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Abstract. The ideal observer represents a Bayesian approach to performing detection tasks.
Since such tasks are frequently used as prototype tasks for radiological imaging systems,
the detectability measured at the output of an ideal detector can be used as a figure of
merit to characterize the imaging system. For the detectability achieved by the ideal observer
to be a good figure of merit, it should predict the ability of the human observer 1o perform
the same detection task. Of great general interest, especially to the medical community,
are imaging devices with long-tailed point spread functions {PsFs). Such PSFs may occur
due to septal penetration in collimators, veiling glare in image intensifiers or scattered
radiation in the body. We have investigated the effect that this type of PsF has on human
visual signal detection and whether any improvement in performance can be gained by
deconvolving the tails of the psF. For the ideal observer, it is straightforward to show that
the performance is independent of any linear, invertible deconvolution filter. Qur psycho-
physical studies show, however, that performance of the human observer is indeed improved
by deconvolution. The ideal observer is, therefore, not a good predictor of human observer
performance for detection of a signal imaged through a long-tailed psr. We offer some
explanations for this discrepancy by using some characteristics of the visual process and
suggest a standard of comparison for the human observer that takes into account these
characteristics. A look at the performance of the non-prewhitening (npw) ideal observer,
before and after deconvolution, also brings some good insight inte this study.

1. Introduction

The assessment of image quality is a fundamental and ongoing problem in medical
imaging. Image quality can be defined by physical measures such as the modulation
transfer function, the contrast or the signal-to-noise ratio, but their relation to clinical
efficacy is generally unclear. An alternative approach is to consider the performance
of the system for some specified tasks. One example is a simple two-hypothesis detection
task where we classify a set of images into two categories such as normal and abnormal.
The performance of a human observer for the specified task can be measured by
psychophysical methods, while the performance of an ideal, Bayesian observer can be
calculated using signal detection theory if the parameters of the signal to be detected
are known {Green and Swets 1966, Van Trees 1968, Whalen 1971). In either case,
performance may be described by a receiver operalting characteristic (rRocC) curve (Metz
1986). From the area under the roc curves, indices of detectability may be calculated
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for both the ideal and the human observers. These indices will be referred to as di4..,
and d,, .. respectively (Tanner and Birdsall 1958, Goodenough et al 1973, Swets and
Pickett 1982). The performance of the human observer relative to the ideal observer
can then be estimated by computing the human statistical efficiency defined as
(druman/ @iaeat)” (Barlow 1978, Burgess et al 1982a).

Itis of considerable practical interest to be able to predict the outcome of psychophy-
sical studies, especially if dealing with system design and optimization. The ideal
observer is commonly chosen as a standard of comparison for the human observer
since, at least for simple tasks, its performance can be readily calculated (Wagner and
Brown 1985}. To the extent that the performance of the ideal observer correlates well
with that of the human, we then have a valuable tool for designing, optimizing and
assessing imaging systems. Early studies in this direction were quite promising, For
detection of simple, non-random signals in white, Gaussian noise, for example, the
ideal observer is a good predictor of human performance (Burgess ef al 1979, 1981,
1982b, Watson et al 1983, Judy er al 1987, Legge er al 1987, Wagner and Brown 1982).
When considering correlated noise, however, human performance can fall far below
ideal as suggested by Hanson (1979} and shown convincingly by Myers et al (1985).
It is therefore important to determine whether there are other practical circumstances
where human and ideal performances diverge.

One concrete prediction of the ideal-observer model is that linear filtering of an
image cannot improve performance; if filtering is desirable, the ideal observer can do
it internally as part of the decision strategy. Thus the question arises whether or not
human-observer performance will be improved with linear filtering. Among others,
Msaki et al (1987), Seibert and Boone (1988), Yanch et af (1988) and Fahimi and
Macovski (1989) have expended considerable effort in filtering radiographic images
to remove scatter. They show that the removal of scattered radiation leads to the
enhancement of the contrast in the image. However, in the case of noisy images, both
the signal and the noise are enhanced, and it is not clear whether any real improvement
is achieved. The intuitive feeling persists, however, that sharper images should somehow
be better images. In particular, the authors’ intuition suggests that filtering to remove
scattering from radiographs should improve their quality, at least for the human
observer.

Scattering causes a spread of the psFs, adding long spatial tails to its compact
central core. We refer to such psF as long-tailed psFs. Long-tailed psFs can also arise
due to veiling glare in image intensifiers or to septal penetration in nuclear imaging.
The main questions addressed in this paper are whether the ideal observer is a good
predictor of human performance for systems described by long-tailed psrs and whether
deconvolution is helpful in such cases. Some preliminary results of these studies have
already been reported elsewhere (Rolland et al 1989a), but a detailed analytic treatment
is given in this paper.

To address these questions, two psychophysical studies, described in the next
sections as studies I and II, were carried out. Each study was composed of 10
experiments corresponding to different amounts of blur resulting from different spreads
of the tail on the psF. Psychophysical measurements were performed on simulated
nuclear medicine images before and after deconvolution. Results of these studies show
that the ideal observer greatly overestimates the detection capability of human observers
for the assigned task, even when the noise is uncorrelated. They also show that, for
our specific detection task, deconvolution does indeed improve the performance of
the human observer,
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2. Study I: ideal versus human observers before deconvolution
2.1. Theory

The imaging system consists of a radiating object, an image-forming element and a
detector. We consider the object to be either a low-contrast signal on a mean background
distribution or the background alone. An appropriate example of an image-forming
element characterized by a long-tailed ps# is a multibore collimator frequently used
for clinical nuclear medicine studies. The long tail in this case results either from
scatter in the patient’s body or from septal penetration. The detector may be any
gamma ray camera such as the familiar Anger camera.

For any given task, one can determine the highest possible detectability by making
best possible use of the information in the image. Bayesian theory tells us that this is
accomplished by computing the likelthood ratio and comparing it to a threshold; an
observer who utilizes this strategy is called ideal. The ideal observer needs to know
the object parameters, the psF and the noise statistics to perform the likelihood test.
Our objective here is to assess image quality for a two-hypothesis detection task, where
a signal of given width and strength, before being imaged through a long-tailed psr
device, is either present or absent. For each image drawn out of the two classes (signal
present or absent), one can compute the likelihood ratio. A useful figure of merit is
the signal-to-noise ratio associated with the likelihood ratio, which we shall refer to
as the detectability index. We shall derive in this section the expression for the
detectability index associated with the ideal observer (dig..) for the long-tailed psr
case, as well as two other indices, the non-prewhitening (npw) observer (d.) and
the no-low-frequency (nlf} ideal observer (d,,(). The reader who is not interested either
in the mathematical derivations of these indices or how the images were simulated
{§ 2.2) should skip to § 2.3. (1t may be useful, however, to read the paragraph preceding
equation (14) to understand the meaning of the nlf observer.)

Let us describe the object, o{r), as the superposition of the background, b(r), and
the signal, s(r), where r denotes a two-dimensional (2p) position vector. Both b(r)
and s(¥) are precisely known deterministic quantities in this paper; the only randomness
is that introduced by the finite number of measured quanta. The overall imaging system
may be characterized by a psF, p,(r), which we take to be the sum of a sharply peaked
function, also referred to as the core, ¢(#), of the psF, and an extended tail f(r}. The
subscript ‘1” on p,{*) refers to the primary or imaging psF since we shall introduce
later another esr, p.(r} related to the filtering process. If we call H, and H, the
hypotheses that the signal is absent or present respectively, we can define the mean
images go(r) and g,(r) under H, and H, respectively as

golry =« T[b*(c+1)])(r} {(1a)
gi(r)=xT[{(b+s)x(c+}](r) (16)

where the operator symbol * represents a 2p convolution, x is an efficiency factor
taking into account the geometry of the system, and T is the exposure time (Barrett
and Swindell 1981). The actual measured image, g{#) can be written as g{r}+ n(r),
n(r) being the noise of the system and g(r) the mean count density. Since we are
working with digitized images, let us define g(i)= g(r)e?, r, being the location of the
ith pixel and ¢ its area. The set of numbers, g(i), defines a vector g, and the
log-likelihood ratio, /, is given by

I=1n[p(g|H,)/p{g|Ho)]. (2)
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The noise is strictly uncorrelated Poisson noise, and the probability densities
p(g|H\), are given by a multivariate Poisson distributton. Because of the uncorrelated
nature of Poisson noise, the multivariate probability densities are simply the product
over the pixel values of probability densities. If N is the number of pixels, p{g|H,)
can be expressed as

N )
plglH) = T g1/ g(i)!) exp(=Zi (). (3)
i=1
The log-likelihood ratio given by equation (2) then takes the form
N
I=75% g(i)In(g,()/g,(i)+1erms independent of g(i). (4)
i=1

In the low-contrast approximation we can write g,{) = go({) + Ag(i), with Ag{i) < g,{i).
If we drop the terms independent of g, the expression for ! becomes

N N

I= ,Zl g(i) In (1+AgG)/ go(i))= ¥ g(i) Ag(i)/8(1) = (A8)Ks'g  (5)

i= i—1

since for uncorrelated Poisson noise the covariance matrices, K, (k =0, 1), are diagonal
and, if 8, is the Kronecker delta function, their elements may be written as

Kk(isj) = gk(i)arj- {6)
Moreover, in the low-contrast approximation, K, =K, =K, and equation {5} becomes
[=(Ag)K 'g. (7)

Since the covariance matrix, K, is positive definite, K™' can be factored as K™ '/?K "2,
Then, if the inverse matrix K" exists, K™'/* also exists, and we can gain more insight
into the expression for [ by writing equation (7) as

I=(K 2A@ (K '?g). (8)

This expression for / shows that the data are first filtered by the inverse of the square
root of the covariance matrix, an operation known as prewhitening. The ideal Bayesian
observer then performs a matched-filtering operation, correlating the prewhitened
received data, K '?g, with the expected signal, Ag, seen through the prewhitening
filter. For this reason this ideal observer is often referred to as the prewhitening matched
filter.

A general figure of merit that may be associated with ! is the so-called index of
detectability, digea, defined as

dizdeal:(l_l_TO)E/(PIU%-}-PUUS) (9)

where I, ={I|H,), a; ={{1~-I,)|H,), with the angle brackets indicating the ensemble
average over the elements of the kth class (k=0,1), and P, and P, are the a priori
probabilities of occurrence of class 0 and 1 respectively, satisfying P,+ P, =1. In the
low-contrast approximation, o,= o, = ¢, and the variance reduces to a single term. If
we denote ({|H,)~ (I|Hy as Al, then Al and o may be calculated from the expression
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for the test statistic given by equation (7). The results are
AT=((Ag)'K 'g|H,)—{(Ag)K™'gH,)
=(AZ)'K ™ {glH)) —(Ag)'K '(g|Hy)
= (82K 'ag (10)
o7 =(((AD)'K 'g —(Ag)'K "(g[H))|H\)
=({(AZ)'K '(g-2)g—8)'K 'AglH)
=(A)K {(g-2)(g -2V |HHK Az
=(A2)K 'KK 'Ag
=(Ag)'K 'AZ (11)

Equations (10} and (11) show that o; equals Al This equality results from the
low-contrast approximation, which is equivalent here to assuming that the noise is
signal independent, though it does depend on the background. Substitution of AT and
g, into equation (9) leads to

digea ={AD)'K'AZ. (12)

The detectability, di4..;, given in a vector form by equation (12), can be expressed
explicitly as a function of s(i), b{7), c¢(i) and (i) by using equations {la) and {15b)
and noting that K™' is a diagonal matrix as a result of the uncorrelated nature of the
noise. Its non-zero elements are the reciprocals of the noise variances, which are also
the mean pixel values according to Poisson statistics. In the approximation of low-
contrast signals, the mean values can be calculated by using either equation {1a) or
(15}). Equation (12) then becomes
et G0 G
=y [(Bxe)(i)+ (bHe)(i)]

Referring to one of the first discoveries on human vision, the brightness-contrast
effect, we know that the human observer cannot use an absolute brightness level as a
useful piece of information when performing a detection task (Ratliff 1965); instead
the human observer is essentially sensitive to contrasts in brigk = ss. When considering
the expression of djy. given by equation (13), the term ;. t)(i) appearing in the
numerator is a broad, slowly varying component that contains mainly low spatial
frequencies. We are going to test the hypothesis that the human observer does not use
the information contained in this term when performing the detection task. We define
the performance of a pseudo-ideal observer, d,,,, as

N [(s*#c)(D)]
d2|f= T X YT
e =sT L [(b*e)( D)+ (b+1)(i)]

The denominators in equations {(13) and (14) are the same since uncorrelated noise is
rich in high spatial frequencies, and the deletion of low frequencies does not sig-
nificantly affect the noise variance.

Besides evaluating the human observer against the ideal and the nlf ideal observers,
we shall also look at the npw ideal-observer predictions for the task at hand. The npw
ideal and the ideal observers differ in their ability to take into account noise correlations,

(13)

(14}
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The npw ideal observer, also referred to as the quasi-ideal observer (Wagner and
Brown 1985), is a suboptimal observer which assumes uncorrelaied and stationary (or
‘white’} noise. The assumption of uncorrelated noise alone is not sufficient since the
noise may be uncorrelated but not stationary, in which case we would not call it white
noise. In the case of our experiments where the signal, if present, is superimposed on
a Gaussian-shaped background, the statistical process involved should be noted to be
non-stationary (see equation (21)). However, since the location of the signal is fixed
across the experiments, the noise is indeed locally stationary, The strategy of the npw
ideal observer, for performing a discrimination task, is to apply a mask or template
on the image in order to perform a cross-correlation of the expected signal with the
image data. The test statistic is then given by

A=(Af)'g (15)

where Ag is the expected signal or template laid on the image data, g The expression
for the index of detectability, d,,,.,, is

drow=(AX)*/ 0 = ((AR)'DE)/(Bg) KAg (16)
where K is the noise covariance matrix. The expression for dipw in terms of s{i), b(i),
¢(i) and (i) is then given by
-1

KT[Z_ {(S*C)(i)+(5*f)(i)]2} (..Zl[(S*C)(iH(S*I)(i)]z[(b*ff)(iH(b*t)(f)])
(17)

2.2. Image simulations

To investigate the impact that long-tailed psF have on the detectabilities of the human
and the statistical observers, we varied the extent of the tail of the psF by choosing 10
different widths of the tail of the psF for a fixed value of the contrast of the core of
the psF relative to the tail. Thus, we generated 10 different sets of images.

Each psF is expressed as the sum of two Gaussians, as suggested, for example, by
Tsui et al (1977), to model the core and the tail of the psF respectively. Their expression
is given by

pi(r) = a.exp(—r’/ri)+a exp(—r’/r}) (18)

where a. and a, are the amplitudes of the core and the tail of the psF respectively, and
. and r, are the half widths at 1/¢e of the peak intensity of their respective distributions.
The width of the core of the psF is held constant across the 10 sets of images, so that
the degradation from one set to the next is essentially due to the broadening of the
psF resulting from adding tails to the core. For the same reason, the contrast of the
pSF, defined as Cpgp= a./a,, is held constant across the 10 sets of images. The area
under the psF, defined as the integral over the space domain of p,(#), is given by
mria.+ mwrla, and is set to 1 (in units of pixels) for normalization purposes. Therefore,
given r. and r,, a. and g, can be determined by solving the system of two equations
with two unknowns, given by

w(ria.+ria)=1 (19)
and

a./ a, = Cpgg. (20)
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For mathematical convenience, we also model the signal s(r}, and the background,
b(r) as 2p Gaussian distributions, so that each term in equations (1a) and (1b) involving
a convolution operation takes on a very simple form. The object, f{r)}, is thus described
as

f(r)=(a,/wrl) exp(—r’/ri) +{ay/ wri) exp(—r’/ri) (21)

where a, and a, are now the integrals under the signal and the background distributions,
respectively, and r, and r, are the half widths at 1/e of the peak intensity of their
respective distributions. With such conventions we can expand equation (1a) and show
that the analytical expression of each of the four terms of the equation is a 2p Gaussian
distribution itself. For example, the convolution of the background, b(r), with the core
of the psF, ¢(r), yvields a 20 Gaussian distribution given by

b(ryxe(r) = asare/ (ro+rd)) expl—r/ (rm+rd)]. (22)
Finally, we define the contrast of the signal on the background to be

Co=(a/rd)/ (av/ i), (23)
and given r,, r, and C,, we can solve for a, and a, using

kT(a+a,)= Ny (24)
and

a/a,=Cori/re (25)

where N, is the total number of counts detected. Note that we used the normalization
condition given by equation (19) to derive equation (24) and that x must be in units
of reciprocal pixel area for the uvnits on each side of equation (24) to be consistent.

To determine a set of parameters that characterizes the object and the psF, we
assume that the images are sampled on a 128 x 128-pixel grid. This grid size yields a
maximum value for the modulus of the position vector, denoted as r.., of 90.5 pixels.
This value constitutes the radius of reference that is used to adjust the widths of the
four Gaussian distributions. The width of the background is taken to be the widest,
with r.../r,=1, while the signal is chosen to be 8 pixels in diameter at 1/e of the
peak intensity. The core of the psF is quite sharp, with r.= 1.5 pixels, and the values
of r,, which, are decreasing from set number 1 to set number 10, are such that
Fmax/ Fi = N +2 where N is the set number. The progression of the extent of the tail
of the psF from set number 1 (psF,) to 10 (psF,,) is represented in figure 1. Given the
r. values and a value for Cpgr, we can solve equations (19) and (20) for g, and a..
The parameters describing the 10 psrs are given in table 1 for Cpgp=11, where the
values of r, are given in pixels and a. and q, are dimensionless. The ratio rfa/ria, is
a measure of the integral under the tail of the psF relative to the integral under the
core, or the relative strength of the tail with respect to the core of the psr. The object
parameters are adjusted by setting C, =3 and by adjusting the exposure time such that
the noise variance at the peak value of the mean image, denoted as o, is 7% of the
peak value, m,.,. Moreover, the noise variance is related to the mean pixel value
through Poisson statistics, at each point in the image. Thus the noise variance at the
peak value of the mean image has to satisfy two conditions:

Crpeak =0.07 mpeak (26)
and

2
Upeak = m:)f;ak (27)
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Figure 1. Iliustration of the extent of the tail of the PSF from set number 1 to 10. Each circle is centred at
the origin of a 128 x 128 pixel array and has a radius, r, that satisfies rZ_./ri= N +2, where N is the set
number and r,,,, = 90.5 pixels.

Table 1. Point spread function parameters: the extent, r, in units of pixels,
of the tail of the PSF, and the amplitudes of the two Gaussians representing
the tail and the core of the psF, a, and a, respectively, The parameter o
is a measure of the ratio a,r’/a.r?.

Set number r a, d, @
1 523 1.1E-03 1.3E-02 110
2 45.3 1.5E-03 1.7E-02 83
3 40.5 1.9E-03 2.1E-02 66
4 37.0 2.3E-03 2.5E-02 55
5 342 2.7E-03 29E-02 47
6 320 3.0E-03 3.3E-02 41
7 30.2 3.4E-03 3.7E-02 37
8 28.6 3.8E-03 4.2E-02 33
9 27.3 4.1E-03 4.6E-02 30

10 26.1 4.5E-03 S.0E-02 28

which yields a value of 204.82 counts/pixel for m,.,,. For the peak value of the mean
image to be 204.82 counts/pixel as we let the psF vary, the exposure time, or equivalently
the total number of counts, N,, has to be adjusted for each set of images; the resulting
values for N, are given in table 2 along with the corresponding values T for k=1,
Note that, while the total number of counts varies from one set of images to the next,
the contrast of the signal before imaging is held constant across the 10 sets of images.
The contrast of the object after imaging, denoted as C;,, ranges from 5.4% corresponding
to set number 1 to 17% corresponding to set number 10, as shown in table 2.

We can now compute the performance of the ideal, the nlf and the npw ideal
observers by using the values of the psr and the object parameters given in tables 1
and 2 respectively.
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Table 2. Values of the exposure time, T, across the 10 sets of
images as well as the total number of counts, N_,. The contrast
of the signal after imaging through the 10 pSFs is given by C,.

Set number T N Cio(%)
1 666 6.7E06 5.4
2 617 6.2E06 6.8
3 584 5.8E06 8.1
4 562 5.6E06 9.4
5 544 5.4E06 10.7
6 529 5.3E06 12.0
7 517 5.2E06 13.3
8 506 5.1E06 14.6
9 496 5.0E08 15.8

10 487 4 9E(6 17.1

2.3. Experimental methods

To test the correlation in performance between the ideal and the human observer, 10
psychophysical experiments corresponding to the 10 sets of images were designed.
Within each experiment 50 images were generated; 25 images simulated a bright tumour,
located in the centre of the image and superimposed on a smooth background, while
the tumour was absent in the other 25 images. These two kinds of simulated objects
were processed through the image-forming element, p,(r), and uncorrelated Poisson
noise was introduced.

The computer-simulated images were displayed using eight bits of available grey
levels. They were displayed as 128 x 128 pixel arrays using the greylevel-to-brightness
transfer curve shown in figure 2. One image covered 5.5 c¢cm x4.5 cm on the display
and each pixel measured 0.43 x 0.35 mm’. The light in the room was dimmed down to
the same value for all observers. The contrast and brightness levels of the display
monitor were fixed during the study and the observers were not allowed to vary them
to optimize their performance. Each subject viewed the images binocularly at a

300+
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Figure 2. Plot of the measured values of the normalized greylevel-to-brightness transfer curve.
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comfortable distance chosen by the observer, and the observers were required to wear
their usual correction lenses.

Six observers ran the study, each performing the 10 experiments. The observers
first viewed sample images to ascertain the shape, size and location of the object. They
did not have any information on the number of occurrences of the signal. The images
were displayed in a random order and the 10 experiments were also performed in a
randomized order for each observer, On each trial, the observer was presented a single
stimulus, either the signal on a noisy background or a noisy background alone. The
observer was instructed to rate his certainty on a six-point scale (Green and Swets
1966). From the rating-scale data, an rRoC curve was generated for each observer and
each experiment (Swets 1979, Swets and Pickett 1982). Five points on a curve were
obtained by accumulating data across an observer. All statistics describing the data
were derived from non-parametric estimates of the roc curves generated for each
observer and then averaged over all observers (Hanley and McNeil 1982, Metz 1989,
Seeley et al 1982). We used the estimated value of the area under the rRoOC curve to
compute the detectability index, d,, referred to as dy,m.,. While the use of a single
index as a summary of an RocC curve can in some cases lead to misleading data, we
did check in our studies that the rRocC curves were symmetrical by plotting the roc
themselves and also by checking that the ratio of the variances of the two distributions
involved (noise and signal + noise) was approximately unity. This ratio was obtained
directly from the output of the roc analysis on the data.

2.4. Results

The results of the experiments are given in figure 3 where the performance of the
human observer versus the ideal and the nlf ideal observers is plotted. We note first
that the detectability values achieved by the human observer, which we shall denote
as dpuman, range from 0.4 to 3, which correspond to areas under the roC curve of 0.610
and 0.983 respectively. The accuracies of the derived indices, dhumaa, though not
reported on the graph, were estimated from the sample means and variances of the
data. When defined as ratios of standard deviations to the means, the accuracy of
dyuman Was found to be approximately 10% for all experiments. A linear regression
was performed to fit the experimental data values plotted against the theoretical values.
Results show a correlation of the human observer relative to the ideal observer of 0.96
and relative to the nlf ideal observer of 0.98. Despite the high correlation of the data
with both figures of merit, figure 3 shows a strong difference in performance between
the human observer and the ideal observer. We shall quantify this discrepancy by
computing the efficiency in performance of the human observer relative to the two
statistical observers.

By analogy with Barlow’s definition of statistical efficiency, which is defined as the
squared ratio of dyyman (0 diges and which we shall denote n(ideal), we define a
pseudo-efficiency, n(nlf), as the squared ratio of dyyman t0 dyor. The values of n(ideal)
and n(nlf} were computed for each experiment by using the experimental and theoreti-
cal detectability values (Rolland 1990). Despite the fact that the efficiency values,
n(ideal), increased from 0.03 to 0.79% as the tail of the psF decreased from experiment
1 to 10 respectively, an averaged value over the 10 experiments was calculated since
it seems to give some useful measure of human efficiency. We found an average
efficiency, n(ideal), of only 0.3% for the human observer with respect to the ideal
observer. Moreover, the computation of dig., and 4., across the 10 experiments yields
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Figure 3. Plot of the detectabilities achieved by the human observer across the 10 experiments, @m0
{where d,, .., increases from experiment 1 to 10 as the extent of the tail of the ps¥ decreases) versus the
performances of the ideal and the nlf ideal observers referred to as d,j . reica ©N the graph. The respective
values of the correlations, r, and the average (across the 10 experiments) efficiencies, eff, of the human
observer with respect to two statistical observers are also given.

about the same values, although the expressions for dis.., and d,.. given by equations
{13) and (17), respectively are somewhat different. With respect to the nlf ideal observer,
results yield an efficiency of the human observer of 10.8% which is a factor of 36
greater than with respect to the ideal observer.

2.5. Discussion

Such a low average efficiency value (0.3%) of the human observer relative to the ideal
observer across the 10 experiments shows that the ideal observer greatly overestimates
the performance of the human observer. This is also the case with the npw ideal
observer whose performance in this study is equivalent to that of the ideal observer.
The similarity in performance of the ideal and npw ideal observers results from the
fact that the noise, although not white, is uncorrelated.

When compared to the nlf ideal observer, the efficiency of the human observer
becomes 11%. Such a result seems to indicate that the nlf ideal observer better predicts
the performance of the human observer than the ideal observer does.

Since the results of this first study show that the human observer is not using the
information present in the image very efficiently, and that the human observer behaves
more like the nlf ideal observer, the next step is to try to help the human observer by
enhancing the images. We shall thus investigate whether high-pass filtering would be
of any help to the human observer. The main question is whether or not the boost and
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the correlation in the noise induced by high-pass filtering will nullify the advantage
of deconvolution.

3. Study I1: human versus statistical observers after deconvolution

3.1. Theory

We want to filter the images to correct for the degradation resulting when the psr
departs from a sharply peaked function. One can invert the convolution process by
multiplying the Fourier transform of the image by the reciprocal of the Fourier transform
of the psF, provided this Fourier transform is non-zero over the range of frequencies
of interest (Brace\ivell 1986, Goodman 1988). Such an operation is called deconvolution.
If we denote by f,(p) the filter used to deconvolve the images, where the subscript h
specifies the high-pass nature of the filter, we can design the appropriate filter for each
set of images. The general expression for the filters is given by

poAp) _ (reac+ria) exp(—m’p[’rc)
Pi(p) ria exp(—n|p|*r?) +rla exp(—n7|p|'r?)

Inlp)= (28)
where p,(p) is the Fourier transform of the desired zero-tail psr and |p| is the modulus
of the 2p frequency vector p. An inverse Fourier transform is then performed on the
filtered images to take us back in the space domain. The nature of the filtering operation
is high-pass as shown in figure 4, where an example of the four filters designed to
deconvolve the images from set numbers 1, 4, 7 and 10 is given. An example of an
image which was presented to the human observers before deconvolution is shown in
figure 5 on the left-hand side, while the same image after deconvolution is shown on
the right-hand side. While the performances of the ideal and the nlf observers are
unchanged with deconvolution, this is not the case for npw ideal-observer performance,
which is derived in the Appendix.

The experimental protocol was similar to the study before deconvelution. Each
image was displayed using eight bits of greylevels. The images were viewed by the
same six observers using the same certainty scale. Sample images were again displayed
to the observers to clarify the object parameters and location before the study was run.

1204

SET 1
100 3
w 803
o]
> i
- €04 SET 4
a4
-
< 403 SET 7
] I SET 10 Figure 4. Four examples of the filter used in
3 the Fourier domain to deconvolve the images.
20'5 Here we show a 1D plot of the shapes of the
3 filters used with the image set numbers 1, 4, 7
L P . and 10. The filters are rotationally symmetric

S e . e e |
=-0.50 -0.28 =0.00 0.2% 0.50 around the zero frequency, where they take the
CYCLES/PIXELS value 1.
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Figure 5. An example of a computer-simulated
image before deconvolution on the left-hand side
and the same image after deconvolution on the
right-hand side.

3.2. Results

The analysis carried out on the data is equivalent to the analysis performed on the
data of the previous study. We find that the performance of the human observer has
improved due to linear filtering, but is still far below the prediction of the ideal observer,
which is invariant under linear filtering. In fact, the efficiency of the human observer
with respect to the ideal observer is still as low as 0.6% after deconvolution. Such an
efficiency again shows that the ideal observer is a rather poor indicator of human-
observer performance for the problem at hand.

A significant increase in performance of the human observer on the deconvolved
images relative to the nlf ideal observer across the 10 experiments is shown in figure
6. The average efficiency over the 10 experiments of the human observer with respect
to the nlf ideal observer has increased from about 11% before deconvolution to about
20% after deconvolution.

We can also compare this result with the performance that would result from
applying a simple matched filter on the deconvolved images. The results show a good
prediction of the human-observer performance by the npw ideal observer with a
correlation value of 0.99 and an average efficiency of 29%. The performance of the
human observer relative to the nlf and the npw ideal observers is graphed in figure 7.

While only the sample mean of the index, dy, .0, i5 Teported on the graphs, its
accuracy, as defined previously, was also found to be approximately 10% over the 10
experiments,
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r= 099
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Q r = 0.98
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Figure 6. Plot of the detectability values obtained from the psychophysical studies using images before and
after deconvolution versus the detectability values predicted by the nlf ideal observer,
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Figure 7. Plot of the detectability values obtained from the psychophysical studies using deconvolved images
versus the detectability values predicted by the nlf and npw ideal observers referred to as d\,cqreica O the
graph.

3.3. Discussion

The low efficiency of the human observer compared to the ideal observer suggests that
the ideal observer is not a good predictor of human performance, even after deconvol-
ution. The fact that the ideal observer does not predict human performance after
deconvolution is not so surprising if we recall the work of Myers et al (1985). They
found very low efficiencies for the human observer with respect to the ideal observer
when images with negative noise correlations were considered, showing that the human
observer is unable to prewhiten the noise. The negative correlations in the noise resulted
from filtering the images using high-pass filters, which is similar to our study where
we also use the high-pass filters to deconvolve our images. Myers er al accepted the
npw ideal observer as a better figure of merit to predict human-observer performance.
Our results also show a good prediction of human performance using the npw ideal
observer after deconvolution, since the npw observer deteriorates markedly after
deconvolution and approaches human performance more closely. The effect of decon-
volution is to decrease d,,, even though it increases dy,m...- The human appears to
be helped because the deconvolution increases the signal strength within the core of
the psr. The npw observer, on the other hand, could make good use of the tails before
deconvolution, so clustering the energy into the core does not significantly increase
the numerator of the signal-to-noise ratio. The denominator (the noise), on the other
hand, is increased by the deconvolution. The net effect is an overall decrease in d,w.
We shall note that the npw observer after deconvolution is very similar in concept to
the nlf observer although their performances are computed differently.

The increase in performance of the human observer relative to the nlf ideal observer
from 11 to 20% reflects the increase in efficiency of the human observer due to
deconvolution, since the performance of the nlf ideal observer was computed in either
case using equation (14). By construction, the nlf observer was derived to show that
the human observer is not making use of the low frequencies; our results show that
this is indeed the case. One possible explanation for this increase is that the operation
of devonvolution reduces the dynamic range of the images, thus allowing them to be
displayed at higher contrast (Burgess 1988). To prove that deconvolution itself does
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help the human observer, we investigated the contribution of deconvolution to contrast
enhancement apart from the contribution of greyscale mappings. The details of this
investigation have already been reported elsewhere (Rolland et al 1989b, Rolland
1990), and the main result is that, even without displaying the images using the full
scale of available greylevels, deconvolution itself proves to be helpful to the human
observer. We also found further improvement in performance after displaying the
images using eight bits of available greylevels. This improvement, we believe, can be
explained by taking into account the constant internal noise level of the human observer.
It was shown very convincingly in a paper by Ishida ef al (1984) that, although a
windowing technique increases both the signal contrast and the image noise by the
same factor, the relative magnitude of internal noise with respect to the perceived
noise in the image is reduced by image contrast enhancement, and detectability is
therefore improved.

4, Conclusion

The study of the impact of long-tailed psFs on detection of a signal of known location
before deconvolution led to the important result that both the ideal observer and the
npw ideal observer are poor figures of merit for the problem at hand, the efficiencies
taking values of less than 1%. We found that the nif ideal observer seems to better
predict human performance, leading to an average efficiency of 11% over the set of
10 experiments. Such a high discrepancy between the ideal or the npw ideal observers
and the nlf ideal observer seems to indicate that the human observer cannot use the
signal information encoded in the low-frequency component {(s*¢)(r).

We then showed that linear deconvolution does help the human observer in the
detection task, but that the improvement is such that the efficiency of the human
relative to the ideal observer increases only from 0.3 to 0.6%. This small increase
indicates that the ideal observer is certainly not the appropriate figure of merit to
describe the problem of long-tailed psFs, not only before deconvolution but after
deconvolution as well.

We finally showed that, after deconvolution, the human observer yields increased
efficiencies when compared to the performance of both the nlf and the npw ideal
observers; therefore, under the conditions of this experiment, deconvolution really
helps at least the human observer.
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Appendix. Derivation of the detectability of the npw ideal observer after deconvolution

If we define as f,(») the inverse Fourier transform of fh(p) given by equation {28) and
F, the matrix operator associated with f.(#) such that g’ =F,g, the test statistic after
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deconvolution has the form
Apw=b'g’ (A1)

where g’ is the filtered data set and b = H Af with Af being the difference object under
the two hypotheses and H, the system operator associated with p,(#) = p,(F)=f,(r). We
can also write the test statistic as

/\npw = thhg = atg (AZ)
where a is given by
a'=(H, AN'F,. (A3)

In the case of our two-hypothesis detection task, Af is simply the signal s to be detected,
and equation (A2} yields

Anpw = s'HAF 2. (Ad)
The detectability index, d,,., is given by the ratio of AX,,,,W to o, ., with
Ahkupu = (upul Ha) = (Ao HY)
= s'H3F((g| Hy) — (8| H.)}
=s'HiF,AF (AS5)
A npw = npul H2D* Hz) + ((hpw = (Aapul HD) T H D]
([s"H:F (g = 2:) 1) +([s'H5F (g — 2017}

2
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npw
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I

1 [s'H3F((g — £) (8 — &) (FLH.s)]

[N g 1N

s'HSFLK FLH,s (A6)

1

1
2
k

where K, is the unfiltered noise covariance matrix for class k. For the case of uncorre-
lated Poisson noise, and in the low-contrast approximation, equation (A6) yields

ainpw = s'HLF.KF: H,s (A7)
and the detectability index, 4., becomes
df,pw = (s‘HéFhAg)z/s‘H SFLKFLH, s

- (z_ LY () HaliJ) Full kmg(k))

X (Z Z%‘;Z 2 s(DHL(i, jYFu(j, k) K (k, D F (L, m)Ho(m, n)S(H))

i
-1

- (zzg s()Hali, ) Foli, k) Ag(k)) (; A(k)g,(k)A(k))

-1

= (g A(k) Ag(k))z(g (A(k))z'l(k)) (A8)

where A(k) is given by
A(K) =T ¥ s(i) Hai, ol k). (A9)
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We can write d,,,, as a continuous integral in the space domain by taking the limit of
the sum when the area of the sampling element tends to zero and by undoing the
lexicographic ordering to transform the 1D sums into 2D integrals. The result is

2 -1
dﬁpw=(J der(r)AE(r)) (J dzr(A(r))ZE.(r))

=[(ag(r)* A(P)O/[&(r)* (A(1))°)0) {A10)

where {0) means that the convolution is evaluated at zero shift. Once d,,,., is expressed
as a ratio of convolution operations, it is straightforward to evaluate both the numerator
and the denominator in the Fourier domain, a convolution in space domain being
transformed into a simple product in Fourier domain.

Résumé

Observateur idéal contre observateur humain pour les fonctions de dispersion ponctuelles présentant une
gqueue de distribution: apport de la déconvolution.

L'observateur idéal représente une approche Bayesienne pour la réalisation des épreuves de détection.
Depuis que de telles épreuves sont fréquemment utilisées comme des épreuves prototypes pour les systémes
d’imagerie radiclogique, la détectabilité mesurée a la sortie d'un détecteur idéal peut &tre utilisée comme
figure de mérite pour caractériser le systéme d’imagerie. Pour que 1a détectabilité évaluée par un observateur
idéal présente une bonne figure de mérite, il faut pouvoir évaluer la capacité d'un observateur humain a
réaliser la méme épreuve de détection. La plupart des systémes d'imagerie médicale se caractérisent par des
fonctions de dispersion ponctuelies (PSFs) présentant des queues de distribution importantes. L'allure des
ces PSFs peut étre due 4 la pénétration septale des collimateurs, 4 la diffusion (‘veiling glare') dans les
intensificateurs de luminance, ou au rayonnement diffusé par le patient. Les auteurs ont étudié I'effet de ce
type de PSF sur la détection d'un signal visuel par up observateur humain afin de voir si une quelcongue
amélioration pouvait étre espérée en réalisant la déconvolution des queues de distribution, Dans le cas d'un
observateur idéal, on montre clairement que les performances sont indépendantes d'une déconvolution par
filtrage linéaire et réversible. Leurs études psychophysiques montrent cependant que les performances d'un
observateur humain sont vraiment améliorées par la déconvolution. L'observateur idéal ne peut pas ainsi
étre considéré comme un bon indice prédictif des performances d'un observateur humain dans le cas de la
détection d'un signal fourni par un systéme d'imagerie caractérisé par des psF présentant des queues de
distribution. lls fournissent plusieurs explications & des désaccords, s'appuyant sur quelques caractéristiques
du processus visual et suggérent des normes de comparaison, dans le cas d’un observateur humain, prenant
en compte ces caractéristiques. L'observation des performances d'un observateur idéal ‘non-prewhitening’
(NPW), avant et aprés déconvolution, donne également un bon apergu de cette étude.

Zusammenfassung

Idealer Becbachter im Gegensatz zum menschlichen Beobachter bei flach abfallenden Punktbilder: ist
Dekonvolution hilfreich?

Der ideale Beonachter bedeutet einen Bayesschen Ansatz zur Durchfihrung von Nachweisaufgaben. Da
solche Aufgaben meist von grundlegender Bedeutung bei radiologischen Abbildungssystemen sind, kann
der Grad der Nachweisbarkeit am Ausgang eines idealen Detektors als charakterische Grife des Abbil.
dungssystems verwendet werden. Damit der Grad der Nachweisbarkeit, den ein ideaier Beobachter erreicht,
der Bedeutung als charakterische GroBe gerecht wird, mufl die Fahigkeit eines menschiichen Beobachters
die gleiche Nachweisaufgabe durchzufiihren, vorhergesagt werden kdnnen. Von groBem allgemeinen Inter-
esse, vor allem im medizinischen Bereich, sind Abbildungssysteme mit flach abfallenden Punktbilder (PsF).
Solche psF kdnnen auftreten durch Penetration der Septen von Kollimatoren, durch Uberblendung bei
Bildverstiirkern oder durch Streustrahlung im korper. Untersucht wurde der EinfluB, den die PSF auf das
menschliche visuelle Nachweisvermdgen hat und ob eine Verbesserung der Leistungsf@nigkeit erreicht
werden kann durch Dekonvolution des flachen Teils der psF. Fiir den idealen Beobachter ist leicht zu zeigen,
daB die Leistungsfahigkeit unabhingig ist von jedem linearen, invertierbaren Dekonvolutionsfilter. Psycho-
physikalische Untersuchungen zeigen jedoch, daf3 die Leistungsfihigkeit des menschlichen Beobachters
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tatsdchlich durch Dekonvolution verbessert werden kann. Deshalb ist der ideale Beobachter nicht geeignet
zur Vorhersage der Fihigkeit des menschlichen Beobachters zur Feststellung eines Signals, das durch eine
flach abfallende psF abgebildet wird. Diese Unterschiede werden erklirt durch bestimmte Eigenschaften
des visuellen Vorgangs und ein Vergleichsstandard wird fiir den menschlichen Beobachter vergeschlagen,
der diese Eigenschaften beriicksichtigt. Die Leistungsfihigkeit des idealen Beobachters, vor und nach der
Dekonvolution wird ebenfalls untersucht.
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