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Abstract

The use of linear discriminant functions, and particularly a discriminant: function derived from
the work of Harold Hotelling, as a means of assessing image quality is reviewed. The relevant theory
of idea] or Bayesian observers is briefly reviewed, and the circumstances under which this observer
reduces 1o a linear discriminant are discussed. The Hotelling oberver is suggested as a linear discr.mi-
nant in more general circumstances where the ideal observer is nonlinear and ususally very diffic.: 1
calculate. Methods of calculation of the Hotelling discriminant and the associated figure of merit, the
Hotelling trace, are discussed. Psychophysical studies carried out at the University of Arizona to fest the
predictive value of the Hotelling observer are reviewed, and it is concluded that the Hotelling model is
quite useful as a predictive ool unless there are high-pass noise correlations introduced by post-process-
ing of the images. In that case, we sugyest that the Hotelling observer be modified to include spatial-
frequency-selective channels analogous to those in the visual system.
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1. INTRODUCTION

A general definition of image quality has proven to be an elusive goal. Indeed,
in the image-processing literature, image assessment is most often purely subjective,
and no objective definition of quality is even attempted. The radiology literature is
somewhat more sophisticated in this respect; image quality is usually defined there in
terms of how well some observer can perform some task of diagnostic interest. The
difficulty in that case is in choosing a task and an observer.

By far the most common observer of real radiographic images is the physician,
though there is also considerable interest in automated or machine observers. For the
human observer, task performance can be measured by psychophysical studies. If the
task is binary (i.e., the observer has only two possible choices), the results of such
studies can be analyzed by use of ROC (receiver operating characteristic) curves. A
common figure of merit for image quality is thus the area under the ROC curve
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(AUC) or the associated detectability index d’ or d,.

Though psychophysical studies and ROC analysis satisfy our requirement for a
rigorous definition of image guality, there are still many problems in practice. The
studies are time consuming and expensive, especially if the observers are physicians or
f real clinical images are used. Moreover, the results are too specific to answer many
;juestions of practical importance. An ROC study can give a definitive comparison of
rwo imaging systems for one particular disease entity and one set of engineering par-
ameters for each system, but it says nothing about how either system would perform
with other parameters or for other diseases.

For these reasons, there is considerable ‘interest in the use of model observers
for which the performance indices such as AUC can be calculated rather than mea-
sured. If we had a model observer whose performance correlated well with that of the
human, we could use it to study the effects of variation of task or system parameters.
Such a tool would be extremely valuable for optimizing and effectively using radio-
graphic imaging systems.

The most widely investigated model observer is the ideal or Bayesian observer,
defined as one who has full statistical knowledge of the task and who makes best use
of that knowledge to minimize a suitably defined risk. The strategy of the ideal
observer for a binary task is to calculate a test statistic called the likelihood ratio and
to compare it to a threshold in order to decide between the two alternatives; this stra-
tegy maximizes the AUC, The performance of the ideal observer sets an upper limit
to the performance obtainable by any observer, including the human, and it might be
hoped that a system optimized for the ideal observer would also be optimized for the
human.

Though this approach seems reasonable, significant problems are encountered in
practice. Most importantly, the likelihood ratio is only rarely calculable. Indeed,
almost all investigations of the ideal observer have concentrated on detection of an
exactly specified signal (or perhaps discrimination of two exactly known signals) super-
imposed on an exactly known background. We refer to such situations as SKE/BKE
(signal known exactly, background known exactly). The SKE/BKE paradigm is obvi-
ously quite different from clinical radiclogy where, even for simple lesion-detection
tasks, the background is cluttered with normal anatomic structures and the lesion to be
detected is highly variable in size, location, shape and contrast.

The reason for the concentration on SKE/BKE tasks is that the likelihood ratio
in that case can be calculated by simple linear filtering. For detection of a known
signal on a flat background, where the only randomness is measurement noise that can
be modeled as a stationary, white, Gaussian random process, the likelihood ratio is the
output of a matched filter. If the noise is stationary and Gaussian but not white, the
likelihood ratio is calculated by a so-called prewhitening matched filter.

. Even in the SKE/BKE case, the performance of an ideal observer can be very
different from that of a human observer. For example, Myers et al. {1985) found that
human performance relative to the ideal was dramatically degraded by certain kinds of
noise correlations. One interpretation of this result, and of similar results by other
authors, is that the human observer is incapable of performing the prewhitening oper-
ation. This interpretation has led to the suggestion that the correct model for predict-
ing human performance is the quasi-ideal or non-prewhitening {(NPW) ideal observer
who uses a simple matched filter, even in the presence of colored noise, to derive a
test statistic. Though this test statistic is inferior to the optimum test statistic (the like-
lihood ratio), it does have the virtue of correctly predicting human performance in a
range of SKE/BKE tasks.

Unfortunately, as we shall see in Section IV, the NPW model can yield very
poor correlation with the human if there is inherent randomness in the task. Further-
more, the ideal observer is usually not an option except for SKE/BKE since the like-
lihood ratio is impossible to calculate. We must therefore look for other observer
models that remain calculable for a wide variety of realistic tasks yet correlate well
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with the human observer.

These problems have led us to consider various linear discriminant functions,
where the test statistic is a linear function of the data, as potentiali observer models. It
is our hope that a suitable linear model will be found that will be computationally
tractable for a wide variety of realistic tasks and will also be a good predictor of
human performance as measured by RCC.

‘We have given particular attention to the optimum linear discriminant, which is
often ascribed to Fisher (1936) but which had its origins in a classic paper by Hotel-
ling (1931). We therefore refer to this observer model as the Hotelling observer.

It is the goal of this paper to survey efforts at the University of Arizona to de-
termine the usefulness of linear discriminant models, and especially the Hotelling
model, as tools for the assessment and optimization of imaging systems.

2. MATHEMATICAL BACKGROUND
2.1. Problem Statement

A digital image consisting of M pixels can be represented as an Mx1 column
vector g. This vector is related to the object being imaged, denoted f, by a relation of
the form

g=Hf + n, (n

where n is a vector representing the measurement noise and H is an operator repre-
senting the imaging system, including any processing or reconstruction steps. If we
consider only linear imaging systems and represent the object f in discrete form as an
Nx1 ¢column vector, then H is an MxN matrix. More generally, however, H can be a
nenlinear operator, especially if a reconstruction algorithm is included, and f can rep-
resent a continuous object. There is no loss of generality in writing the noise as an
additive term, even in the nonlinear case, provided the statistics of n take into account
the statistics of [ as well as the nature of H.

Note that g is a random vector, both because of the measurement noise and also
because many different objects f will be imaged. We shall consider both sources of
randomness in what follows, though only the measurement noise is present in
SKE/BKE problems.

We assume that the task of interest is to observe a particular image g and use it
to classify the corresponding f that produced the image into one of K classes. The
simplest case is the binary task where K = 2 {(e.g. normal vs. abnormal or lesion-
present vs. lesion-absent}. A general discriminant function for this binary task is a
scalar test statistic A(g). The classification is performed by comparing this test statistic
to a threshold A; if Mg) > A, f is said to belong to class 1, while otherwise it is clas-
sified into class 2. The theory of discriminant functions is concerned with finding the
best functional form for Mg) and with assessing the accuracy of the classification pro-
cedure. If Mg) is a linear function of g, it is referred to as a linear discriminant.

2.2. Ideal Observers and Maiched Filters
One theoretical route that yields a linear discriminant is to assume an ideal

observer and to model the noise n as a Gaussian random process. In general, the test
statistic used by the ideal observer is the likelihood ratio, defined by

Aideal = g%g%‘% . 2)

where p(g| k) 15 the probability density of g given that it was produced by an cbject in
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class k {(k = 1 or 2). This test statistic is usually very difficult to determine and a
highly nonlinear function of g. In the special case where p(g| k) is a multivariate
normal probability density function, with the same covariance matrix K for both
classes, Ajgeal 1S 8iven by the so-called prewhitening matched filter:

Aow(g) = [ - B 1)K 1g, (3)

where E, is the mean image for class k, and the superscript t denotes a matrix tran-
spose. (Hence, if a and b are two vectors, a'b denotes their scalar product.) This test
statistic Apw. which is clearly a linear function of g, can be calculated for each image
if g, and g and the common covariance matrix K are known. As an aside, if we
model the noise as a Gaussian random process but with different covariance matrices
for the two classes, the likelihood ratio turns cut to be a quadratic function of g.

The model that led to Eq. (3) is very restrictive, and it is not obvious whether
it is applicable to real radiographic images. One situation in which it is applicable is
simple signal detection where the object consists of a flat background on which some
weak signal can be superimposed. If the object is a gamma-ray emitter and we image
it through a pinhole or collimator, the measurement noise is rigorously Poisson, but
we can usually approximate the Poisson law by a Gaussian. If there is some linear
post-processing filter, the Gaussian noise remains Gaussian but it becomes correlated.
This is precisely the situation for which Eg. (3) describes the likelihood ratio, with
B> - E| being the image of the signal to be detected, so in this case the prewhitening
matched filter is indeed ideal.

Unfortunately, even in this simple situation, the prewhitening matched filter is
not a good model for the human. There is considerable evidence, reviewed in Section
IV, that shows that the human cannot perform the prewhitening operation. A better
model for SKE/BKE signal-detection problems might be the non-prewhitening (NPW)
matched filter where the test statistic is given by

AnpwiB) = (B - Bil's . (4)

This form, which differs from Eq. (3) only by deletion of K-t, has a simple-physical
interpretation. For signal detection, the expected difference signal g, - g, is an image
of the signal to be detected, so the observer simply lays a template of this signal image
over the image g and integrates; the integral of the product of gy - §; and g is then
the test statistic.

2.3. Scatter Matrices

If the object [ is regarded as a random variable, the probability densities p{g|k)
that enter into the likelihood ratio must take into account the variability of f as well as
the measurement noise n. Even though Poisson noise can be modelled as Gaussian, it
is highly unlikely that a multivariate Gaussian law would adequately describe realistic
medical objects f. The true densities are very difficuit to determine, and even if they
could be found, the likelihood ratio would be a nonlinear function of g, making the
performance of the ideal observer difficult to analyze.

For these reasons, we consider test statistics A(g) that are constrained from the
outset to be linear. To define these test statistics and analyze their performance, we
describe the first- and second-order statistics of g by use of two “scatter matrices" S,
and S,. The interclass scatter matrix §;, which measures how far the class means for
the data values deviate from their grand mean g, is defined as
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K
S = ) Pyl E-E) @) (5)
k=1

where K is the number of classes {two in the binary problem), Py is the probability of
occurrence of class k, gy is the class mean for the kth clags (where the overbar
denotes an ensemble average that accounts for the variability in f as well as n), and
the grand mean is given by

K
B~ Py (6)
k=1

The intraclass scatter matrix S, is the average covariance matrix, given by
K
S22 ) Py, 0
k=1

where the kit class covariance matrix is given by
Ky = (8-8) 88" | (®)

where the angular brackets have the same meaning as the overbar, a full ensemble
average over all objects f in class k and all realizations of n.

If there are M pixels in the image, both S; and §; are MxM matrices. Since S,
represents an ensemble covariance matrix, it will usually also have rank M. The rank
of §;, on the other hand is much less than M, in fact just K-1, where K is the
number of classes (Fiete et al., 1987). Thus, for a two-class problem, §; has rank
one, and it can be written as a single outer product:

Sy = PyPy(E2-8) E2-E)' = xx", )
where
x = VP Py(E3-8y) . (10)

2.4. Optimum Linear Discriminants

The first step in using the scatter matrices §; and S, to form a linear discrimi-
nant is to solve the eigenvalue problem;

Sy718; up = wpu, . p=1..M, (1n
where u, is an Mx! column eigenvector and y, is its associated eigenvalue. Since §
has rank K-1, as noted above, there are just K-1 nonzero values of uj,. Each of the

eigenvectors up, corresponding to nonzero j, can then be used to form a linear feature
given by

hp(g) = up‘g . p=1.K-I (12)
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The hyperplanes Ay (g) = C,, where the C, are constants, then partition the g
space into K disjoint regions corresponding to the K classes. One common choice of
the constants leads to the following decision rule: Choose the class k for which

K-1
Z[upl(g - B = min . (13)
p=!

In other words, the class chosen by this rule is the one for which the image being
tested is closest to the class mean, where distance is measured in the eigenvector basis
as indicated in Eq. (13). Other choices for the constants Cp lead to other decision
rules, but all of them are based on partitioning the g space with some set of hyper-
planes, so in this sense all are linear discriminants,

The situation is much simpler in the two-class problem, for which there is only
one A, (g), and we therefore drop the index p- In that case, an explicit solution to the
eigenvalue equation is given by

u=S,-lx " (14
p=xt8,-lx . | (1%

Direct substitution of Egs. (14) and (15} into Eq. (11) will verify that the u and g
given by these equations are indeed an eigenvector and eigenvalue, respectively, of
sfls,. The decision rule is then to compute Mg) = utg and compare it to a thresh-
old C; class 1 is chosen if Mg)>C and class ? if A(g)<C.

It is interesting to compare the Hotelling test statistic x!8;-1g to the prewhiten-
ing matched filter given in Eq. (3), which can be written as xtK-lg. The difference is
that the noise covariance matrix K has been replaced by the more general weighted
covariance matrix S,. Thus if the only source of variability in g is additive Gaussian
noise, the Hotelling observer is the same as the ideal observer. More generally, the
ideal observer uses a test statistic that is nonlinear in g, and the Hotelling test statistic
is a linear approximation to it

2.5. Performance Measures

A common and important measure of task performance for binary decisions is
the detectability index d,, defined by

2 . EAE2) - EM[ N2
dy Pyvar(i(g)| 1) + Pyvar(Mg)| 2) * (1
where EQMg)| k) is the conditional mean of the test statistic A(g) given that £ comes
from class k, while var(\g)l k) is the corresponding conditional variance. It is well
known that, if A(g) is Gaussian, d, is related to the area under the ROC cuyve by

AUC = 4 L et [951] | (17

where erf( ) is the error function.

Although d, is an accepted index of performance in binary classification tasks, it
is not readily extended to- tasks with more than two alternatives. For such tasks a
possible performance metric is the Hotelling trace J, defined by
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J = tI'(Sz'IS]) . (18)

where tr denotes the trace (sum of the diagonal elements) of the matrix. Since the
trace is a scalar invariant, it can be calculated in a representation where the matrix is
diagonal, and hence tr{A) is the sum of the eigenvalues of A. For the case at hand,
we already know that $,-!8; has only K-1 nonzero eigenvalues, so the trace is a sum
of K-1 terms. For K=2, tr(S5-18,) is just the u given in Eq. (I5).

The Hoteiling trace is an intuitively appealing figure of merit for classification
performance. It is a single scalar, so it can be used for system optimization. It in-
creases if the systemn is modified in such a way that the class means become more
widely separated, increasing the norm of the vectors that constitute S{, and it also in-
creases if the variability in the image due to noise or other factors is decreased, since
that corresponds to reducing the covariance terms that go into 8, and hence in a
sense increasing S;-1. ‘

Moreover, in the two-class problem with Gaussian assumptions, J is given by

J = P,P5[d, (Hon]? , (19)

so optimizing a system for maximum J is equivalent to optimizing the d, or AUC for
an observer that uses the Hotelling feature operator u to form a test statistic.

2.6. The NPW Observer

For later reference, we give the expression for the d, index for the NPW
observer in terms of ) and S;. As shown by Barrett (1990), we have

2 [tr (S )]2
[d, (NPW)] _LPle S - (20)

3. COMPUTATIONAL METHODS
3.1. Image Modelling and Training Sets

One scheme we have used for implementing the Hetelling observer is to begin
with a realistic three-dimensional mathematical model of some Organ or organ system,
allowing variability in both normal anatomy and in the nature and placement of
lesions or other pathology (Cargill, 1989). This model is then used to create training
sets of objects in two or more classes (normal and abnormal! classes in the simplest
case), and these simulated objects are used with an accurate model of the imaging
system to create training sets of images. Ideally, these images would be indistinguish-
able from ones obtained with real clinical objects and physical imaging systems; the
model developed by Cargill (1989) is very close to this ideal in the case of radiocolloid
imaging of the reticuloendothelial system (liver, spleen and spinal bone marrow).
Further work will be needed for other organ systems.

Given a training set of images created this way, a straightforward attempt to
implement the Hotelling prescription would be to estimate the ensemble scatter mat-
rices S| and S, from the training set, denoting the estimated matrices by s and s,
and then try to form J-1r; by usual matrix manipulations; this method fails badly.
One problem is that the matrices are huge. If the images are 64x64, then | and Sy
are each 4096x4096. Furthermore, if the number of images in the training set is less
than 4096, 5~ does not exist.

Fiete et al. (1987) have described a way to avoid the singularity of 5 in some
cases. The trick is to take advantage of the fact that we can generate noise-free images
in simulation studies. We can exprass S, rigorously as the sum of two matrices:
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Sz = Sznf + Cn . (21)

where 8300 is the S, that would result from noise-free images, and C, is the covari-
ance matrix of m. Using noise-free simulated images, we can get an estimate of §,nl
which we shall denote as S0 Furthermore, C, can often be modelled theoreticalty.
For example, if we consider pinhole or collimator imaging, the noise is Poisson and
C, is a diagonal matrix with diagonal elements given by the mean values of each pixel
in g. These mean values can be estimated rather accurately from the noise-free train-
ing set, so we also have an estimate &y of C,. Combining these two estimates, we get
our final estimate for Sy, namely

Since the second term in J3 is full rank and both terms are non-negative defin-
ite, the inverse now exists, but it is still may not be practical to calculate it directly.
Instead, we now take advantage of the fact that we do not need to know Sl com-
pletely; rather, we need only to find its dominant eigenvectors and eigenvalues.
Furthermore, J, like 8y, has rank K-1, where K is the number of classes, so for a

two-class problem we have to find only a single eigenvector and cigenvalue. The eig-

ates the scalar test statistic. The Hotelling trace can then be readily calculated, and its
variation with any number of engineering parameters can be efficiently studied,

3.1. Region of Interest

One way to ensure that S5 is full rank is to have more images in the training
set than pixels in one image. While this is difficult for even 64x64 images, it may be

S,, but the spread should certainly be less than the full size of the image. Thus it
may be possible to choose g small region that encompasses S;-lg yet containg fewer
pixels than the number of training images. An experimental approach to choosing the
region size would be to start with the very small region defined by S| and to gradu-
ally increase it, estimating J at each region size. If the estimate of J approaches a con-
stant before the number of pixels in the region exceeds the number of images, that
constant value can reasonably be taken as a good estimate of the ensemble J.

3.3. Effects of Location Uncertainty
One objection to the method just described might be that the use of a fixed

lesion location is unrealistic. A simple calculation will show, however, that this re-
striction is really not very severe. Suppose that the task is to detect a smail lesion
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that might be in one of L nonoverlapping locations. From Eq. (9}, §; is (within a
constant} just the outer product of §,-g; with itself. Let sy denote the mean differ-
ence signal §5-§; when the lesion is in the fth location. Since the lesion locations do
not overlap, we can write

L L
P;Py
SI = —IE_‘TZ'ZS‘SII - ]_-LZ—ZS“ ’ (23)
=1 =1

where 8, is the S; matrix that would result from a lesion in the £h location alone.
I we assume that the lesion is weak and does not significantly affect the noise level in
the image, the class covariance matrices Ky are approximately equal, and §; = K; =
K,. Thus 8, is approximately independent of the lesion location, and we have

L
J = tr(S,-18)) = —le-ztr(sz-!s,,) : (24)
B l'].

which, if all locations are statistically equivalent, is just 1/L times the value of J for
the fixed-location case. Thus, if we are comparing two imaging systems, the one that
gives the higher J for detection of a lesion in a fixed location will also give the higher
J for detection of the same lesion in one of L nonoverlapping locations; the absolute J
value will be reduced by 1/L, but the rank ordering of the systems will be preserved.

3.4. Pseudoinverses

While o5 may not have an inverse, it always has a unique Moore-Penrose
pseudoinverse, which we shall denote by 3*. Thus a rather obvious way to estimate
J is by

F = tr[J‘2+J'1] . (25)

This estimate of J has several nice properties, though space does not permit a full
exposition here. First, note that J5, being a weighted sum of covariance matrices,
may be defined in one of two ways. The unbiased estimate of the ensemble §, is
given by

K N
Sy = _1__ Py [#ka = & kilskn = k1 (26)
N-1
k=1 =l

where N is the number of training images per class, gy, iS the nth training image
from the k'h class, and 4 is the sample mean image for the k' class. The alterna-
tive definition of 5 uses I/N in place of 1/(N-1) in this equation, resulting in a small
bias but yielding a maximum-likelihood estimate of S;. It will be shown in a subse-
quent paper that # using the 1/N definition of S; is a maximum-likelihood estimate
of J, while the 1/(N-1) definition leads to a minimum-variance estimate. In practice,
N is relatively large, so these two estimates will not differ appreciably.

‘One might think that actual calculation of o3+ would be an enormous computa-
tional task, since /5 is a 4096x4096 matrix for 64x64 images. In fact, however, it suf-
fices to work with a KNxKN matrix. In most of our work, we take K=2 and N=32, so
all that is required is a singular-value decomposition of a 64x64 matrix, an eminently
feasible task. Again, details will be published separately.
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3.5. Stationary Background Models

Another way to reduce the computational burden is to assume spatial stationar-
ity for the image statistics, To see the advantage of this assumption, consider first
one-dimensional images. In that case, the covariance matrices are Toeplitz and usually
approximately circulant. This means that knowledge of one row or column of the
maltrix is sufficient to specify the full matrix, greatly reducing the number of indepen-
dent parameters we must determine. Moreover, a circulant matrix can be diagonalized
by means of a discrete Fourier transform, and the resulting diagonal elements are
samples of the power spectral density. Thus knowledge of the power spectrum for
each class yields the covariance muatrices and hence S, and S;-1, with the latter guar-
anteed to exist unless all of the class power spectra vanish identically at some spatial
frequency.

The situation in two spatial dimensions is more cumbersome, but the same basic
conclusions hold. The covariance matrices are block-Toeplitz and approximately
block-circulant, so they can be diagonalized by a 2D discrete Fourier transform. In
both 1D and 2D, calculation of tr(Sz‘lsl) reduces to performing an integral over the
Fourier domain (Barrett et al., 1989; Myers et al., 1990).

4. EXPERIMENTAL RESULTS
4.1. Initial Studies Using Training Sets

As an initial test of the use of the Hotelling trace as a quality metric, we created
a simple two~dimensional phantom of random, overlapping ellipses, roughly represent-
ing a liver (Fiete at al., 1987). The task was to detect a small cold lesion of random
size, shape and contrast.  The images were blurred with Gaussian blur functions of
different widths, and Gaussian noise of various amplitudes was added; 32 normal and
32 abnormal images were generated for each combination of blur width and noise
level. Each of these images was presented to 10 human observers, who were asked to
use a six-point rating scale to specify how certain they were that a lesion was present.
These data were analyzed to produce ROC curves from which values of the index d,
were computed for each value of noise and blur.

The Hotelling test statistic was calculated by use of Eq. (22), with &, just being
a constant times the unit matrix, and the Hotelling feature operator was found by an
iterative search algorithm. This feature operator was then used to construct ROC
curves for the ‘Hotelling observer and to compute d,. A remarkable correlation
(r=0.99) between Hotelling and human d, values was found.

4.2. Collimator Optimization

Later, a more realistic extension of this study was performed, with the objective
of determining the optimal collimator to use in planar radiocolloid imaging of the liver
{Fiete et al., 1987; White et al., 1989). In this study, three-dimensional mathematical
phantoms (Cargill, 1989) of the reticuloendothelial system were generated to model a
healthy class, while another group of mathematical phantoms with elliptical cold
regions in the liver simulated a diseased class. Images of these objects through 24
parallel-hole collimators with various bore diameters (D, = 1 mm to 7 mm) and bore
lengths (L, = 1 cm to 11 cm) were calculated, taking into account the attenuation and
scatter in the body, spatial resolution due to the collimator and camera, and Poisson
noise. The Hotelling trace J was calculated from these images for each collimator. As
in the initial Fiete study, Eq. (22) formed the basis for the calculation, but this time &,
was derived from a Poisson noise model, so it was diagonal but not a multiple of the
unit matrix.

Each liver was imaged through each collimator for two different lengths of time.
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For a short imaging time, the best collimator had bore diameter of | mm and bore
length of 1 cm. At a longer {and more reasonable) imaging time, the best collimator
had a higher resolution and was slightly more efficient (D, = 3 mm, Ly = 5 cm).
Some typical images for the shorter time and the corresponding J values are given in
Figure 1. :

It is interesting to note that the ultra-high-resolution long-bore collimators per-
formed poorest in both of these cases. An auxiliary study to chart the variations of J
as a function of imaging time for a few of the collimators found that the long-bore
collimators did indeed perform better than the others, but at such long imaging times
{or high doses) as to be prohibitive for clinical studies. A psychophysical study to
corroborate the conciusions of this theoretical investigation has also been performed,
and again a good correlation between human and Hotelling performance was found
{r=0.83).

4.3 Algorithm Optimization

Gooley has investigated a number of statistical image reconstruction algorithms
for use with a coded-aperture cardiac SPECT imager. Among the methods studied
were maximum likelihood techniques, including both the popular expectation-maximi-
zation (EM) algorithm and a Monte Carlo search routine. Other algorithms inctuded
various kinds of prior information through the specification of a prior probability
density or hard constraints on the object (or class of objects) to be reconstructed.

The objects used in this study were ellipses representing a left-ventricular cross-
section at end systole. The abnormalities to be detected were akinetic wall segments
represented as small protrusions of the upper surface of the ellipses. The objects,
both normal and abnormal, were taken to be binary, i.e., each pixel was constrained
to take on one of two distinct values. This assumption is reasonable in first-pass
cardiac studies where a pixel either contains a uniform amount of the injected radio-
pharmaceutical or it contains none of the radiopharmaceutical. Some algorithms made
use of this information while others did not.

Gooley has completed a psychophysical study of the images from a total of 16
algorithms and obtained d, values for the human observer for each algorithm. Efforts
to compare these psychophysical data with d,(Hot) and d,(NPW) are in progress at
this writing. Preliminary results indicate that the psychophysical results do not corre-
late well with d,(NPW).

4.4. Effects of Noise Correlation in an SKE/BKE Task

Myers et al. (1985) studied the performance of human and ideal observers for
detection of a nonrandom disk signal superimposed on a spatially uniform, nonrandom
background. The object was imaged through an aperture having a point spread func-
tion py(r), and Poisson noise was added to the resulting blurred image. A deblurring -
filter with PSF p,(r) was then used to partially compensate the blur due to the aper-
ture.

The main variable in this study was the aperture PSF p,(r). The PSF of the
deblurring filter was adjusted so that all imaging systems considered had the same final
point spread function, p;(r)+py(r) (where * denotes convolution), regardless of the
form of py(r). Four different functional forms were used for p;(r}; each was a low-
pass filter but there were different rates of falloff in the frequency domain. Therefore,
the corresponding deblurring filters py{(r), required to hold p;{r)}+p,(r) constant, had
four different rates of high-frequency boost. Normally, increased high-frequency
boost would increase the noise level in the images, but in this study the exposure time
was also varied in such a way as to keep the performance of the ideal observer con-
stant. Thus all images had the same overall point spread function and the same ideal-
observer detectability performance; the only difference was in the noise correlation



*25e1] ZulTI23CH Pe3IE[NOTED 3yl $330USP [ PUR ‘@) g JO 3JUBISIP ® IB WD UT MOTINTOSRI sazousp ¥ ‘AousIoTIIe

sgjousp *33d -sodewT 8yl ST I9pIo smwes oyl ur paduexie ‘13aT Syl 3T saSemT oYl 23wAuad 03 PISN SIoIRWITIOD YL JO
sislaweled :IYBTY “UOTSAT PTOd ® paureijucd ‘8indrj STIYI UT pasn suo 33 Buypnjour ‘swojueyd ayz yo jrey ‘poieiousd
2ABY Sm eyl (SI0leWIT(o0 4z ‘swmolueyd »g) ssfewr 9gg T jo TRI0} 2 Jo Burisysuod 395 9%avy ® Jo saTipjussaidai aie
s9femr 231 “SIOJPWITTOD JUBIBIFIP #7 YSnoiyl wojueyd I9AI] [eOTIPWRYIBN (f B jo SafewT peleTnur§ :1yoq T =anftg

469

£PE o=l £vLo=f #1L°0=[ TYeo=f
10 1=4 TL0=d £ 0=d #170=4 o1t
p-01XST=33T [ p-0EXCT=0T | c.01XLy=13T | o 01XT'§="1d
£18°0=f [L8°0=r ZIg'0=t 127 0=f
=4 6L0=4 8P’ 0=d 910=¥ | 0%
p-OIX§E=HT ] p0I¥6T=HT | c-0IX69="HT | g-00xLL=331
£z80=1 LZ6°0=f LT60=[ 8£5°0=f -
97 1=Y 06'0=4 S 0= 610=d o.ﬁm
F-0EXEO=3T | p0DXTERHE | p-0IXT 1= | -01¥E =15 ]
&
Z
LOLO=F £L8°0=f vEOT=( 9L O=I m
+$ 1=4 U=y 99°6=4 wWo=d | 05
c-OIXTI=HT | p-0TXC9=1T | p-0X€T=p3T | c_01%¢7=1)3 m
LFS0=f 892°0=1 180°T=f £86°0=f
617=4 LS 1=y P6'0=4 1£0=d | o¢
-0PpE=Ra | 01X | p-0IXE9=1T | c_0TX69=11T
SIE0=T 1Sy 0=i 209°0=r LY T=f
spe=o 68't=d peT=d wo=d | ot
-OIXUE=3T | 01X =0T | g-01X0C=1T {40100 3d
Lo <0 €0 10

(w2) YILIWVIA THOE




470

structure.

Since the task was SKE/BKE, the ideal observer and the Hotelling observer for
this study were identical, and both were implemented by means of the prewhitening
matched filter as specified in Eq. (3). The psychophysical study, on the other hand,
revealed that the performance of the human observer was greatly degraded when there
was a strong high-pass character to the noise, The ideal/Hotelling observer failed
completely to predict the influence of noise correlations on human performance. The
NPW model, on the other hand, accurately described the psychophysical data.

A later theoretical investigation by Myers and Barrett (1987) found an alternative
model that also explained the psychophysical data of Myers et al. (1985). These
authors considered the effects of the spatial-frequency-selective channels in the visual
system that have been found in a variety of psychophysical and neurophysiological
experiments. The ideal-observer model was modified so that the observer had to pre-
process the images through these channels, with a resulting loss of information, before
calculating the likelihood ratio. The performance of this so-called channelized ideal
observer was found by Myers and Barrett to be indistinguishable from that of the
NPW observer for a wide range of tasks. The channels thus provide a plausible
explanation of the human's inability to prewhiten.

4.5. Stationary Background Statistics

We have. performed an extensive analysis of the effects of spatial inhomogeneity
of the background on detection of a known lesion (Barrett et al. 1989; Rolland, 1990;
Myers et al., 1990). The background was described as a stationary random process
with a Gaussian autocorrelation function, and the signal to be detected was at a fixed
location and had a Gaussian profile. The object, consisting of the background and, in
half the images, the signal, was imaged through a pinhole aperture having either a
hard-edged square profile or a smooth, Gaussian profile. Important variables inctuded
the width of the aperture (relative fo the width of the signal) and the exposure time.
The performance of three observers -- human, Hotelling and NPW -- were deter-
mined as a function of these variables.

The theoretical performance of the NPW and Hotelling observers was simple to
determine since, as indicated in section 3.5, the S, matrix in the case of a stationary
background is diagonalized by a Fourier transform, so calculation of the traces in Eqgs.
{18) and (20) reduces to integration in the Fourier domain. The integrals were per-
formed numerically, resulting in plots of [d,(Hot))2 and [d,(NPW)]2 as a function of
aperture width and exposure time (Myers et al., 1990).

As shown in Figure 2, there are striking differences in these plots for the two
observers. The performance of the Hotelling observer increases steadily with increas-
ing exposure time, while the NPW observer shows a saturation at a very short time.
Not surprisingly, the NPW observer, which does not take into account any statistical
properties of the background, is far more sensitive to the inhomogeneity than is the
Hotelling observer. Finally, the predictions of the two observer models for th
optimum aperture size {0 use is somewhat different. :

The psychophysical studies performed by Rolland (1989) allow an unambiguous
choice between the two models. As seen from Figure 2, the dependence of the human
d, on aperture size, exposure time, and degree of background lumpiness is very well
predicted by the Hotelling model and not at all by the NPW model.

4.6, Effect of Higher-order Statistics

Rolland's psychophysical study described above was later extended by Yao
(unpublished). Yao considered two different ways of generating the stationary random
process for the background. In one method, the background was obtained by spatial
filtering of a white, Gaussian random process, so that the grey-level probability densi-
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Figure 2 Results from Rolland (1990} on the detectability of a known lesion in an inhomogeneous
background. ‘Top left: Performance metrics (d,) for the Hotelling and NPW observers as a function of
aperture size. The parameter Wg(0) specifies the degree of nonuniformity of the background. The
upper curve, labelled Wg{0) = 0 is for the uniform background for which the Hotelling and NPW
observers are identical. Top right: Performance of the human observer for the same parameters as in
the theoretical curves at the left. Bottom left: Performance for the Hotelling and NPW observers as a
function of exposure time. Bottom right: Performance of the human observer for the same parameters
as in the theoretical curves at the left. Note that, except for a constant shift, the human curves agree
very well with those for the Hotelling observer and not at all with those for the NPW observer.
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ties remained Gaussian. The other method simply summed up N randomly placed
Gaussian blobs. For large N this method also yields a Gaussian grey-level density,
but for small N it is decidedly non-Gaussian.

Yao performed a psychophysical study using both methods for generating the
background, and with large and small N in the second method. The parameters of
the background were adjusted so that all three approaches yielded backgrounds with
exactly the same mean, variance and autocorrelation function, but with different
higher-order statistics as indicated by the grey-level histograms. The result of the
study was that the human observer had the same detection performance for objects
located in the three backgrounds. Thus the higher-order statistics do not seem to play
a role, at least for this task. This result lends further support for considering the Hot-
elling observer, who has knowledge of only first~- and second-order statistics.

4.7. Estimation Tasks

The Hotelling and ideal observers are both based on the assumption that the
task of the imaging system is either detection of some abnormality or classification of
the objects into two or more classes (differential diagnosis). In nuclear medicine, on
the other hand, the task is often to extract some quantitative information from the
image. In the medical literature, this task is called quantitation, while in the statistics
literature it is known as estimation. Important examples of quantities to be estimated
in nuclear medicine include the cardiac ejection fraction or the concentration of some
receptor-specific tracer in a region of the brain.

Smith and Barrett (1986) demonstrated that the Hotelling trace could be used to
select an optimum coded aperture, and later these same authors (Smith and Barrett,
1988) showed that the performance of various aperture codes for a detection task, as
measured by the Hotelling trace, correlated well with the performance on an estimation
task as measured by a mean-square error. This prompted us to examine theoretically
the relationship between these two apparently very different tasks. We were able to
derive a quite general set of mathematical relations between performance metrics for
detection and estimation (Barrett, 1990). For detection performance, we considered
either the Hotelling trace or a non-prewhitening matched filter; as estimation metrics
we considered either the ensemble mean-squared error of the relative variance in a
region-of-interest estimate.

In each case we found that the detection metric can be rigorously written as the
estimation metric times a product of four factors. The first factor just accounts for
the lesion size and contrast as in the Rose model, so we call it the Rose factor. The
second factor accounts for the bias in the estimator, the third factor accounts for the
complexity of the scene (or, equivalently, the conspicuity of the lesion). while the final
factor accounts for the effects of noise correlation. We call these last three factors the
bias, conspicuity and correlation factors, respectively,

Taken together, these factors provide a comprehensive picture of how different
characteristics of the imaging system or the object affect performance on different
tasks. General matrix expressions for all four factors have been derived, and specific
forms have been worked out for several radiographic imaging modalities. The details
of this theory are found in Barrett (1990),

5. DISCUSSION

The experimental results presented above lend considerable credence to the use
of the Hotelling observer to predict the performance of the human, at least for the
purpose of evaluating and optimizing imaging systems. The psychophysical studies
performed by Fiete, White, Rolland and Yao all show unequivocally that the human
performance correlates well with that of the Hotelling observer for the tasks consi-
dered. It is hoped that the results obtained by Gooley on comparison of algorithms
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will also fit this pattern, but compuiation of the Hotelling trace for these images is stilt
in progress at this writing.

There is, however, one major study for which the Hotelling observer fails badly
to predict human performance, and that is the work of Myers et al. on SKE/BKE de-
tection in correlated noise. As noted above, the Hotelling and ideal observers are
identical for this study, but the NPW observer is the one that predicts human perfor-
mance. By contrast, in the Rolland study the Hotelling observer correctly predicted
the effects of background inhomogeneity on human performance, while the NPW
observer failed badly to do so.

One possible way to reconcile these apparently contradictory results is to include
channels in the Hotelling model. We have already seen that this addition removes the
discrepancy between the Hotelling (or ideal) model and the psychophysical results
obtained by Myers. It might also be expected that a channelized Hotelling observer
could also take proper account of background statistics and therefore correctly predict
human performance in the Rolland study. Studies to examine this possibility are in
progress.
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