a reprint from Journal of the Optical Society of America A

Effect of random background inhomogeneity on observer

detection performance

]. P. Rolland*

Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

H. H. Barrett

Optical Sciences Center, University of Arizona, Tucson, Arfzona 85721, and Depertment of Radiology,
University of Arizona, Tucson, Arizona 85724

Received May 15, 1991; revised manuscripl received October 28, 1991; accepted October 30, 1991

Many psychophysical studies of the ability of the human observer to detect a signal superimposed upon a
uniform background, where both the signal and the background are known exactly, have been reported in the
literature. In such cases, the ideal or the Bayesian observer is often used as a mathematical model of human
performance since it can be readily calculated and is a good predictor of human performance for the task at
hand. If, however, the background is spatially inhomogeneous (lumpy), the ideal observer becomes nonlinear,
and its performance becomes difficult to evaluate. Since inhomogeneous backgrounds are commonly encoun-
tered in many practical applications, we have investigated the effects of background inhomogeneities on human
performance. The task was detection of a two-dimensional Gaussian signal superimposed upon an inhomoge-
neous background and imaged through a pinhole imaging system. Poisson noise corresponding to a certain ex-
posure time and aperture size was added to the detected image. A six-point rating scale technique was used to
measure human performance as a function of the strength of the nonuniformities (lumpiness) in the back-
ground, the amount of blur of the imaging system, and the amount of Poisson noise in the image. The results
of this study were compared with earlier theoretical predictions by Myers ef al. [J. Opt. Soc. Am. A 7, 1279
{1990)] for two observer models: the optimum linear discriminant, also known as the Hotelling observer, and
a nonprewhitening matched filter. Although the efficiency of the human observer relative to the Hotelling ob-
server was only approximately 10%, the variation in human performance with respect to varying aperture size
and exposure time was well predicted by the Hotelling model. The nonprewhitening model, on the other hand,
fails to predict human performance in lumpy backgrounds in this study. In particular, this model predicts that
performance will saturate with increasing exposure time and drop precipitously with increasing lumpiness;
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neither effect is observed with human observers.

INTRODUCTION

When assessing image quality in medical imaging, it is
useful to compare the performance of mathematical ob-
server models with human performance to determine
whether the mathematical observers could be used as
a basis for system assessment and optimization.'”
Throughout the literature, the most commonly used
mathematical observer is the Bayesian or the ideal cb-
server. This choice necessitates the use of stylized tasks,
such as the detection of a disk superimposed upon a uni-
form background and embedded in white Gaussian noise,
for which the ideal-observer performance can be readily
calculated. The results of many studies carried out for
such simple tasks are consistent with the point of view
that the human-observer performance correlates well with
that of a Bayesian ohserver,” but relatively few studies
of more complex tasks have been performed. Revesz
et al.™ used chest radiographs to measure lesion detection
in inhomogeneous, spatially complicated backgrounds.
Their model of lesion conspicuity leads to good agreement
between conspicuity measurements and human perfor-
mance, but more rigorous mathematical observers were
not considered. The effect of variable-brightness back-
ground levels and areas on the detectability of disk signals
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was studied by Swensson and Judy' for the eases of un-
correlated noise and computed tomography noise. Their
results did not seem to depend either on the type of image
noiseé or on the value of the mean background bright-
ness. Visual conspicuity and background effects were
also studied, for example, by Engel,"* Cole and Jenkins,"
Ruttimann and Webber,'* and Tsui et ol.’

The primary purpose of this study is to determine the
performance of human observers on a task in which back-
ground complexity is a significant factor but for which
mathematical observer models remain tractable. Our ap-
proach toward simulating more complex images is to su-
perimpose a given signal upon a nonuniform or a lumpy
background, which can be described as a stationary ran-
dom process. We might consider as possible mathemati-
cal observers for this task the ideal Bayesian observer; the
nonprewhitening (NPW) matched-filter observer, referred
to as the NPW observer; and the Hotelling observer.'"**
Determination of the performance of the ideal observer
requires full knowledge of the probability densities of the
images under the two hypotheses. In the case of a lumpy
background, we are usually unable to compute the ideal-
observer performance since full knowledge of the proba-
bility density of the data is generally difficult to derive or
even to estimate as the complexity of the task increases.
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Fig. 1. THustrative images of a signal on various backgrounds.
The leftmost column shows Gaussian pinhole (r, = 0.4 ;) images
of a Gaussian signal (50% contrast, r, = 5.66 pixels, centered in
the object array) superimposed upon lumpy backgrounds with
a correlation length of 16.98 gixels for Wy(0) = 0, 1.3 x 10°,
8.2 x 10%, and 3.8 x 10° counts®/(s* pixel} from top to bottom.
The second eolumn shows the same objects imaged by a Gaussian
aperture with r, = 0.8 r,. The third and the fourth columns
show the same objects imaged by an aperture size r, equal to
16 r. and 3.2 r,, respectively. In all the cases the exposure time
was set to 1 s.

Therefore we consider the less-demanding Hotelling and
NPW observers, for which we need only the first- and the
second-order statistics of the data.

Another motivation for investigating the assessment of
image quality for more complex images arises from an ap-
parent contradiction between the ideal-ohserver model
and clinical experience in nuclear medicine. In this field,
a gamma-ray image of a radioactive organ is formed with
a pinhole or similar aperture, and an important practical
question is how large to make the aperture. A larger
aperture gives better photon-collection efficiency but
poorer spatial resolution. If the task is the detection of a
completely specified signal in an infinite, uniform back-
ground of known strength, the ideal-observer strategy
leads to an optimum aperture that is infinite in spatial
extent for a given imaging time. In other words, for the
task at hand, resolution seems to be useless from an ideal-
observer point of view. Similarly, given a finite aperture
size, the performance of the ideal chserver increases lin-
early with increasing imaging time,®** so that any de-
sired level of detection performance can be obtained by
just increasing the exposure time. The interesting ques-
tion that then emerges is whether human performance
also increases indefinitely with increasing exposure time
or aperture size.

We focus in this paper on the two-hypothesis detection
task, in which the signal to be detected has a Gaussian
profile of constant width and amplitude and is superim-
posed upon a statistically stationary lumpy background
of constant correlation length but of varying lumpiness,
where lumpiness can be thought of as the amount and the
strength of the background nonuniformities. Typical
images are shown in Figs. 1 and 2. The effect of the
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aperture size on the detection of a signal of known
size and contrast that is superimposed upon lumpy back-
grounds of a given correlation length but of varying
lumpiness is illustrated in Fig. 1, while the effect of the
exposure time on detection is illustrated in Fig. 2 for an
aperture size that matches the size of the signal.

The theoretical basis for this lumpy-background prob-
lem was presented by Myers et al.,”* and the predictions of
performance were derived for the Hotelling and the NPW
cbservers. In this paper we seek to determine whether
either of these two observer models predicts the perfor-
mance of human observers. We present two psychophysi-
cal studies. 1In the first study we investigate the
importance of aperture size on human-observer perfor-
mance, and in the second study we set a size for the imag-
ing aperture according to the results of the first study and
look at the effect of varying the amount of Poisson noise
in the images by increasing the exposure or the imaging
time. The results from both studies are then compared
with theoretical curves for the two observer models.

EXPERIMENTAL METHODS

Model for Imaging System and Signal
Radionuclide imaging is a technique that uses gamma-ray-
emitting tracers to image regions of interest within the
body. The basic imaging process in nuclear medicine is
the projection of a radioactive three-dimensional object
ontoe a two-dimensional (2D) detector plane by use of an
aperture between the object and the detector. Since the
radiation is gamma rays, there is no diffraction, and the
image properties are deterrined by simple shadow casting.
We assume in this work that we are interested in only a
thin slice of the object and therefore that the ohject is also
a planar radioactive emitter. With the assumption of pla-

Fig. 2. Illustrative images of a signal on various backgrounds
and imaged with various exposure times. The top row shows the
signal (r; = 5.66 pixels) that is present in the images below the
signal. The exposure time increases from left to right with T
equal to 1, 3, 10, and 50 s, while the lumpiness increases from
top to bottom with Wy(0) equal to 0, 1.3 X 10°, and 8.2 x
10° counts®/(s pixel). The contrast of the signal on the back-
ground was 10% before imaging.
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nar imaging, we also assume that the imaging system is
linear and shift invariant. For a review of image forma-
tion by a simple pinhole aperture and a discussion of the
validity of these assumptions, see Barrett and Swindel] 26

Because the studies presented in this paper are in-
tended to have applications in nuclear medicine, we choose
to present the parameters in terms of the emitting plane
and the geometry of the imaging system. We assume in
this paper that a planar emitting source is being imaged
onto a detector through a pinhole aperture equidistant be-
tween the emitter and the detector, in which case the
magnification of the system is unity. The image g(r) is
related to the cbject f(r) by

g(r) = «Tf(r} + i(r), (1)

where r is a 2D vector, « (1/mm?) is a geometric parameter
that is related to the distance from the source to the de-
tector, T (seconds) is the exposure time, #(r) is the aper-
ture transmittance (as projected onto the image plane),
and the asterisk denotes 2D convolution.

The object f(r) consists of a signal component and a
background. The signal in this work has a 2D Gaussian
shape with a half-width measured at the 1/e point of r,
{(millimeters) and a strength of a, (total emitted photons
per second). The pinhole aperture is alse taken to have a
Gaussian transmission profile, with 1/e half-width .

The subscript g is used to specify the parameters re-
lated to the image plane. The signal strength and width
in the image plane are given as a,, (detected photons or
counts) and r,, respectively. These parameters are re-
lated to the object-plane parameters by

asy = mTa,r?, rg = (r® + r,A%, (2)

Mathematical Description of a Lumpy Background

In many detectability studies, a signal such as the one
Jjust described is superimposed upon a spatially uniform
background. In this work, however, the spatial inhomo-
geneity of the background is the primary concern. The
increase in complexity that is due to the variability in the
background can be achieved in many different ways, but
only certain models will lead to a description that is mathe-
matically tractable.

We make several assumptions to simplify the mathe-
matics. First, we assume that the background is a wide-
sense stationary process, where the autocorrelation
function is a function of only the distance r between two
observation points, Second, we assume that the back-
ground autocorrelation function is a Gaussian function of
the form

W0 , .
&m=£¥uNﬁW%% (3)

where r; is the correlation length of the autocorrelation
function and W;(0) is the value of the power spectrum at
zero frequency. The subscript £ here emphasizes the fact
that the autocorrelation function refers to the object f(r)
rather than to the image g(r). After imaging, we will
refer instead to R, and W,. For stationary statistics, the
power spectrum W;(p) is the Fourier transform of the auto-
correlation function, so that

Wilp) = Wr{O)exp(—27"rs’[p|”), (4)
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where pis the 2D frequency variable in the Fourier domain
conjugate to r. The scheme used to simulate the images
for the psychophysical studies, in which the images will
have the appropriate stationary statistics and Gaussian
autocorrelation function, will now be described.

Lumpy-Background Simulations

Two simple approaches to the simulation of lumpy back-
grounds have been described in detail by Rolland.®!
One of them (the one used in this paper) is to simulate
uncertainty in the background by randomly superimpos-
ing Gaussian functions upon a constant background of
strength B, over the object space. We will often refer to
these Gaussian functions as Gaussian blobs or simply
blobs. To keep the mathematics simple, we assume here
that the Gaussian blobs are of constant amplitude b,/mr,*
and constant half-width r,. A background object formed
with these Gaussian blobs can be deseribed mathemati-
cally as the sum of two terms: a constant term and a
term that is the convolution of a set of delta functions, of
equal amplitude and randomiy located in the object space,
with a Gaussian function of constant strength and width.
The lumpy component of the background, denoted b(r), is
then given by

K 2
b(r) = | ¥ o(r — )| = %zwﬁ—rﬂ
=l g o
_ < by ( [ r,,iz)
- 1:21 TT-"hz Py T T‘hz ’ (5)

where r, is a random variable uniformly distributed over
the object area and X is the number of blobs in the back-
ground. Note that r, i the 1/e width of the blobs as well
as the correlation length (defined as a standard deviation)
Of Rf.

The description of a nonuniform background given by
Eq. (5} is not sufficient to yield a Gaussian autocorrelation
function. The calculation of the autocorrelation func-
tion, presented in detail in Appendix A, shows that the
number of blobs K must itself be a random variable with
the mean of K equal to its variance. This can be seen
clearly by simple inspection of Eq. (A12), where the ex-
pression for R, reduces to a Gaussian function if the last
two terms cancel. We thus chose K to be Poisson dis-
tributed for this condition to be satisfied. The expression
for B;{or W)) given by Eq. (A13) [or Egs. (Al4) and (Al5)] is
a complete description of the second-order statistics of the
lumpy backgrounds thus generated. The derivations
given in Appendix A lead to a measure of lumpiness given
by Eq. (A15) as

_K
-

where 4, is the detector area, R/Ad is the mean number of
blobs per detector area (in pixels), and b, is the strength of
the blobs in units of counts. The lumpiness is then ex-
pressed in units of counts®/(s® pixel). Neote that lumpiness
as defined is a function of only the mean number of blobs
per unit area and the strength of the blobs, not of their
actual size or shape. The size or the shape of the back-
ground blobs is an important factor, however, but only
in relation to the size and the shape of the signal to be
detected.

W:(0) b’ (6)
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The first-order statistics can be expressed as the ex-
pected value of the background over the ensemble of ob-
jects. The mean level B in the object is the sum of two
terms, and its expression is given by

B =B, +—K. (7)
d
Note that B, is in units of counts/(s pixel), K/Aq is in

units of counts/pixel, and b is in units of counts/s. The

mean background B is then expressed as the number of
counts/(s pixel).

The background parameters, like the signal parame-
ters, are easily referred to the image plane. By analogy

to Eq. (1),

ayy = mThor,?, rg = (r? + 2 )Y, 8)

Bog = WKTBgrpz. (9)

In the studies reported here, these image parameters
were used to compute the mean number of counts at each
pixel in a set of digital images in which each pixel repre-
sented a physical width of 0.425 mm. Since the Gaussian
functions used for the signal and the background have
Fourier transforms that fall off rapidly, the sampling error
was negligible, and the continuous expressions used in
this paper were an accurate representation of the digital
images. The images were created without noise, but then
the appropriate amount of Poisson noise, as determined by
«T, was added.

Parameter Choice for Psychophysical Studies

In the first study, aimed at studying the effects of spatial
resolution, the assighed parameter values for the emitted
signal were a, = 6 x 10* counts/s and r, = 5.66 pixels
or 24 mm. The fixed level By was set to 3 x 10° counts/
(s pixel), and the mean number of blobs K, which was ac-
tually the mean of a Poisson random process, was assigned
the values 0, 50, and 100 when W;(0) took the values O,
1.2 x 10%, and 2.4 x 10° counts?/(s? pixel), respectively.
The strength of the blobs by, on the other hand, was kept
constant and equal to 2 x 10° counts/s. The half-width
of the background bioh r, was three times the half-width
of the signal (r, = 3r,). The value of the mean back-
ground changed with the amount of lumpiness as given by
Eq. (9). The signal contrast, defined as s(0)/B, where s(r)
is the signal, was 19.9%, 16.1%, and 14.1% as W;(0} in-
creased. The imaging aperture was chosen to yield a
Gaussian point-spread function of half-width r,. This
choice is only a pure mathematical convenience with re-
spect to the computation of the theoretical predictions.
The exposure time of the imaging system was set te be 1 s,
while the efficiency factor « that takes into account the
geometry of the system was set to 1073,

In the second study, in which we studied the exposure-
time dependence, we assigned a value of 2.5 x 10° counts/s
to a, and 566 pixels or 2.4 mm to r,. We set the mean
number of blobs to be a constant of value 50 and the
strength of the blob &, to be the variable parameter with
by equal to 0, 6.5 x 10% and 1.6 x 10* counts/s when W,(0)
equaled 0, 1.3 x 107, and 8.2 x 10° counts®/(s? pixel), re-
spectively. The contribution of the fixed dc level to the
mean background level was 250, 230, and 200 counts/
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(s pixel) as the lumpiness increased from 0 to 8.2 x
10° counts/(s? pixel). The mean background level was
then constant of value 250 counts/(s pixel), and the con-
trast of the signal on the background was 10% for the
three values of lumpiness.

Protocol

For each study we determined human performance for the
case of a uniform background and two nonzero values of
lumpiness. We used four values for the ratio of the aper-
ture size to the signal size r,/r; in the first study and
three or four values for the exposure time in the second
study, as we describe in more detail below. We thus de-
signed 12 and 11 experiments in the first and the second
studies, respectively.

In each experiment 70 images were generated; 35 im-
ages had a signal located in the center of the image and
superimposed upon either a uniform or a lumpy back-
ground, while the other 35 had similar backgrounds but
no signal. Among the 70 images of each experimental set
{among the 12 or 11 sets), 6 images were extracted to con-
stitute a training set for the observers. For the first
study, the training set was thus composed of 72 images
(12 times 6), while 66 images (11 times 6) were used to
train the observers for the second study. The remaining
64 images in each set were then used as the test sample to
evaluate human-observer performance.

Once Poisson noise was added to the computer-simulated
images, eight bits of gray level were used to display the
images. The images were displayed as a 128 x 128-pixel
array using the gray-level-to-brightness transfer curve
shown in Fig. 3. One image was displayed at a time and
covered 54 cm X 54 c¢m on the display, so that each pixel
measured 0.42 mm X 0.42 mm. The contrast and the
brightness levels of the display monitor were fixed during
the study, and the observers were not allowed to vary
them to optimize their performance. The brightness of
the displayed images was ~18 fL.. The observers viewed
the images binocularly at a distance of ~50 ¢m and were
required to wear their usual corrective lenses.
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Fig. 3. Plot of the measured relative brightness versus the dis-
played gray levels at the cathode-ray tube screen. The measure-
ments were done with a photodiode-55-mm-camera assembly
looking at a 16 x 16 pixel array of gray-level values ranging from
(0 to 255, The 16 x 16 pixel array was centered in a 128 X 128-
pixel array of gray-level value 128. The display monitor was
driven by a PCvision board.
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Ten different observers participated in each study, each
performing 12 and 11 experiments for studies I and II,
respectively. The observers did not have any information
on the number of occurrences of the signal. In each
study, the images from the experiments were displayed in
a random order. The observer was presented a single
stimulus on each trial, that is, a noisy image with or with-
out the signal. The observers were instructed to rate
their certainty on a six-point scale, and the responses
were recorded and analyzed by using receiver operating
characteristic analysis.”™* The performance measure
used was the index of detectability d,, defined by

2 [A(g)1) — (Mg)]0)]* ,
© Pyvar(Mg)[0) + Py varfA(g)[1]

(10)

where (A(g)|k) is the mean of the test statistic A(g) given
that the data g come from class & = 0 (signal absent) or
class & = 1 (signal present), while var[A(g)|k] is the corre-
sponding conditional variance. The probability of the oc-
currence of the signal, P, was set to 1/2; therefore
P, = P, = 1/2. If A(g) obeys Gaussian statistics, d, is re-
lated to the area under the receiver operating characteris-
tic curve (AUC) by

1 1 d,
= — + — arf[ =],
AUC 2 + 9 er(z) (11)

where erf( ) is the error function. The index d, was then
calculated from the AUC values for each observer by using
Eq. (11), and a mean value of d, was obtained by averaging
over the different observers.

Theoretical Predictions
As mentioned above, a detailed analytical solution to the
lumpy background problem has been reported by Myers
et al.® We review this analysis here and point out the
key assumptions that made this problem tractable. Basi-
cally, one way of looking at the imaging procedure is to
consider the imaging of one realization of the object, that
is, a lumpy background with or without the signal present,
through a pinhole aperture in a purely geometric or deter-
ministic fashion. The deterministic image then formed
should be taken as the mean of a Poisson random process.
In computing the Hotelling-observer performance
known as the Hotelling trace criterion ¢/, all we need to
determine are the first- and the second-order statistics on
the data as defined by the two scatter matrices S, and S,
since o is defined as

J = TI‘(SZ"ISI). (12)

The interclass scatter matrix S is a measure of the sepa-
ration of the mean values of the two classes (signal being
present or absent, respectively), while the intraclass scat-
ter matrix S; is the mean covariance matrix averaged over
the two classes.”>*® To evaluate S,, the key assumption is
that the background is a stationary random process,
which means that the covariance matrices that go into S,
are diagonalized by a discrete Fourier transform. More-
over, the detectability index d, associated with the Ho-
telling observer and referred to as du, is related to JJ by

J = P[Pzd[—]utz, (13)
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where dy,, may then be expressed in cur study as an inte-
gral over the Fourier domain® of the form

_ s
[B, + H(p)|*W;(p)]

{dua) = f d’p (14)

where &(p) is the Fourier transform of the signal and H(p)
is the transfer function of the system.

In computing the NPW observer, we need to perform a
matched filter of the data with the expected difference
signal under the two hypotheses. The filter itself does
not take into account either the Poisson process or the
background noise, but both noise processes will be mani-
fest in the expression of the variance of the filter output.
Here again, because of the stationarity of the statistical
processes involved, the detectability index d, associated
with the NPW observer and referred to as dypw may be
expressed with integrals in the Fourier domain as

(dNPW)2

2
I s |

- — - - (15)
B, [ sl 1o + [ dtlsiol Ao Wite)

Variation with Aperture Size

Given the set of parameters described above, we computed
the performance of the Hotelling and the NPW observers
as a function of the relative pinhole size r,/r., which
varied from 0.2 to 4, The predictions of those two ob-
servers are given in Fig. 4. The top curve represents the
performance of both observers for the case of a uniform
background where quantum noise is the limiting factor.
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Fig. 4. Plot of the detectabilities predicted by the Hotelling and
the NPW observers for the detection of a low-contrast signal on
uniform [Wr(0) = 0] and nonuniform [Wr(() = 0] backgrounds as
a function of the size of the pinhole aperture r,. The width of
the signal is 5.66 pixels, and the contrasts of the signal are 19.9%,
16.5%, and 14.1% as the lumpiness increases, since the de back-
ground level is kept constant (3000 eounts/(s pixel) as we increase
the lumpiness, but the mean background level is a function of
both the de background level and the lumpiness [see Eq. (8)].
The mean numbers of blobs are 0, 50, and 100 as W;(0) increases,
while the strength of the blob by is kept constant (2 x 10° counts/s).
NPWMEF, NPW matched filter.
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Fig. 5. Plot of the detectabilities predicted by the Hotelling and
the NPW observers for the detection of a low-contrast signal on
uniform [W;(0) = 0] and nonuniform [W:(0) = 0] backgrounds as
a function of the exposure time T. The width of the signal is
5.66 pixels, and the contrast of the signal is 10% before imaging.
As the amount of lumpiness increases, the de background levels
are 250, 230, and 200 counts/(s pixel) such that the mean back-
ground level is a constant B = 250 counts/(s pixel). The mean
number of blobs is 50, and the strengths of the blobs are 0,
6.55 x 10° and 1.64 x 10* counts/s as W-(0) increases. NPWMFE
NPW matched filter,

The performance of both observers, in the case of a uni-
form background, is equivalent to the performance of the
ideal observer, and therefore the two resulting theoretical
curves perfectly overlap as shown. The twe middle
curves correspond to the Hotelling performance as the
amount of lumpiness increases, while the two lower curves
predict the NPW-observer performance for the same
amounts of lumpiness as used for the Hotelling observer.
Given this set of theoretical curves that indicate different
predictions for the Hotelling and the NPW observers, we
should be able to find which model best predicts human
performance.

The psychophysical study was based on the same set of
parameters as described for the theoretical predictions
but with r,/r, limited to four values, 0.2, 0.8, 1.5, and 3.4.

Variation with Exposure Time

Given the set of parameters described above for this
study, we set the aperture size r, to 566 pixels, so that
r. = r,. We then let the counting time or the exposure
time vary from 1 to 100 s, and we computed the perfor-
mances of our two theoretical observers, the Hotelling
and the NPW observers, Increasing T increases the over-
all counts, and thus it is equivalent to a decrease of the
relative Poisson noise at the pixel. The performances are
depicted in Fig. 5, where we plot the detectability index d,
as a function of exposure time. The predictions show an
increase of the Hotelling performance as a function of time
for both the uniform and the nonuniform backgrounds.
The predicted values of the slopes are approximately 0.5
and 0.4 for the uniform and the nonuniform backgrounds,
respectively. The performance of the NPW observer, on
the other hand, is constant with increasing counting time.
The detectability of the signal by this observer is thus
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limited by the background variation rather than by the
Poisson statistics, and we say that the performance is con-
spicuity limited for the chosen values of lumpiness and
exposure times. (In the radar literature, this condition is
referred to as clutter limited.) The saturation of perfor-
mance with increasing exposure time can be better seen if
we refer back to the theoretical curves presented by Myers
etal.*® Figure 8 of that paper shows clearly the transition
between quantum-limited and conspicuity-limited perfor-
mance. Figure 5 of the present paper, on the other hand,
does not show this transition, simply because it oceurs for
T smaller than the values plotted.

The parameters chosen to simulate the images were
identical to those used in the theoretical predictions but
with exposure times limited to the values of 1, 3, 10, and
20 s for W;(0) = 0; the values were 1, 3, 10, and 50 s for
W:{0) = 1.3 x 10° and 1, 3, 10, and 100 s for W;(0} =
8.2 x 10° counts?/(s? pixel).

RESULTS

Variation with Aperture Size

The results of the first psychophysical study are given in
Fig. 6, which plots the average detectability index d, ver-
sus r,/r,. Each point corresponds to an average of the
performance of each observer over the 10 observers. The
estimated standard deviation at each point is given by the
mean rms error between the observers.

We first note that for uniform backgrounds the perfor-
mance of the human observer does not increase indefi-
nitely as predicted by the ideal observer; rather, it
presents an optimum when r, is approximately matched to
the size of the signal r,. As the lumpiness increases, the
performance of the human observer decreases and the op-
timum aperture size decreases, a fact that is better seen
as the lumpiness increases from 0 to 1.2 X 10°. From just
a glance at the experimental data, we see a good agree-
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Fig. 6. Values of detectabilities obtained from the psychophysical
studies for the detection of a low-contrast signal on uniform
[Wr(0) = 0] and nonuniform [W;{0) # 0] backgrounds as a func-
tion of the size of the pinhoie aperture. The values of the
parameters used to generate the computer-simulated images are
the same as those given in the caption to Fig. 4. Four values of
the size of the pinhole aperture r;, relative to the size of the signal
rs are chosen in this case: r,/r, equal to 0.2, 0.8, 1.5, and 3.4.
The lines shown are simply the lines connecting the data points.
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Fig. 7. Values of detectabilities obtained from the psychophysical
studies for the detection of a low-contrast signal on uniform
[Wr(0) = 0] and nonuniform [W-(0} # 0] backgrounds as a func-
tion of the exposure time T. The values of the parameters used
to generate the computer-simulated images are the same as those
given in the caption to Fig. 5. Four values of T are chosen: T
equal to 1, 3, 10, 50, and 100 s as shown on the graph.

ment between the experimental data and the predictions
in the performance of the Hotelling observer. We do not
in any case expect a perfect match of the experimental
data with theory since the efficiency of the human ob-
server, which is not only a function of the amount of train-
ing of the human obhserver but also a function of some
inherent properties of the visual system, must be taken
into account. In fact, if we overlap the experimental re-
sults on the theoretical curves with an upward shift of the
experimental curves to take into aceount the efficiency of
the human observer, we find a good agreement of the data
with the Hotelling-observer predictions, while the NPW
observer fails to predict human performance for the de-
tection of a signal in a nonuniform background, The effi-
ciency of the human observer compared with that of the
Hotelling observer is approximately 10% in this experi-
ment. For a review of the concept of human efficiency
see, for example, the paper by Tanner and Birdsall.®

Another interesting point from Fig. 6 is that the abso-
lute degradation of performance resulting from the back-
ground inhomogeneity is closely predicted by the Hotelling
model and not at all by the NPW model. The Hotelling
and the human observers are much less influenced by the
inhomogeneity than is the NPW observer.

Variation with Exposure Time

The results of the exposure-time study are presented in
Fig. 7. The results show an increase in performance as a
function of the exposure time regardless of the amount of
lumpiness. These results show that the NPW ohserver
does not predict human performance for the detection of a
known signal in a nonuniform background. Moreover, if
we overlap the experimental results with the theoretical
predictions of the Hotelling observer, we see that the Ho-
telling obzerver is again a good predictor of human perfor-
mance within the efficiency factor of the human observer.
Both the human and the Hotelling observers can benefit
from increased exposure time, while the NPW observer
cannot {for the range of times considered here).
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Since we have 30 or 40 data points per regression line
(10 observers with three or four values of T'), we per-
formed a ¢ test with 29 or 39 degrees of freedom to test
the hypothesis that the slopes of the experimental (log-
log) regression lines shown in Fig. 7 are equal to the
slopes of the theoretical lines predicted by the Hotelling
observer. We note that, for a given lumpiness value, the
variances at each point on the regression line are differ-
ent as the time varies. To test our hypothesis of equality
of the slopes of the regression lines using the ¢ test, we
needed first to transform the data in such a way that the
variances became equal. Following Deaton,™ we divided
the values of the data points by the variances, so that the
data were transformed into unit variances. We found
that the hypothesis of equality can be accepted at a signifi-
cance level of better than 8% (P = 0.08) for the two lower
regression lines. The slope of the regression line corre-
sponding to no lumpiness was found, on the other hand, to
be greater than the predicted value aceording to the test
performed.

DISCUSSION

If we compare human performance with the predictions of
the Hotelling observer, there is a significant deviation of
the experimental data from the theoretical curves only in
the case of a uniform background. As can be seen from
Fig. 6, the results unambiguously show in that case that
the performance is optimal when r, takes a value that is
between approximately 0.8 and 1.5 times the size of the
signal. For larger apertures, the performance starts to
decrease slowly instead of saturating as predicted by the
Hotelling and the NPW observers, which are in this case
equivalent to the ideal observer.

Such an observation was also pointed out by Tsui e al.*
when the task was the discrimination between two tumor
activity distributions embedded in a uniform background.
For their experimental data to agree with the theeoretical
predictions of the ideal observer, Tsui et al. made the as-
sumption that the efficiency of the human observer itself
was a linear funetion of the aperture size. By referring
back to Egs. (1) and (2), we see that increasing r, makes
the ratio of r,, and r,, closer to 1. Tsui et . then found
good agreement of the data with the predicted values hy
taking this varying efficiency factor into account. We
could also take such an appreach to match better our ex-
perimental data to the theoretical data in the case of uni-
form backgrounds. However, as the complexity in the
background increases, the efficiency of the human ob-
server can be not only a function of the aperture size but
also a funetion of the lumpiness in the background, so the
problem becomes quite complex. Note, however, that,
even with the assumption that the efficiency of the hu-
man observer is constant as a function of aperture size
and as a function of lumpiness in the background, our ex-
perimental results are in good agreement with the predic-
tions of the Hotelling observer.

A similar drop in efficiency was alse reported by White
et al.** in a human performance study designed to select
the optimum set of parameters to describe a collimator.
The task that they proposed was the detection of tumors
of various sizes and locations in computer-simulated liver
scans. They found a significant drop in efficiency at
large aperture sizes for the human chserver.
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Fig. 8. Example of the profile of the Hotelling feature operator
along a radial axis in the space domain for the detection of a
Gaussian signal on one uniform and two nonuniform back-
grounds, Lumpiness is equivalent to W,(0). The mean value of
the background is 610 counts/(s pixel). The signal width was
10 pixels, and the background autocorrelation length was
30 pixels.

According to our experience,?** we postulate that such

a drop resulting from the blurring effect of a large aper-
ture can be corrected for by processing the images with a
high-pass filter before display.

Another small deviation of the experimental data from
the theoretical data was found when we looked at the ef-
fect of the exposure time en the performance of the hu-
man observer, again for the case of a uniform background.
Further investigations should be carried out for us to
understand fully the reason for this small discrepancy.
Despite this observation, the results show good agreement
of the experimental data with the Hotelling model as the
exposure time and the lumpiness increase.

Although further investigations could highlight some
small discrepancies between the human and the Hotelling
performances, we have shown that the Hotelling observer
is a geod measure of image quality for the nonuniform
background problem,

This agreement in performance between the Hotelling
and the human observers can perhaps be explained by
comparing the shape of the feature operator of the Ho-
telling observer with the shape of some receptive fields
found in the human visual system. The shape of the fea-
ture operator of the Hotelling observer for different values
of lumpiness resembles a difference-of-Gaussians (DOG)
type of filter. Moreover, this filter is found to be adaptive
with respect to the background structure. An example of
the feature operator associated with the Hotelling ob-
server is shown in Fig. 8 for three values of lumpiness.
We note that these filters resemble in shape the on-center
and the off-surround receptive fields found in the human
visual system, a resemblance that might explain the corre-
lation in the performance of the Hotelling and the human
observers. The feature operator of the NPW ohserver, on
the other hand, possesses only an on-center structure
since the function of the NPW observer is to match filter
the signal.

The fact that the NPW observer does not predict hu-
man performance can be puzzling, however, if we recall
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the work of Myers ef al. in which they investigated hu-
man performance for the detection of a disk signal super-
imposed upon a uniform background but embedded in
correlated noise. They showed that the NPW observer
was the best predictor of human performance and that the
ideal observer (equivalent to the Hotelling observer in this
case) gave much poorer correlation. In a later paper,
Myers and Barrett®” attempted to explain their data by
introducing the concept of the channelized ideal observer,
which is an ideal observer except for the fact that it has
access to the data only after their processing through
some finite spatial-frequency bands referred to as chan-
nels.”™ Myers and Barrett showed that the predictions of
the NPW and the channelized-ideal models were virtually
indistinguishable over a wide range of parameter values.

The findings in the present paper as well as those of
Myers et al.**" suggest the derivation of what we could
call a channelized Hotelling observer. Such a model
might be found to predict human performance in both cor-
related noise but uniform background and uncorrelated
noise but spatially varying background. Work in this
direction is currently in progress at the University of
Arizona.

CONCLUSION

We have measured the effect of inhomogeneity in the
background on the detectability of a Gaussian signal im-
aged through a pinhole aperture of finite resolution and
corrupted by Poisson noise. Qur results show that the
variations in performance of the human observer with re-
spect to varying aperture size and exposure time can be
well predicted by the optimum linear diseriminant known
as the Hotelling observer, although the efficiency of the
human observer with respect to the Hotelling cbserver
was only approximately 10%. The NPW observer, which
performs a simple matched-filter operation, fails to pre-
dict the variation in performance of the human cbserver
with respect to the same two parameters for the case of
spatially varying backgrounds.

These findings may perhaps be explained by the fact
that the feature operator for the Hotelling observer re-
sembles in shape the center-surround receptive fields
typically found in the human visual system. The NPW
observer does not incorporate this center—surround behav-
ior, and this observer can therefore mistake background
nonuniformities for signal. Since the Hotelling receptive
fields have the ability to adapt to the lumpiness and the
noise level in the image, the Hotelling observer can opti-
mally estimate the local background, avoiding the confu-
sion between signal and background; evidently humans
can do so as well,

APPENDIX A: DERIVATION OF THE
EXPRESSION FOR THE AUTOCORRELATION
FUNCTION OF LUMPY BACKGROUNDS

For the case of lumpy backgrounds as described in this
paper, the random variable used to describe the lumpiness
in the background is given by

K
b(r) = [E 8(r - rl)] * 3(r), (A1)
i=1
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with

by

y(r) = —; exp[—|r|*/(r;")], (A2)
Ty

where K is the number of Gaussian blobs in the back-
ground and r, is a uniformly distributed random variable
that specifies the location of the ith blob. The expression
for the autocorrelation of the background is given as a
function of b(r) by

Ry(x' — ¢") = {[b(x") — )lb(r") — G"Y), (A3)

where r’ and " are 2D position vectors and (b(r’)), is the
expectation value of b(r') averaged over the ensemble of
objects that constitute the lumpy backgrounds. The ex-
pression for R; given by Eq. (A3) can then be expressed as
the sum of four terms as

Ry = (Be)b(r") s + (b)) 0"y
= (BB iy — (b)) blx"))y, (A4)

which reduces from the linearity of the expectation opera-
tion to only two terms as

Ry = (b(r)b(r")); — (B(r)bx"),. (A5)
In carrying out the calculations for B; we rewrite R; as
Ry = (R {A6)
with
Ry = (b N — P albr s, (A7)

where the notation indicates that we first average over the
random positions r; for a fixed number of blobs K and then
average over K itself.

The second term of Eq. (A7) is given by

term2 = (BN pplb(r" ) e

K K ] b02
= (2.)’(1" - l'x)> <Zy(l'" - I's)> = Kap‘
i=1 £k Vi=1 fik d

(AB)

Let us now look at the first term of Eq. (A7). It can be
explicitly written as

(Bl )ik
K K
<21[5(l" — 1) * yr)] %[5(1‘" — T * y(l'")]>

flk

It

K X
<_§y(r’ - ) Zl yir" - 1‘;))

flk

P K

= Idﬂrlpr(rl)... szrgpr(rx) %y(r' - ) Zly(r" -,
i= i=

(A9)

where pr(r;) is the probability density associated with the
random variable r;. 1If i = j, it can be shown that each
term of the sums over i and j contributes in the same fash-
ion to term 1. The details of this calculation can be found
in the paper by Rolland,?* who adapted the theory of
Barrett and Swindell® to the case of lumpy backgrounds.
Since there are K terms such that i = j, the first term of
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Eq. (A7) becomes, for i =

2

o K b .
terml{i = j) = o F(;'bz exp[—|r|®/(2n7)]. (A10)
d

In a similar way, since there are (K® — K) terms with
i = J, the contribution of the terms ¢ # j to the first term
of Eq. (A7) is given by

terml(i = j) = (K* ~ K) ;-
d

(Al1)

Finally, the expression for the autocorrelation function,
that is, the sum of terml (i = j), terml(i # ), and term?2
given by Eqgs. {A10), (All), and (A8), respectively, becomes

K b . :
Rep = A 2mr exp[—|r[*/(2r%)]

]
b[l

2
+ (K~ K)o + ko
Ay

A (A12)

This expression shows that the autocorrelation function
is found to be Gaussian only if K satisfies (K* — K} = (K.
The second term of Eq, (A12) then cancels with the third
term of the equation. If K is a Poigson random variable,
(K% — {K)* = (K}, then (K? ~ K) = {K}?, and the auto-
correlation function reduces to

K b 5 ,
Re(ry = — —r2i@2rh). Al
) = 5 s expl /(2] (A13)
The power spectrum, which is defined as the Fourier
transform of the autocorrelation function for the station-
ary random process, is given by

K. . .
Wi(p) = K;bo* exp(—277r,%|p|%)

= Wi (0exp(— 27 g%, (Al4)

with

K
WA0) = by’ (A15)
d

We use W;(0) as the measure of the lumpiness in the back-
ground. Note that W;(0) is a measure of counts®/(s® pixel).
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