimized for a model observer and an exactly specified task
will also be optimal for the actual observer and for more
realistic tasks. It is therefore of considerable practical im-
portance to verify the validity of this assumption.

Consider the problem of aperture design when the task is
the detection of a completely specified signal in an infinite
uniform background of known strength. The ideal strategy
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for determining whether the signal is present in this task is
to use a simple mask to estimate the number of photons in
the image at the location of the expected object. Since the
background level is exactly known, the observer can perform
a statistical test to determine whether the number of detect-
ed counts in the region of the expected signal is consistent
with the background level. When the number of detected
counts is greater than the observer’s threshold, a decision is
made is favor of the signal’s being present in the object. The
larger the aperture, the more counts are collected from the
signal region in the object, and hence the higher is the SNR
of the signal count estimate. The complete background
specification of this task results in an optimum aperture that
is infinite in spatial extent.

In a generalization of the above task, Tsui et al.! calculat-
ed the performance of several model observers as a function
of aperture size for the problem of detection of a spherical
tumor in a finite uniform background of unknown strength.
The realism of the problem was increased further by assum-
ing a finite detector area. One observer model in the Tsui
paper closely approximated the Bayesian strategy for the
task. Because the flat background was known in only a
statistical sense, the observer had to make an estimate of the
background in an annular region about the signal and com-
pare that with an estimate of the activity level at the location
of the expected signal. The authors optimized the integra-
tion areas of the two regions of estimation for each aperture
size that they considered. The uncertainty in the flat-back-
ground level, together with the finite image field, resulted in
a finite optimum aperture size for the maximum observer
SNR. In other words, spatial resolution was an important
system design parameter for this task. When the back-
ground strength was assumed to be known, the authors
found the optimum size of the aperture to increase to infin-
ity, which is in keeping with the discussion in the paragraph
above.

More recently, an interesting model problem was present-
ed by Wagner et al.5 They considered a high-contrast Ray-
leigh task in which the ideal observer was asked todetermine
whether a noisy scene was the image of a single or a double
Gaussian signal. This discrimination task was suggested as
a useful test of imaging system performance by Harris.®
The task was 2 SKE/BKE task in that the width of the
sources and the separation of the pair were known, as was
the strength of the uniform background upon which they
were superimposed. Both the background and the detector
were assumed to have infinite spatial extent. Since the only
randomness in the task was due to Poisson statistics, the
formulation of the Bayesian decision strategy was straight-
forward. Using a signal-detection framework, Wagner ot al.
determined how ideal-observer performance varied as a
function of source width and separation for three apertures:
a simple pinhole, a large open aperture (twenty times the
pinhole diameter), and a coded aperture that is known as the
uniformly redundant array. They found that the ideal-
observer performance was much better for the uniformly
redundant array than for the small pinhole when the signal
had high contrast. The ranking of the code and the large
aperture depended on the source width and separation, with
the large aperture outperforming the code for broad gignals
that were widely separated. The surprising conclusion of
Wagner et al. was that the large aperture outperformed the
gimple pinhole for all source widths and separations.
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The study of Wagner et al. suggests that, for certain tasks,
a large open aperture is much better than a small pinhole,
according to the ealculated performance of the ideal ohserv-
er. Yet, this conclusion does not seem to agree with current
experimental practices in emission imaging, For example,
in the field of nuclear medicine, spatial resolution {width of
the point-spread function} of approximately 1 cm seems to
give the best subjective image quality. It is the purpose of
the present paper to further understand the source of this
paradox.,

The detection and Rayleigh studies that found superior
performance for large apertures have two common features.
One is the complete specification of the background and
signal, and the other is the infinite size of the detector area.
To resolve the apparent contradiction between the results of
these studies and current experimental practice, we shall
investigate tasks in which the signal ia still known exactly
but the background is permitted to vary randomly from
image to image and have a spatially varying (lumpy} charac-
ter. We shall show that even in the circumstance of infinite
background and detector extent, a spatially varying back-
ground drives an imaging system to finite optimum resolu-
tion.

METHODS

In order for an imaging system to be evaluated objectively,
the imaging system (bias, noise sources, ete.) must be speci-
fied, a task must be defined, and assumptions regarding the
nature of the ohserver performing the task must be laid out.
We dezcribe these three steps in the sections that follow.

Image Formation

We shall be concerned with linear, shift-invariant imaging
systems. The object in our simulations is a discrete
representation of & two-dimensional function whose pixel
values can be lexicographicaily ordered to form the N X 1
column vector f. We can represent the emission imaging
system that we wish to optimize by the M X N linear opera-
tor H. We can therefore write the imaging equation as

g=Hf+mn, (1)

where the M X 1 column vector g is the detected data and n
is any noise in the data. The data vector g is random
because of the Poisson nature of n as well as the statistical
nature of the background inhomogeneity contained in f.
The system operator H contains the aperture transmission
function and the dependence on exposure time and geomet-
rical factors.

We shall consider a pinhole gamma-ray camera forming a
projection of a planar object onto the detector plane as the
imaging operation, We assume that the pinhole aperture is
infinitely thin. For this problem the H matrix operator
reduces to a simple convolution operation.! Results will be
presented for soft-edged Gaussian apertures as well as hard-
edged square apertures. To show explicitly the dependence
of the image on exposure time, we rewrite the expression for
the mean image of a particular object as shown below:

2(r) = xh(x) »» f(x), 2

where f(r) is the mean number of photons per unit time
emitted into all space from an elemental area d’r located at
point r, h(r) is the aperture transmission function, and the



Myers et al.

double asterisk denotes a two-dimensional convolution op-
eration. The parameter x is an efficiency factor that in-
cludes the geometry of the imaging system as well as the
exposure time T

T
K= —"—
41{(11 + 12)2

Here [ is the distance from the object to the aperture plane
and Iy is the distance from the aperture to the detector plane.
In the matrix notation that we shall use throughout this
paper, the parameter « is implicitly carried by the system
operator H. By varying «, we shail assess the dependence of
system performance on exposure time, exploring the effect
of increaging conspicuity on task performance.

{3)

Task Definitions

In general there are two types of task that are of interest
when discussing imaging system performance. The first
type of task can be termed classification tasks in that the
observer’s job is to decide the class membership of an object.
A physician might face the task of choosing whether the
underlying object in & medical image is from the class of
patients with disease or the class of normal, nondiseased
patients. In astronomy, the classification task might be to
decide whether an object is a single star or a binary star.
The second type of task consists of those that require a
quantitative estimate of some object parameter and are
hence termed estimation tasks. An example of an estima-
tion task would be the determination of the activity in some
region of interest in the object. In this paper we shall be
concerned with simple binary classification tasks for which
the detected data are to be used to determine which of two
hypotheses is true for the underlying object. Relationships
between figures of merit for estimation and classification
tasks for objective assessment of image quality are described
in a paper in this issue by Barrett.”

Our studies are based on two classification tasks: (1) the
detection task, for which an observer must determine wheth-
er there is a known signal in a known location in the image,
and {2) the Rayleigh task, for which the chserver must de-
cide whether an image contains a single or a double Gaussian
signal. We agssume that the object is planar and that the
background has infinite spatial extent for both tasks,

Detection Task

In the first study that we shall describe, the signal that is to
be detected is a discretized version of the two-dimensional
Gaussian function s(¢), where r is the two-dimensional posi-
tion vector:

s(r) = s(0)exp(~Iel*/2¢.). (4)

Under the null hypothesis Hy, the signal is absent and the
object f(r) is an inhomogeneous (lumpy) background speci-
fied by a nonrandom de level to which is added a random
part characterized by a Gaussian spatial autocorrelation
function with correlation length oz and de power WA0).
The mean level B is the mean number of photons per unit
time emitted into all space from an elemental area of the
background and therefore has units of counts per second per
area. The average background level is independent of loca-
tion since the nonuniformity in the background is station-
ary. (The extension to the more general problem of a uni-
form background of random level with an added random,
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spatially varying component is straightforward.) The pow-
er spectrum of the random part of the background is written
as

W) = WO)exp(—dnlol’a5"), (5)

where p is the two-dimensional frequency variable in the
Fourier domain conjugate to ¥. Under hypothesis Hj, the
object f{r} is the signal s(r} added to the background de-
gcribed above, -

Figure 1 shows four lumpy backgrounds of constant corre-
lation length with increasing values of the power spectrum of
the inhomogeneous background at zero frequency Wi(0).
Each object contains the same Gaussian signal superim-
posed upon the lumpy background in the center of the array.
The figure also shows sample images of each object after
simulating the imaging operation of Eq. {1} with Gaussian
apertures of four different sizes. Moving from left to right
in the figure shows the effect of increasing aperture size,
while moving from top to bottom shows the effect of increas-
ing background inhomogeneity.

Rayleigh Discrimination Task

The second task involves the discrimination between images
of single and doubie Gaussian signals. Under hypothesis H,;
the signal is a single Gaussian of known amplitude s(0) and
width o, as described in Eq. (4) above. Under hypothesis Hy
the signal is a double Gaussian, for which the amplitude of
each Gaussian in the pair is half that of the single Gaussian

Fig.1. Tlustrative images of a signal on various backgrounds. The
left-hand column shows Gaussian-pinhole (o, = 0.4s,) images of a
Gaussian signal (5% contrast, ¢, = 10 units, centered in the object
array) superimposed upon lumpy backgrounds with a correlation
length of 30 units for W,(0) = 0, 400, 4000, 40,600 from top to
bottom. The second column shows the same objects imaged by a
Gaussian aperture with o, = 0.80,. The third and fourth columns
show the same objects imaged by an aperture size o, that is equal to
1.60, and 3.40,, respectively. The parameters used here are not the

. same as on the graphs below but rather are chosen to demonstrate

detection limitations due to both background inhomogeneity and to
Poisson noise.
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under Hj, the widths are the same as the width of the single,
and the separation and orientation are known. The object
under either hypothesis is the appropriate signal added toan
inhomogeneous background characterized in the same man-
ner as for the detection task [Eq. (5)].

Signal-to-Noise Ratios and Observers

The ultimate goal of a radiological imaging system often is to
provide an image that permits the clinician—a human ob-
gerver—to make a correct diagnosis. Making accurate mea-
surements of human performance involves psychophysical
studies, which are quite tedious and time consuming. There
are many circumstances in which we might want to circum-
vent this lengthy process, such as in the early stages of
system optimization. By using models in place of the hu-
man observer, we can caleulate a figure of merit for an imag-
ing system as a function of many design parameters in a
more timely fashion. It is important, though, that the mod-
els that we use be predictive of human observer performance
when the system is intended for human observers, so that a
system optimized for the model observer is optimized for the
human as well.

We have already mentioned the Bayesian or ideal observer
as a modet observer that may be invoked for the assessment
of image quality. The literature on signal-detection theory
is filled with examples, which are usually taken from radar
applications, in which the strategy of the ideal observer is
determined for simple detection and diserimination tasks
and the associated SNR is calculated.?? The Bayesian ap-
proach requires full characterization of the probability-den-
sity function of the data under each of the hypotheses. In
the literature the signals and backgrounds are often SKE/
BXKE cases, and the noise is generally assumed to be additive
with a Gaussian probability-density function. Then the
probability-density function on the data for each hypothesis
is Gaussian, and the covariance matrices are equal. The
ideal-observer strategy is then easily shown to be the
PWMF. The PWMF performs a sequence of linear opera-
tions on the data, first undoing any noise correlations that
are present and then correlating with a template matched to
the expected signal. The optimum test statistic for this
SKE/BKE task is therefore a linear function of the data.

If there were no object variability in the present studies,
the noise probability law would be Poisson, which might
reasonably be approximated by a Gaussian law. If, in addi-
tion, the signals to be detected or discriminated are low
contrast, the variances on the data are independent of the
underlying object. The ideal strategy reduces to the linear
PWMF approach in that limit. When the Poisson nature of
the data is rigorously included in the ideal-observer SNR
calculation, as described in Wagner et al.,5 the ideal strategy
remains linear in the data, though not quite the matched
filter. Instead, the filter is a logarithmic function of the
expected data for each hypothesis.

The presence of the inhomogeneous background in our
current studies results in a probability-density function of
the data that is potentially not Gaussian. The probability
function of the data depends on the entire probability func-
tion of the spatially varying component of the background,
while only the autocorrelation function of the random back-
ground process has been specified. Therefore, the ideal-
observer strategy for this problem is not calculable and could
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involve nonlinear operations on the data. Since there is no
evidence that the human observer can perform nonlinear
data manipulations,? we shall restrict our attention to linear
observers for the model observers invoked in the optimiza-
tion studies presented here.

We define a linear observer as any observer that performs
only linear operations on the detected data. We can write
the operations of such an observer in matrix form as shown
below:

A=a'g, (6)

where the superscript ¢ denotes the transpose of a vector or
matrix. The vector a represents a template that the observ-
er superimposes upon the data g. The result of this opera-
tion is a scalar test statistic A that is compared with a thresh-
old to permit a decision on which hypothesis is most likely
for the given data. Because the test statistic A is a function
of the data, it also has variability due to both the Poisson
noise and the inherent object variability.

The SNR of the test statistic A gives a meagure of the
separability of the classes. In the literature on signal-detec-
tion theory, such a SNR is known as the detectability index
d, and is given by

12
SNR,?=d,2=2% 0
Ty

where A} is the difference in the means of the test statistic
for the two classes and the denominator is the average vari-
ance in the test statistic. The variance incorporates bhoth
contributions to the randomness in A, the randomness due to
the lumpy background in the object and the Poisson nature
of the detected data. This is a meaningful figure of merit as
long as the statistics on A are approximately Gaussian, which
is the case here since we see from Eq. (6) that A is thesum of a
large number of random variables and therefore the central-
limit theorem may be invoked.

In the next sections we describe the two model observers
that we have chosen to investigate and give the prescriptions
for their test statistics and associated SNR's.

Hotelling Observer

The Hotelling observer demonstrates maximum discrimina-
tion ability among all observers that are limited to perform-
ing only linear operations on the data. We designate this
observer by the name Hotelling observer because the opti-
mum linear classifier was first presented in a classic paper by
Hotelling.? We shall describe the Hotelling approach for
the two-class (binary) problem relevant for our studies.
The generalization to more than two classes can be found in
texts on statistical pattern recognition such as that by Fu-
kunaga.!® The two-class Hotelling approach was previously
described for the specific problem of image assessment in
medical imaging by Barrett et al.l'-13 Fiete et al.'s have
shown that the performance of the Hotelling observer and
the human observer have high correlation for discrimination
tasks that include signal variability.

General Hotelling Theory The Hotelling approach is
based on two scatter matrices, S; and S.. These acatter
matrices completely describe the first- and second-order
statistics of the two classes, where the two classes designate
the two possible states of truth regarding the underlying
objects: signal present and signal absent in the detection
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problem and one source versus two sources for the Rayleigh
task. Our discussion above pointed out that the optimum
(Bayesian) test statistic is a linear function of the data for
the SKE/BKE diserimination problem when the probabili-
ty-density function of the data under each hypothesis is
Gaussian and the covariance matrices are equal. The Hotel-
ling observer reduces any decision problem to a linear test by
approximating the probability density functions of the data
for each of the classes by Gaussians, each with covariance
matrix equal to the average covariance matrix for the two
classes. Hence, if the lumpy background were such that the
probahility-density funetion on the data were Gaussian with
equal covariance matrix for the two hypotheses, the Hotel-
ling or best-linear strategy would be the ideal strategy.
However, many other non-Gaussian probability-density
functions of the data are consistent with the given informa-
tion regarding the background. I those non-Gaussian
cases the data would have higher-order moments that would
not be utilized by the Hotelling observer. The ideal observ-
er would make use of those higher-order moments and would
most likely be nonlinear. Methods for simulating lumpy
backgrounds with the specified Gaussian autocorrelation
function have been deseribed by Reolland. !

The interclass scatter matrix 8,, a measure of the distance
between the class means, is defined in the two-class problem
as follows:

2
S1= > Pili@) = (@)l(@) — (B0l 8
k=1

'where P, is the a priori probability of cccurrence of class k,
{g)4is the mean data vector for the kth class, and (g)¢is the
grand mean of all data vectors in both classes:

(€)= Pl + Pylgl (9)

If we substitute the definition of the grand mean {Eq. (9)}
into Eg. (8), we find that

8, = P\Pl{g); — (Enll{g). - (&)l (10)

in the two-class problem.
The intraclass seatter matrix S. is the average covariance
matrix of the classes:

8, =P,C, + B,C,, {11)

where C; and Cs are the covariance matrices for classes 1 and
9, respectively. The covariance matrix of the kth class is
defined as

C, = {[g— (&):llg — (&))- (12)

The beauty of the Hotelling formalism is that the opti-
mum linear filter and the figure of merit for the Hotelling
observer are fully specified once the scatter matrices 8, and
S, are determined. Previous authors have reported on the
method for deriving the optimum linear filter through an
eigenvector analysis of the product 87181316 The Hotel-
ling test statistic can be shown to be

Ao = (), — (€)]'8, '8
= Aol (13)
"This is a generalization of the PWMF. The presence of 8,71
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in the expression means that the Hotelling observer at-
tempts to compensate for object variability in addition to
the prewhitening of noise correlations performed by the
PWMF. When there is no object variability, S; represents
only noise correlations in the data, and the Hotelling observ-
er reduces to the PWMF.

The Hotelling trace criterion (HTC) is a scalar figure of
merit for the Hotelling observer. It is known in the litera-
ture as J or HTC and is defined in terms of the scatter
matrices as

J = tr[S,7'8,], : (14)

where tr denotes the trace of a matrix. The HTC is an
intuitively appealing measure of class separability because
we see from Eq. (14) that it increases with increased inter-
class separation (8,) and decreases with increased class vari-
ance (8;). The HTC is related to the SNR of the test
statistic Ayt by

J = P,P,SNR%.. (15)

Thus J is a generalization of the detectability index d, of
signal-detection theory.

In the next section we use the general expressions present-
ed here to derive the SNR of the Hotelling observer for the
discrimination problem in the presence of & lumpy back-
ground.

Hotelling Approach to Lumpy Buackground Problem To
determine a figure of merit for the Hotelling observer, we
must first determine the first- and second-order statistics on
the data that lead to the scatter matrices S; and 8. Fora
particular object f, the detected data are conditionally Pois-
son, with the mean given by

gf = (g)n\f‘ (16)

The angle brackets and associated subscript denote an aver-
age over the Poisson noise in the image for a given realization
of the object. To find the mean image given that hypothesis
H,(k = 1,2) is true, we average the conditional mean over all
objects that belong to class &:

B.= (B
= (&)
= ((g>n|f)ﬂk1 (17)

where the outer average is over the ensemble of all objects in
the kth class. If the two classes are equally likely, the inter-
class scatter matrix [Eq. (10)] is given by

Sl = 1/4(32 - 31)(32 - gl)f
=, (Ag)(AB)". (18)

Since the background has equivalent statistics under each
hypothesis and since the signal is nonrandom, the difference
in overall class means that Ag is simply the image of the
difference signal:

Ag = H{E, - f,) = Has, (19
so that
S, = Y,(Has)(HAs). (20}
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The covariance matrix of the kth class is defined as
Cy, = ({8 — &8:)& — 8V e ) (21)

Since the object inhomogeneity is the same under both class-
es, the covariance matrices are approximately equal in the
low-contrast limit {C; =~ Cz =~ C). Thus, for our low-con-
trast SKE problem, we see from Eq. (11) that 8; is simply
equal to C. Appendix A gives the derivation of the covari-
ance matrix C. We find the value in the ith row and the jth
column to be

8,0, J) = CG, ) = R GG, /) + kA4,,B5, (22)

where R, is the autocorrelation of the data due to the non-
uniform background and A,y is the area of the aperture. We
see that the covariance matrix is a sum of two matrices, one
containing the randomness of the object that is due to the
lumpy background R, and the other a diagona! matrix con-
taining the variance associated with the Poisson nature of
the detected data.

If we substitute the expressions for the scatter matrices
into the equation for the Hotelling test statistic [Eq. (13)],
we find that

Moz = [(8)s — (&) 1]332_15
= Ag'S, '8
= (HA8)'C 'g. {23)

If we substitute the same expressions for the scatter ma-
trices into Eqgs. (14) and {15), for equal-probability classes,
we find the Hotelling observer’s SNR to be

SNRf, = 4d
= 4 tr[S,7'8,]
= tr[C ' (HAs)(HAs)]
= As'H'C™'HAs. (24)

The full expression for the Hotelling observer’s SNR for
linear, shift-invariant syatems and stationary statistics is
derived in Appendix B and given as an integral over the
Fourier domain below:

SNREI‘“=] dz |A5(P)[2IH(P)|2 (25)

o 7P kAB + HERW )]

where a tilde above a function signifies its Fourier transform.
Thus B(p) is the system transfer function and Ai{p) is the
Fourier transform of the difference signal As(r).

The integrand in Eq. (25) may be identified in terms of a
generalization of the frequency-dependent noise-equivalent
quanta (NEQ) for the lumpy-background discrimination
problem.l” The NEQ concept was introduced by Shaw!®1?
and has been used extensively by Wagner?® and others for
SKE discrimination tasks. The generalized NEQ are given
by

|H(p)*
[xA,,B + [H(p)Wie)]
Equation (25) will have units appropriate to NEQ when it is

normelized such that the difference signal is written as a
contrast with respect to the background. The usual expres-

NEQ(p) = (26)
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sion for NEQ{(p) for the flat-background problem is recov-
ered from this form by setting W;(p) equal to zero and recog-
nizing that x4, B is the Poisson nois¢ power spectral density
for that case.

Nonprewhitening Matched Filter

The second model obhserver that we shall consider is the
nonprewhitening matched filter (NPWMF). The NPWMF
sirategy is to apply a simple template matched to the expect-
ed difference signal to form a test statistic:

Anpw = (HAS)'E. (27)

The NPWMTF test statistic Appw is a linear function of the
datag. Any correlations in the noise or spatial variations in
the background are not corrected for by this ohserver. Our
interest in this observer comes from the fact that, in studies
of human detection and discrimination performance for
SKE/BKE tasks with correlated noise, this observer has
been found to be a good predictor of human perform-
ance.2b22

We again use the definition of observer SNR of Eq. (7) to
derive the figure of merit for the NPWMF. Although the
NPWMF observer takes no account of the statistics of either
the Poisson noise or the background fluctuations, these sta-
tistics are included in the statistics of A,p. when the averages
in Eq. (7) are performed. Appendix C derives SNRuqp, and
shows its Fourier representation to be equal to

SNRZ

npw

[ ] df‘,olAa(p)lﬂiflm)F]2

] 2ol AS(p) 1B (p) x4, B + f A2l A5 ()P IB (W, (o)
(28)

It is straightforward to relate both the numerator and the
denominator of Eq. (28) to the scatter matrices used in the
Hotelling approach.” The numerator of Eq. (28) is the
sguared integral of the energy of the difference signal in the
frequency domain. As can be seen from Eq. (20), the trace
of the interclass scatter matrix is an equivalent representa-
tion of the sum of the energy of the difference signal for the
discretized signal in the spatial domain. The denominator
of Eq. {28) is the integral of the difference signal energy
multiplied by the power spectrum of the data. In the spa-
tial-domain matrix notation the denominator should there-
fore be expected to contain the product of the interclass
scatter matrix S, and the intraclass scatter matrix §;. The
actual result is given below:

sngz, = TS

mpw trlslsgl. (29)

The frequency-domain expression of Eq. (28) is valid only in
the low-contrast limit where stationary statistics apply. At
high contrasts the Poisson contribution to the variance in
the data is nonstationary, so that the Fourier transform of
the covariance matrix of the data is no longer diagonal. The
expression for the variance is still the sum of two terms, one
representing the Poisson variance and the other represent-
ing the variation in the background, as shown in Appendix C,
Eq. (C9). In this work high-contrast SNRw results were
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Fig.2. Family of Hotelling SNR? curves as a function of the ratio of
the Gaussian aperture width to the signal width for a detection task.
The plots show the effect of increasing the value of the power
spectral density of the background at zero spatial frequency, WA0).
The signal width is 10 units, and the width of the autocorrelation
function of the background is 30 units. The signal contrast is 5%.
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Fig. 3. Plot of the NPWMF SNR? a8 a function of the Gaussian
aperture width to the signal width for the same detection task as in
Fig. 2.

calculated through space-domain computations of the
means and Poisson variances of the data by using convolu-
tions. A similar space-domain approach was presented by
Wagner et al® for the high-contrast SKE/BKE Rayleigh
task, although the template in that paper was the PWMTF for
the Poisson-noise case (logarithmic in the expected differ-
ence signal). In the inhomogeneous-background problem
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here, the approach of Wagner et al. must also be modified to
permit the addition to the SNR denominator of the variance
that is due to the lumpy background. Since the lumpy
background is stationary and independent of the signal am-
plitude, its contribution to the variance can still be calculat-
ed in the Fourier domain just as it was in the low-contrast
case.
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Fig. 4. Plot of the Hotelling SNR? for the detection task with a
aquare aperture of length L on a side. The abscissa is the ratio of
the square aperture length to the signal width. The signal width is
10 units, and the width of the autocorrelation function of the back-
ground is 30 units. The signal contrast is 5%.
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Fig. 5. Plot of the NPWMF SNR as a function of the ratio of the

side length of the square aperture to the signal width. The signal
and background parameters are the same as for Fig. 4.
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RESULTS

In order to calculate the SNR's of Egs. (25) and (28), we
must first choose reasonable values for the signal parameters
and imaging system factors. For all the low-contrast results
that we shall present, the Gaussian signals had a width ¢, of
10 mm. The correlation length of the lumpy background in
all low-contrast cases was set equal to 30 mm, so that o =
3a,. The contrast of the signal with respect to the mean
background level B was 5%. This contrast value is a realis-
tie, albeit challenging, value for nuclear-medicine applica-
tions. To achieve this contrast figure, we set the back-
ground level B equal to 610 counts/{sec-mm?), which then
sets the signal amplitude s(0). The background level B was
chosen to imply 107 disintegrations in the given imaging time
in a 128 mm X 128 mm object, so that one could detect 107
counts in a perfect collection system. For all studies in
which the exposure time 7' was not a variable, « was a con-
stant set equal to 0.001 sec/mm?2.

Detection Task

Figure 2 is a plot of SNRyyq, for the low-contrast detection
task as a function of Gaussian aperture diameter o, for
increasing levels of the background parameter W/(0). Fig-
ure 3 is a similar plot for the NPWMF. The upper curve in
both figures corresponds to a uniform background, for which
both observers reduce to the ideal observer. These curves
were derived through numerical integration of Eqgs. (25) and
(28) for Figs. 2 and 3, respectively. Note that in the uni-
form-background case, in which the observer performance is
purely quantum limited, the aperture should be as large as
possible to collect as many photons as possible. This result
is consistent with the finding of Taui et al.?

In the presence of a lumpy background the SNR’s of both
observers demonstrate a clear optimum size. We have nor-
malized the abscissa by the signal size ¢, in all figures to
clarify the relationship between the optimum aperture size
and the size of the signal. For all values of W/{(0) we find
that the optimum aperture size is generally the same size a5
the signal. The NPWMF i3 seen to experience a greater
performance penalty than the Hotelling observer as the ap-
erture size is increased beyond the optimum vaiue.

Figures 4 and b repeat the calculations of Figs. 2 and 3,
replacing the Gaussian aperture with a square aperture of
area L2 Little difference between the Gaussian aperture
and square aperture for the NPWMF can be observed.
However, there is & marked difference in the performance of
the Hotelling observer for the aquare aperture, for we now
find oscillations in the SNRy graph. Some intuition re-
garding the presence of these oscillations can be obtained
from a frequency-domain point of view, where the Fourler
transform of the square aperture becomes an oscillatory
function in the integral of Eq. (25). As the square size L
increases, its sinc function in the Fourier picture narrows,
and oscillatory lobes in the transfer function move toward
zero frequency. Certain ranges of L beyond the optimum
size evidently result in particular positions of the maxima
and minima of the sinc that result in local improvements in
the discrimirability between signal and background, result-
ing in smail oscillations in SNRygt.

Figure 6 gives a family of curves for the NPWMF perform-
ing a high-contrast detection task, The signal amplitude in
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this case was 1000 times the mean background level. For
this task the signal width was 5 pixels or 5 mm and the
background correlation length was 15 units or 15 pixels, so
that, again, oz = 30;. (We reduced the size of the signal in
this case to ease the array size requirements on the space-
domain convolutions required to caiculate the SNR for the
largest apertures.) We have found in general that the high-
contrast results are similar to the low-contrast results with
the magnitudes of the SNR’s increased. The spatially vary-
ing background limits the performance of the observer in the
same way, and the optimum aperture size remains more or
less the same, The similar character of the high- and low-
contrast SNR,,, curves indicates that the signal-to-mean-
background contrast is not by itself an important parameter
in the lumpy-background preblem, at least for this model
observer. Instead, the ratio of the contrast to the back-
ground parameter Wy(0) must be taken into consideration.
A striking difference between the Hotelling observer and
the NPWMF observer is found by plotting the detection
performance of each as a function of exposure time T (effect-
ed by increasing «}. These plots are given in Figs. 7 and 8 for
increasing values of the background spectral density level
W(0). When WHO) is zero, the background is uniform, and
both observers reduce to the ideal observer, whose perform-
ance increases linearly with exposure time. Figure 7showsa
power-law increase in SNRy,, as a function of T for all
nonzera values of W;(0), with the slope approximately equal
to 2/3. No evidence of saturation of the Hotelling observer
performance can be observed in the plot. Figure 8 demon-
strates a hard saturation in the performance of the NPWMF
for the same set of tasks. The behavior of the NPWMF is
predicted from the expression for the SNR,,, given in Eq.
(28). Since each system operator (and its Fourier trans.
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Fig. 6, NPWMF SNR? for a high-contrast detection task. The
signal strength is 10 times the background, the signal width is 5
units, and the background autocorrelation length is 15 units.
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Fig. 7. Hotelling SNR? as a function of exposure time for a detec-
tion task. The signal width is 10 units, and the background auto-
correlation length is 30 units. The Gaussian aperture width is equal
to the signal width, and the signal contrast is 5%.
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Fig. 8. NPWMF SNR? versus exposure time for the same detec-
tion task as in Fig. 7. -

form) carries along the time-dependence parameter «, the
numerator in the SNR?,,, and the background variance term
are hoth proportional to x* or T, while the Poisson variance
term is proportional to x3 or T%. This leads to

aT!
,ST“ + 'yT‘"

As T becomes large, SNR,,.? goes to a constant for any
aperture size. Since the magnitude of the ¥T* term is much
larger for a large aperture (it goes as L3), the conspicuity
limit sets in earlier for larger apertures.

It is difficult to get the same kind of intuition regarding
the time dependence of the Hotelling SNR because the nu-
merator and the denominator in the SNRy., expression are

SNRZ,,, = (30)
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interacting within the same integral. (Thisis also true when
one is trying to investigate the behavior of the Hotelling
SNR for large aperture size L.) Instead we can look to the
space- and Fourier-domain pictures of the Hotelling tem-
plate (Figs. 9 and 10} for insight regarding the Hotelling
result. Figure 9 is a one-dimensional schematic of the Ho-
telling template aye = C~'HAs in the space domain for the
lumpy-background detection problem with a Gaussian aper-
ture (the two-dimensional function is rotationally symmet-
ric for this aperture), and Fig. 10 gives the Fourier-domain
filter function, We see from Fig. 9 that the Hotelling obser-
ver’s strategy in the detection problem, in effect, i to use the
area surrounding the known signal location to get an esti-
mate of the local background level. The observer subtracts
this background estimate from a measure of the counts in
the signal region to determine whether the count density in
the signal location is high enough to be called “signal pre-
gent.” This differencing operation in the space domain is
equivalent to a high-pass filter in the frequency domain, as
seen in Fig. 10. As long as the background autocorrelation

_function has a length that is different from the signal size,

the Hotelling observer can look in the Fourier domain for the
signal in the frequency channels where the signal and the
background differ significantly. For these studies, the sig-
nal width o, is 1/3 the background correlation length op.
The signal spectrum is therefore wider than the spectrum of
the background. The Hotelling observer makes use of this
information by making the discrimination based on measur-
ing the amount of power in the higher frequencies. As the

AMPLITUDE

T

DISTANCE FROM ORIGIN (r)

Fig. 9. Schematic of the Hotelling template along a radial axis in
the space domain for the detection of a Gaussian object on a lumpy
background imaged through a Gaussian aperture.

AMPLITUDE

FREQUENCY (g

Fig. 10, Schematic of the Fourier filter corresponding to the Ho-
telling template for the detection of a Gaussian object on a lumpy
background imaged through a Gaussian aperture.
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Fig.11. Plot of the Hotelling SNR? for the Rayleigh discrimination
task for Gaussian apertures of varying size o,. The source width is
10 units, and the pair separation is 20 units. The contrast and
background parameters are the same as in Fig. 2.
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Fig. 12. Ptlot of the Hotelling SNR? for the Rayleigh discrimination
task for square apertures of varying length L on a side. The source
width is 10 units, and the pair separation is 30 units. The contrast
and background parameters are the same as in Fig, 2.

exposure time increases, the quality of information in the
higher frequencies of the data improves. Unlike the
NPWMF, the Hotelling strategy is different for each expo-
sure time since the Hotelling template depends on the vari-
ance in the data. Because the Hotelling observer adjusts its
template as the higher-frequency information improves with
higher exposure times, the Hotelling performance never sat-
urates. On the other hand, the NPWMF uses the same
simple template matched to the difference signal for all
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exposure times. Even though increasing the exposure time
reduces the quantum fluctuations in the data, the observeris
limited by an inability to compensate for the varying back-
ground. Thus the NPWMF becomes conspicuity limited in
the limit of large exposure times.

Rayleigh Discrimination Task

Figures 11 and 12 exhibit representative results for the Ho-
telling observer for the Rayleigh discrimination task for
(Gaussian and for square apertures, respectively. In this
case the optimum aperture size is comparable with the size
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Fig. 13. Plot of the NPWMF observer SNR? for the Rayleigh
resolution task with a Gaussian aperture, as described in Fig. 11.
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Fig. 14. Plot of the NPWMF cbserver SNR? for the Rayleigh
resolution task with a square aperture as described in Fig. 12,
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of the signal even without background inhomogeneity. The
figures show that only a small performance degradation oc-
curs for the Hotelling observer when a lumpy background is
introduced for Gaussian and for square apertures. The dif-
ferencing operation performed by the Hotelling ohserver is
quite effective at distinguishing background from signal for
this task, partly because the double signal does not effective-
ly mimic the symmetry of the background lumps. We see
some evidence of oscillations in the curves for the square
aperture and the Hotelling observer, again because of the
effect of an oacillatory function in the Fourier-domain inte-
gral.

Finally, Figs. 13 and 14 show the Rayleigh discrimination
ability of the NPWMF for Gaussian and square apertures,
respectively. We seethat the large apertures are much more
strongly affected by the presence of the lumpy background
than the smaller ones, regardless of aperture shape.

DISCUSSION

In all cases that we have considered, plots of SNR? versus
aperture size have an initial slope equal to 2. This is the
regime of negligible blur, so that the counts collected from
the signal region just go up with the aperture area. When
the aperture size becomes appreciable, the image is blurred
by convolution with the aperture, spreading the signal
counts out over a larger region of the detector plane, and
SNR? either saturates or goes through a maximum, depend-
ing on the observer and the background lumpiness. With-
out lumpiness [WA0) = 0], the Hotelling and NPWMF ob-
servers both reduce to the ideal observer, which is a matched
filter that knows where to look for the signal counts that are
spread out by the aperture and gather them all up again.
Thus, with sizable blur, the counts from the signal region on
the detector plane collected by the observer still grow with
aperture area (L?). In the uniform-background case, the
ares of the background that contributes at any one detector
element continues to grow as L* as the aperture gize in-
creases (because we have assumed a background of infinite
spatial extent). Since the area over which the ideal ohserver
has to look for a signal increases by L2, the background that
contributes to the noise in the ideal-observer test statistic
grows as L1, and the standard deviation increases as L2 The
performance of the ideal observer therefore saturates.
While the optimum aperture size in the flat-background
case is infinite, the ideal-observer SNR? asymptotically ap-
proaches c2xB(A,%/2), where c is the contrast [¢ = s(0)/B) and
A, is the area of the signal (e.g., Gaussian signal area =
Qmrds?).

If a spatially varying component is then added to the flat
background, the slope at large aperture dimensions for the
detection problem decreases further for both the Hotelling
and the NPWMTF cbservers. Larger apertures collect more
of the lumpy background into each detector element, and
this extra variation effectively increases the noise in the
observer’s test statistic. We have seen, though, that the Ho-
telling observer can cope with the lumpiness to a much
greater extent by a local background-correction scheme.
We would expect this correction scheme to falter as the
background-correlation length approaches the size of the
signal.

The template used by the ideal observer when the back-
ground is uniform is simply the image of the difference signal

Vol. 7, No. T/July 1980/3. Opt. Soc. Am. A 1289

HAs. In the detection task, the template is therefore just
the image of the Gaussian signal itself. In the Rayleigh task,
the template for the uniform-background case is the image
of the double Gaussian subiracted from the image of the
single Gaussian, resulting in a template that looks much like
the one that is shown in Fig. 10 for the Hotelling observer for
detection in the presence of a lumpy background. Thus the
simple differencing operation performed by the Hotelling
observer for a flat background in the Rayleigh task results in
a template that closely resembles the detection template of
the Hotelling observer with a lumpy background. The Ho-
telling observer uses a high-frequency filter to perform both
tasks. The filters for the two problems differ slightly in that
the flat-background Rayleigh task yields a frequency-do-
main filter that is zero at p = 0 (because the mean number of
counts in the image gives no digerimination), while the
lumpy-background detection task has a small but nonzero
frequency-domain-filter value at zero spatial frequency to
attempt to discriminate on the basis of the signal energy.

In the Rayleigh task at low contrast, the optimum aper-
ture size is comparable with the size of the signal even with-
out background inhomogeneity. Larger apertures strongly
degrade performance in the flat-background case. When
the background is spatially varying the NPWMF pays an
even larger performance penalty for aperture gizes beyond
the optimum, while the Hotelling observer is affected only
slightly. Myers et al.?® have reported that, at high contrasts,
the performance of the ideal observer in the flat-background
Rayleigh task apparently does not saturate with increasing
aperture size. More investigations into the transition from
the low- to high-contrast regime are needed to explain this
further and to determine the effect of background nonuni-
formity on aperture choice for the high-contrast Rayleigh
task.

For low-contrast tasks, interpretations in the frequency
domain are valid and can give good insight, as we have seen
particularly in understanding the strategy of the Hotelling
observer. Caution must be exercised in attempting to ex-
tend this insight to the high-contrast imit, for which the
frequency-domain picture is not appropriate. At high con-
trasts a space-domain caleulation must be employed, owing
to the nonstationary nature of the covariance matrices and
the correlations between Fourier components that result.

A remaining question i the relationship between these
results and the discrimination ability of the human observer
for the same tasks. Tasks that lead to strikingly different
results for the Hotelling and the NPWMF observers, such as
the exposure-time study, permit us to test to see which
observer model is a better predictor of human performance
for that task. Results of psychophysical studies of human
performance on the same tasks as those investigated here
will be presented in a future publication by Rolland.!?

This work also hag implications for machine readers, that
is, computer algorithms designed to do classification tasks.
In cases for which there is a great difference in performance
between the two model observers, simple nonprewhitening
templates should be avoided. Instead, automated algo-
rithms should be designed to incorporate statistics of the
background whenever possible. The Hotelling framework
provides a straightforward method for celeulating the best
linear template for performing discrimination tasks in a
varying background.

While this paper has considered only simple open aper-
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tures of varying size, low-contrast performance of other ap-
ertures could equally well have been investigated by using
their appropriate Fourier expressions in Eqs. (25) and (28).
More complicated apertures, such as coded apertures, for
example, could therefore be assessed on the basis of model-
observer task performance and compared with the simple
open apertures for the lumpy-background case. Similarly,
performance assessment based on other SKE tasks (sine-
wave detection, etc.) can be easily achieved through appro-
priate manipulation of the difference-signal term in the ex-
pressions for the SNR’s. High-contrast comparisons for
other apertures or for different discrimination tasks could be
done just as high-contrast results were presented here. The
celeulations are not so pretty: part of the caleulation must
be done by using lengthy convolutions in the space domain.

These studies evaluated the ability of model observers to
perform simple detection and discrimination tasks. While
these studies have included a spatially varying background,
further investigations are needed to determine the ability of
the model observers to perform still more complex tasks,
including tasks for which there is uncertainty in signal pa-
rameters such as size, amplitude, and location, to simulate
further more realistic tasks. Also, all performance measures
derived in this work were based on using the raw data to
perform the appropriate task, It is not clear that humans
would be able to use raw data effectively for complicated
tasks, so studies comparing model performance on raw and
reconstructed data versus human performance on both raw
and recensiructed data sets are also warranted. Image as-
sessment based on model observer performance using simu-
lated reconstructions for a variety of tasks is presented in a
paper in this issue by Hanaon.2¢

While the present studies are based on simulated chjects,
this research has implications for phantom design as well.
We expect that some systems that perform well on stylized
phantoms for which the background is known to be flat
might demonstrate marked performance degradations with
more realistic objects that have spatially varying back-
grounds.

CONCLUSION

This work is an extension of the realm of signal-detection
theory from the SKE/BKE paradigm into the more realistic
situation in which the background is inhomogeneous and
specified only statistically, In allowing for a spatially vary-
ing background, we have gained new insight into the prob-
lem of system optimization in emission imaging in the pres-
ence of both quantum limitations and conspicuity limita-
tions,

The present study is interesting in that relatively little
numerical computation is needed to derive the low-contrast
results. The scatter matrices S; and S; can be derived
analytically, and S; can be analytically inverted in the Fouri-
er domain. Numerical computation is needed only to per-
form the final trace operation in o/, which can be expressed as
a two-dimensional integral in the Fourier domain. In addi-
tion, the SNR for the NPWMF can also be expressed in
terms of scatter matrices. The problem is thus a useful way
to gain facility in the use of the Hotelling formalism and
shows its relation to the NPWMF,

The resuits show that the choice of task is important in
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asgessing and optimizing imaging systems. If the task is
detection of a known signal on a known uniform background,
the pinhole size should be as large as possible. Similarly,
both Wagner et al.5 and Myers et al.?? found that the high-
contrast Rayleigh task was best performed by a large aper-
ture. Obviously, these conclusions are not in accord with
clinical experience in which some degree of spatial resoclution
is needed to perform realistic clinical tasks. In that respect,
the stationary nonuniform background is more realistic and
leads to the intuitively appealing conclusion that the aper-
ture shotlld he matched to the signals to be detected or
discriminated. If the aperture is substantially smaller than
the signal, photon collection suffers unnecessarily, while if it
is much larger, the spatial resolution is inadequate for reli-
able discrimination between signal and background.

To summarize, this research has graphically demonstrat-
ed the limitations of too narrowly specifying the task in
model caleulations of the performance of imaging systems.
Systems that work well, even optimally, on stylized tasks for
which the background and the signal are both known exactly
may fail badly with slightly more realistic tasks that include
background variability.

APPENDIX A: DERIVATION OF THE
COVARIANCE MATRIX

In this appendix we derive the covariance matrix of the data
vector g. We are concerned with a two-dimensional (pla-
nar) imaging system with planar objects and images. Nev-
ertheless, we can represent two-dimensional objects and im-
ages as one-dimensional column vectors by lexicographically
ordering their discretized values, so that the data vector g is
related to the object vector f in the following way:

g=Hf +n (Al}

If the data vector g and noise vector n are M X 1 vectors, and
the object vector £ is an N X 1 vector, then the system
operator H is an M X N matrix. The system operator in-
cludes the aperture transmission function as well as the
imaging geometry and exposure dependence [Eq. (2)].

The covariance matrix for the data vector g, when class &
{k = 1, 2) is true, is defined as

C.={{(g - 8)® — &) o (A2)

where g is the mean image from class k, averaged over both
the noise random variable m, given an object f, and the
ensemble of objects f that belong to class k. The covariance
matrix C, characterizes the variation in the data due to the
spatially varying object and the Poisson noise. The inhomo-
geneous background in the object is assumed to be station-
ary and independent of the signal. For low-contrast signals,
then, C, characterizes the same nonuniformity in the back-
ground and Poisson noise regardless of the class, so we can
drop the subscript % from the covarianece matrix (C; ~ C; =~
C).

To determine C, we add and subtract g, the mean data
vector averaged over the Poisson noise for a given object f,
from each factor in Eq. (A2):

C=({lg—g+teg—8lg—g+g— 8. (A3)

Equation (A3) may be rewritten ag a sum of four matrices
M, M., M, and M, with
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M, = {{(g —2)(E&— &) )u)p (Ad)
M,={{g—g)&— £ ) (A5)
M, =—{{([8—&)E—8))upp (A6)
M, =-{({g-2)@—B)Vup)r (AT)

To evaluate each of these matrices, let us call My(i, j) (with [
=1,2,3,4) the (i, )th matrix element of M. In addition, let
us write {g(i) },, the average data value at the ith pixel given
the object £, as g/i). In component form Eq. {A4) becomes

MG, /) = {8 = 2Dl = 8Dy (A8)

which, for Poisson (independent) noise, and for i # j, be-
comes

MG, 1) = (80} — BAD) 8D — BN i)
=0, i (A9)
Fori = j, the matrix element M:(i, /) = My(i, i) is given by
M,G, i) = {{[20) = 8D1P )y
= (g());
=z()
= x4, B. {A10)

We have again made the low-contrast assumption, so that
the stationary background gives a mean pixel value in the
image that is independent of position. The value B is the
mean background level in the object, x is the imaging param-
eter defined in Eq. (3), and A, is the area of the aperture
(Azp = L? for the square and A, = 2mo,? for the (Gaussian
aperture).

If we denote the autocorrelation function of the nonuni-
form background after the imaging process by R, Ms(i, /),
Ma(i, j), and MG, j) are given for any (i, /) by

Mo, j) = (&0 — g NG — DD wp)y

= {[g(i) — 2D — 2NN,

= R,(, ), (A11)
MG, ) = {26 — 2D180) — 2,0Dayds

= {[3(i) — /D[ — 24N nipds

=0, (A12)
MG, ) = (e — AN RG) — B DD apds

= {({g(@) — 2D a/2G) — 8]

=0. (A13)

We can now combine Eqs. (A9)—(A13) to write the (i, Hth
element of the covariance matrix defined by Eq. (A2) as &
sum of two terms:

Cli, ) = Ry, 1) + xA,Bb;, (A14)

where §;; ia the Kronecker delta function. The autocorrela-
tion function of the nonuniform background in the image
plane R, is related to the autocorrelation function of the
nonuniform background in the object plane R, through a
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double convolution with the aperture function. Equation
{A14) shows that the contributions of the Poisson noise and
the nonuniform-background randomness to the covariance
matrix of the data are additive.

APPENDIX B: DERIVATION OF THE
HOTELLING SIGNAL-TO-NOISE RATIO

This appendix derives the continuous Fourier-domain
representation of the Hotelling SNE. From Eq. (24) we can
write the discrete space-domain representation of the Hotel-
ling SNR:

SNRE,, = As'H'C™'HAs, (BD)

where C is the covariance matrix of the data derived in
Appendix A:

C(iu j) = Rg(i!j) + KA!F’BBU' (BZ)

We may simplify the calculation of SNRyo by noting that
under the assumption of a stationary background, the co-
variance matrix may be approximated by a circulant matrix,
which is diagonalized by a discrete Fourier transform. We
shall therefore caleulate SNRyje in the Fourier domain.

We shall represent the discrete Fourier operator by F.
We use F to map the difference signal As into the Fourier
domain as follows:

FAs = AS, (B3)

where A3(m) is the Fourier amplitude of As at frequency pr.
Note that the Fourier operator as we have defined it maps a
lexicographically ordered vector from the space domain to a
lexicographically ordered vector in the Fourier domain.
The Fourier operator F is a unitary operator, so that FFt =
F'F = I, where I is the identity matrix and the dagger
represents the conjugate transpose of a matrix or vector.
Since the difference signal is real, we find that

As' = (Fas)! = As'Ft. (B4)

We assume that the imaging process is linear and shift in-
variant. A shift-invariant imaging system can be represent-
ed by a system matrix H that is approximately circulant and,
therefore, diagonalized by the discrete Fourier operator:

FHF! = H, (B5)
with
A, ) = H@S;; (B6)

We have written the diagonal matrix H in component form
as a function of a single index that runs along the matrix

diagonal.
In the Fourier domain the covariance matrix C becomes
FCF' =C, (B7)

which we can write in component form as
€, j) = [W,(i) + A, B8
= ([ BGPW,0) + A, Bl8; (B8)

by using Eq. (B2). W, is the power spectrum of the nonuni-
form background in the image plane, and W; is the power
spectrum of the nonuniform background in the object plane.
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We can now write an equivalent expression for SNRy in
the Fourier domain by inserting Fourier operators as shown
below:

SNR%,, = As'H!C'HAs
= As{{(FTFH{F'F)C™ (FF)H(F'F)As
= (AS'FIHFHF ) (FCIF) (FHF){FAs)
= ABTATC A as, (B9)

In component form, this is written as
SNRZ,, = ZZZZ AFGH*(, HEYG, kYR, DAS()
i F kI
= Z AF*(OE* O OA AR

Z [AF(G)AA )2
(€&

[as)PAE)
= . B
z (kA B + [HGIPW D] 10

where the superscript asterisk denotes the complex conju-
gate and we have made use of the delta functions in the
diagonal matrices to reduce the multiple sum to a sum over a
single index.

We can write SNRy,, as a continuous integral in the Fou-
rier domain by taking the limit of the sum for a large number
of fine samples and undoing the lexicographic ordering to
turn the one-dimensional sum back into a two-dimensional
integral:

Az (e} (o) .
(x4, B + H(p)*W/(p)]

SNRY,, = j &) (B11)

APPENDIX C: DERIVATION OF THE
NONPREWHITENING MATCHED FILTER
SIGNAL-TO-NOISE RATIO

The figure of merit for the NPWMF is the SNR associated
with the NPWMF test statistic. The NPWMF test statistic
was shown in Eq. (27) to be

= As‘H'g. (C1}

npw

Since in this appendix we shall discuss only the test statistic
for the NPWMF', we shall drop the subaeript from the test
statistic.

If we define A; and X as the mean values of X for classes 1
and 2, respectively, and ;m? and o5* are its respective vari-
ances, the SNR associated with the test statistic is

(Xz - x])z

SNRZ = —a——
npw l, (0,12 + 0_22)

(€2

The mean and the variances are found by averaging over
both the Poisson noise and the object variability due to the
nonuniform background. In the low-contrast limit the vari-
ances are the same for both classes (¢,% = % = ¢), and Eq.
(C2) becomes

Myers et al.

SNRZ,, =

npw 9 °

(C3)

Let us consider the numerator first. The mean of A when
class k is true is

Ay = () e (C4)

We find the average for the class by performing an average
over the Poisson noise for a particular object in the class,
followed by an average over all objects from the class. If we
use the expression for the test statistic in Eq. (C1) we find
that

A = ASH(E) ) e
= As'H'g,. {C5)

The difference in the means of A under the two hypotheses is
then

AN = As'H'Ag. (Ce)

Moreover, by noting that Ag is simply the image of the
difference signal, Eq. (C6) yields

AN = As'H'HAs. (C?

We calculate the variance of the test statistic by cascading
averages over noise and objects in a similar manner. The
definition of the variance of A is

= {{(A = DD (C8)

If we add and subtract the mean of A for a particular ohject
{averaged over the Poisson noise), Eq. (C8) becomes

o= {{{r— X,r+ Xf - )_\)z)n!'[)[
= (A = R, + (R = NP )y (C9)

A quick inspection will show that the cross term is equal to
zero, and so we are left with two terms to evaluate. We
evaluate the first term to find that

(= KD, = (((As'Hrg — ASTHE)D) ),
= ((As'H'(g — g))(g — §)'HAS) ),
= As'H'(((g ~ 8){g — g)") ) Has
= Ag'H'M HAs, (C10)

where the diagonal matrix M; characterizes the contribution
of the Poisson noise to the variance and is shown in Appen-
dix A [Egs. (A9) and (A10)] to be given by

M, = «4,,BI (C11)

in the low-contrast limit, where I is the identity matrix.
The second term in Eq. (C9) is given by

(= M%)y = {((as'H'g; — As'H'E)) )y
= As"H'({(&; — )8, — €)'}y HAs
= As‘H‘RgHAs. {C12)

where R, is the autocorrelation function of the nonuniform
background in the image plane.
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We can now combine the expressions for the mean and the
variance to write SNRZ,:
(As'H'HAS)®
A (kA,,BI + RYHAs

SNRﬁpw = (C13)
This expression may be simplified by performing the calcu-
lation in the Fourier domain, using the scheme presented in
Appendix B. The Fourier-domain representation is then
shown to be

(astA'HAR)
ABTE(xA,, BT + W HAS

SNRZ,, = {C14)

If we write out the summations represented implicitly in the
matrix notation, we find that

2
[z |A§(i)|2|H(i)|2]

[}

SNRZ,, =
S 183 PRG e B + WD)

2
[Z lAs(i)P}H(i)P:l

> |8st) PR GPA,B + [HGOFW/0)

(C15)

In the limit in which the area of the sampling element ap-
proaches zero, the discrete sums approximate integrals, and
Eq. (C15) becomes

I2

xAanII + 12, (CIS)

SNRZ,, =

where, if p is the two-dimensional spatial-frequency vector,

I = [ 3| 83(p) A (p) 2 (C17)
and
I,= f 2ol A3() B (@)W (o). €18)
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