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Introduction to Perceptual Linearization of Video Display
Systems for Medical Image Presentation

Bradiey M. Hemminger, R. Eugene Johnstan, Jannick P, Belland, and Keith E. Muller

The perceptual linearization of video display systems
chould play a significant rofe in medical image presen-
tation. It maximizas the faithfulness of information
trensfer to the human obhserver; it prevides a methed
for standardizing the appearance of imaygss Aacross
diffarent dizplay devicas; and it allows for ealeulation
of tha inherent contrast reselution of different display
davices. This paper pravides insight into the process of
perceptual lingarization by decsmpaszing it into the
digital driving level-to~monitor luminance refation-
ghip, the manitor luminance—ta—human brightness par-
ception refationship, and the sonstruction of a linsariza.
tion functian derived from these two relationships, A
diccussion of previous work in these areas is given. We
thon compare and contrast the results of previous
wark with recent experiments in our laboratory and
related work in vision and ecomputer science. Wa
conclude that {T] sufficiently goed visual models axist
For agreeing on a standard method of calculating the
perceptusl inearization function; {2) impravements in
the resolution and luminance distribution of the digital-
te-analag eircuitry in display systems are required for
medical imaging; an [9), methads for ealculating a
linearization remapping fram a perceptun? lincariza-
tion function currently have significant error and should
be replased with methods that minimize perceptusl
error. )

Copyright © 1995 by VILE. Saunders Company

KEYWOQRDS: parceptual linearization, display standard=
ization, gray-seale image presentation, vidas dicplays.

ERCEPTUAL linearization of video dis-
play menitors should play a significant rols
in medisal image presentation, First, it allows
the maximum transfer of information to the
human observer because each change in digiral
driving level of the display yields a perceptually
equal step in perceived brighiness by the human
obssrver. Second, for an imags to be perceived
as similarly as possible when seen on different
displays, the two displays must be standardized,
which can be done when they bave been percep-
tually linearized. Third, perceptual lincariza-
tion allows us to caleulate the perceived dy-
narmic range of the display device, which allows
comparing the maximum inherent contrast resge
hitiom of different devices.

Perceptual linearization was first suggestsd
for medical image presentation by Piz¢r and
Chan.! and in follow-up work?® at the Univer-
gity of North Carolina at Chapel Hill (UNC). To
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best visually present an image represented as
digital data to the human obgerver, we would
like to maximize the information transfarred in
mapping the digital driving levels (DDLs) t0
perceived brightness levels. Perceptually linear-
izing the mapping from the image data spacs to
the human observer’s visual sensory space most
faithfully transmits changes in intensities in the
image 1o the human observer. 3658 This simply
means that to the human observer, equal zbso-
lute changes in the input values 1o the display
system should result in equal absolute changes
in the perceived visuval sénsation.

Many advanrages have been attributed to
linearization. Most of these were first described
by Pizer and Chan! and have been further

qualified more recently by others.!!2 We will

categorize them a$ error minimization, standard-
ization, and characterization,

Minimization of error in the display system
refers to minimizing distortions in the relation-
ship between input data and "perceived sensas
tions, so that equal changes in DDLs are re-
flected as equal changes in per¢eived brightness,
We have intentionally chosen not to refer to this
as optimization, to carefully distinguish percep-
tual linearization from choosing an optimal
gray-scale processing for an image. Perceptual
linearization by itself is not intended to be the
optimal gray-scale presentation of the original
data. The important choice of best gray-scale
presentation is dependent on the specific image
content and visual task, and occurs before the
linearization. For instance, some image-process-
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ing technique (window and level, or adaptive
histogram equalization) might be performed on
the original image, resulting in the desired
gray-scale provessed image, whose data values
are distributed in 2 linear pniform manner.
Then the perceprual linearization is responsible
for making sure the relationships in these data
are properly conveyed 1o the human observer by
having the display system reflect the equal
changes in the input data as squal changes in
the percejved sensations of the htuman abserver.

Standardization is the attempt 10 make im-
ages presented on different display devices
appear similar. As modes of radiologic acquisi-
tion become Increasingly computerized, more
and more of the display media are digitally
based (computed tomograplhy, sfuclear medi-
cine, magnetic rescnance jmaging, positron-
cmission tomography, computed radiography).
This has increased the need for standardization
as more images are viewed on monitors as well
as on light boxes. Blume et al'? provide a list of
several advantages of standardization: predict-
able and reproducible gray-seale rendition, simi-
larity between presentations of the same image
on different display devices, and the ability 10
make comparisons between quantitative ob-
server performance measurcments over differ-
ent display systems.

Perceptual linesrization provides a quantita-
tive characterization of the display system. First,
the quantitative information senerated from
the linearization provides a better deseription
of a display system than simply the luminanee
range of the monitor. This would help in compar-
Ing display systerss. Second, the quantification
provides specifie information that helps the
manufacturer of the display system make the
best design choices.

With the inereasing use of video monitors for
the display of medical images in radiology
departmients, we are seeing an increased aware-
ness of the problems of video display, especially
in the areas of obtaining and mainraining high-
quality reproduction of the Images, and in the
area of standardizing presentarions of images
across different display systems. To achieve the
benefits of error minimization, standardization,
and characterization of the display systems, the
medical commmunity needs to fully understand
perceptual linearization and agree upoh a meth-
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odplogy for somputing the linearization. Qthers
have advocated this need and proposed display
function standards.)iZ Before z decision is
made on such a standard it is necessary to
understand all the issues involved. This paper
will attempr o provide a basic understanding of
the ig5ues involved in perceptual lincarization.
A complete deseription of perception lineariza-
tion as applied to medical imaging in radiology
1s given in an carlier paper.’? In the second
§eetion of the paper, we present a paradigm for
describing perceptual iinsarization in its three
basic components; monitor luminance to per-
ceived brightness, DDLs to monitor luminance,
and calculation of a resulting linearization given
the first two relationships. In the next three
sgctions, we address sach of these components
in tyrn, In each of these sections we cover
previous work in this and related fields, as well
as new results from our laboratory and tie these
results into a single framework for analysic.
Finally, the last section summarizes whar concly-
sions can be drawn from the earlier sections,
and discusses whar areas still require investiga-
tion.

PARADIGM FOR FERCEPTUAL LINEARIZATION

The process of displaying an image on a video
display momior to the human observer is de-
picted in Fig 1. This paradigm applies equally
weil 10 the display of images on film. Igitially, an
abject such as the human body is scanned, and
the resulting signal (for instance tissue density)
1§ represented on the compumter as a marrix of
points, called pixels. This scanning samples the
original source data (continuous analog fune-
tion) into discrere data (set of digital values).
Each pixel is represented by a sealser value,
usually in the range of 0 to 4,086 for medical
image data. These are the values referred 1o as
“recorded intensities” in Fig 1. The optional
second step is that some set of image-processing
operations such as intensity windowing or con-
trast enhancerment may be performed on the
recorded intensites resulting in the displayabls
intensities. These values are then scaled inwo
DDLs, which must be in the range accepted by
the digital-to-anajog converter (DAC) of the
display system. This scaling i done by a tablé
lookup operation, often referred 19 a5 2 fockup
table (LUT) or color map table. LUTs are often
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used to do intensily windowing dynamically, or
to implement a linearization LUT (these are
sometimes called gamma correction curves).
The output of the LUT goes to the DAC, which
takes the inppur DDL and converts it to an
analog veltage level which is used to drive the
moritor at different luminance levels. The lumi-
nance generated by the monitor & then re-
corded and processed by the eye-brain human
visual system, resulting in the sensation of
brightness by the human observer.

Two important topics relevant 1o the discus-
sion of perceptual linearization ars described
elsewhere and are not discussed in this paper:
imperfect display davices and imperfect source
images. The standard video display device in
use today is the cathode-ray tube {CRT) and
there are known problems with the reproduc-
tion of lnminance values on CRTs. Discussion
of such problems inclvding spatial and temporal
nonlinearities, CRT noige, internal geatrer, and
distortion are well described, 1445 The second
area is noise in the source image. Noise in the
source image has been discussed in some of the
linzarization work® and also incorporated into
some of the recently proposed visual modelg!®r7
discussed below in the geerion on applying
numan visual reodeis.

From the standpeint of linearization there
are two important relationships in this process,
that of the DDLs of the computer's DAL and
the luminan¢s of the menitor, and that of the
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Fig 1. Dizgram of components of perceptual linearization,

monitor luminance and the brightness per-
ceived by the hurman observer, The first relation-
ship of DAC to hutiinance will be referved to as
DACLUM. The second relationship, that of
luminance 1o perceived brightness, is best exam»
ined using a luminance conrrast sensitivity fune-
tion (CSF). CSFs measure the change in lumi-
nance (AL) required for & target, o that it may
be detected feom the surround luminance (L) as
a function of the surround luminance. More
specifically, contrast thresholds are defined as
AL/L, whereas CSFs are defined as its recipro-
cal, ie, L/AL. CSFs in this paper will refer to
L/AL versus L, whereas in vision literature,
C5Fs usually refer to L/AL versus spatial fre-
quency of the target.

If we think of the DACLUM and CSF curves
as functions, and compose thern on their com-
mon variable of luminance, we arrive at a
CSFeDACLUM function that defines the over-
all effect of the DACS, monitors, and hurnan
perception in the display sysiem. The inverse of
this function can be determined and used to
remap the image values to perceptually linear-
ize the relationship between the gray levels of
the image in the computer and the sansation of
brightness to the human. observer. Thus, we
have defined the three important components
of perceprual linearization: the DACLUM curve,
the CSF curve, and the linearization curve,
which 15 the inverse of CSF-DACLUM. We will
first comsider the CSF ¢urve, which can be
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considered fixed because of the winng of the
visual system. Second, we will consider the
DACLUM ¢urve, which s desided by the manu-
facturers and designers of the video display
system, and should be based on the CSF curve.
Finzally, we will consider the calculation of the
linearization, which depends on the results of
both the CSF and DACLUM componeants,

RELATIONSHIP OF LUMINANCE
TO PERCEIVED BRIGHTNESS

The CSF curve shows the relationship be-
mween the luminance displayed on 2 monitor
and the brightness perceived by the human
observer. The important atrributes are the lumi-
nance range of the monitor and the distribution
of distmguishable gray levels over that range
that are perceivable by the human observer.
The luminance range of display devices may
vary berween devices, 28 well as grow larger as
higher brightmess monitors are developed. By
characterizing the CSF over the entire lumi-
nance range of the human visual systera, we can
define the CSF response at all possible monitor
luminanes levels.

Qur goal is 1o quantitatively model] the hu-
man observer’s sensitivity to contrast differ-
ences, ie, an observer's ability ro distinguish
between different [uminance levels. Quantita-
tively modsling the CSF allows us 10 calculate
proportional changes in conrtrast sensitivity of
the human chgerver that will correspond to
equal proportional changes in DDLs. It also
allows us to calculate the perceived dynamic
range (PDR) of the human observer for a
display system, whare the PDR. 15 the number of
different gray levels that can be digtingnished
for that display system. The problem that arises
in defining a CSF is that there is no overall
funerion valid across the many variables affect-
ing the preseatation of an mage (size of the
jmage, luminance of the surround, ambient
light, viewing distance, adaptation, etc). We can
define CSFs for specific experimental tasks and
measure them. However, these would only be
accurate models for tasks that exactly march the
experimental conditions. This suggests two dif-
ferent avenues of exploration. One method is to
take experimental or theoretical models from
vision research and parameterize them to fit the
clinical presentation task as closely as possibie.
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The second avenue is to create experitnental
tasks that match generic clinical image presenta-
tion situations and empincally define a CSF for
that task. These are discussed and compared in
dertail below.

Appliing Models From Vision Research

Researchers have been studying the human
observer's ability to make contrast distinctions
for well gver 100 years. Early experiments often
consisted of determining relationships between
two physical patches of possibly differing lumi-
napee. Bxperiments that measursd this relation-
ship were graphed as AL/L versus L; where AL
is the change in luminance required to detect a
difference from the surrounding feld of fumi-
nance, L. These curves are generally referred 10
as contrast threshold curves. An example study
depicting this relationship is shown in Fig 2.18
The contrast threshold, or the minimum differ-
ence bsitween two luminances at which an
observer can deiect a difference benween the
luminances, is also referred 1o as a just notice-
able difference.’

By the early twentieth century it was reeog-
nized ihat the overall luminance range of the
hurean observer!? is ~0 to 108 candela/m? and
conirast threshold over this range could be
broken into three areas: seoropic, mesotopic,
and photopic. In the low-luminance scotopic
region (below ~5 % 107% ¢d/m?), the lumi-
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riance detection is mainly via rods, with signifi-
cant contribution from the parafoveal area. In
this tegion, referred to as the Rose-De Vries
regi0n, contrast detection is dependent on lumi-
nance and roughly follows a power (— 14} law,
In the photopic region beginming arpund ]
cd/m? 10 10 ed/m?, referred 1o ag the Weber
region, the contrast threshold is generally con-
stantt, and the response is mainly from the foveal
area, which 1s tightly and homogeneously packed
with cones.® The curve in this region 1§ de-
scribed by the Weber-Fechner law, which states
that for a luminance, L, and a change in
juminance, AL, the ratio AL/L ie constant. The
most sensitive (smallest) measured value of this
constant 15 in the range 0.0032' to 0.01.% Finally,
the mesotopic region describes the middle area
between these two regions where there ig a
combination of the effects of the seotopic and
photopic regions.

In more recent times, especially since the
advent of computers and video displays, work
has concentrated on the preseniation of grat-
Ings ($Quare or sine wave, generally) centered
on 2 Jarge surround background luminance,
where the ohserver’s task is to detect the grat-
ing. This has lead to the development of C3Fs
that define the conirast sensitivity of an ob-
server, defined by L/AL, versus the spatial
frequency of the grating (ie, cycles/degree).22?
More recently some researchers have extended
the stivaulus targets to inciude different types of
objects, eg, gaussian blobs. ¥

Many experimental or theoretical models
have been proposed, including models based on
empirical evidence and physiologic measure-
ments on animals. Although several of these
models, acludmg both empirically criented
modele such as log relationships (Weber-
Fechner, etc), power law (14 law, erc), and
exponential density relationship and physiologi-
cal based models {local cone, global cone, etc),
offer good general déseriptions of the relation-
ship, they d¢ not provide the necessary param-
eters (such as stimuius descriptions, image and
visual noise, luminance of stimulus and sur-
round, ambient light levels, eic) o mode! Impor-
tant arributes of the presentation that are
present in the clinical ¢nvironment.

However, several authors®®!” have recently
defined models based on mathematical descrip-

6028 oN

MYIEIT TYOTTER CAVR

%

tions of the components of the human visual
system that more completely and accurately
represent the visual function. To test their
models, they have taken empirical studies from
the literature, encoded the parametsrs of the
study inte their visnal model, and found thar
their models accurately predict the experimen-
ta] results’* (8. Daley, personal communicas
tion, January 1994). If we can parameterize
more comprehensive models stich as these to
match clinical situations, we should be able to
reasonably predict the CSF for a specific presen-
tation situztion. Furthermore, by studying the
range of possible CSF values, we may be able to
determing a single CSF that represents the
majority of clinical conditions. Blume et al2
have calculated estimates for several individual
presentation conditions for each of the Barten,
Daly, and Rogers-Carel models. Importantly,
they found good agreement between the predic-
tions of these models, and have sugeested the
adoption of either the Barten or Daly models
for vse as a display function standard.

We have srudied the three models'61727 and
implemented the Barten model based crn the
descriptions in Barten'52%2? and Blume.'? We
then performed preliminay mvestgations o
seg (1) whether the different models were
complete enough (ie, did they take into account
factors we found to be significant in our previ-
ous experimental work); and (2) whether by
gxamination of the ranges of parameter valuss
to the Barten model we eguld find a single set of
parameter values that would be suitable for the
purpose of specifying a representative CSF.
After this, we examine how well our recent
experimental results correlate with the represen-
tative CSF model predications. In separats
work we are investigating whether specific elini-
cal viewing tasks can be accurately modeled,
including the detection of mammographic fea-
tures on digital mammograms.

Are Vision Models Complete Enough?

Some of the variables from our experiments
that had significant effect on the measured CSF
function were not represenied by the visual
models. The most significant difference was
caused by multiple levels of surround. Most
recent empirical results ars based on the presen-
tation of a grating of slight luminance difference
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from a constant surround. The stimulhus defini-
tions of the models are similarly defined to have
cnly a single surround. In our experimental
work™™ and m genetral vision research, 32 ex-
perimenters have found thar the luminance of
the surround plays 2 significant role in the CSF.
Because the models calculate contrast sensitive
ity for targets differing slightly from a single
oniform surround luminance, they model an
artificial condition where the human cbserver is
mOst sensitive 1o distinguishing contrast differ-
ences. In most clinical sitaations, an fmage will
have a certain expected mean luminance (sur-
round) for the overall image, and the stimulus
will be a different luminance, often lecated in
smaller lécal surround, which has yet another
mean Iuminance (and which the observer may
coneentrate mogt of rheir foveal gaze on). A
model that allows specification of the more
general condition of a large backeround sur-
round mean lumninance, a Jocal target surround
mean Juminance, and the stimulus Juminance
should more accurately predict clinical presen-
tation results.

A second drea not modeled was the type of
stimulus, Because such g large body of research
has been done using gratings, the models were
also based on gratings with variables ro allow for
size, number of cycles, and amplitude of the
gratings., Objects we wish to detect in medical
imaging are more varied, often insluding blobs
or other structures not eagily Or accurately
modeled as gratings. Thus, another enhance-
ment would be to allow the specification of
different types of basic visual stimuli, eg, gauss
1an blobs based on Bijl &t al's®*# or others work,
Human observers are most sensitive to line or
bar-1ype objects in detection tasks, so gratings
by themselves do serve as a good upper bound
for our mosr sensitive responses.

The third concern was the length of time the
observer viewed the presentation. Radiologists
generally sean images in on¢ of two modes:
directed, eg, 1o rule out a mass in the upper left
iobe, versus undirecied, eg, 100King at the lungs
3§ an #8ide durning 2 shoulder bone x 1ay. In a
directed search, the clinician will likely spend
more time carefully and exhaustively searching
the area of mterest, On an undirected search, a
guicker, more cursory search is made, One way
of modeling these two modes would be for the

HEMMINGER ET AL

visual models to have a parameter correspond-
ing to the length of time the image is presented
to the observer. Previous vision experimental
work has shown that detection can depznd on
the length of presentation. For example, in Bijl
et a]%, they found that for presentation times of
0.13 and 0.25 seconds, the temporal properties
of the stimulus play a role, whereas for Jonger
presentation firnes of 0.30 and 1.0 ssconds,
detection is mainly determined by the spatial
charecterigtics of the stimulus. In our experimen-
tal work, including our most recent experiment
(see Experimental Results) we generally found
that performance increases with longer presen-
tation times (although our times usually varied
between 1 and several seconds). Although pra-
sentation time seems to be an mmportant facror
o quantify, it is not currently a parameter of the
visual models.

In addition 10 the above three effacts, thare
are other variables thar affect the CSF, notably
image content and visval task > Barrett sug-
gests two classes of tasks: classificarion and
estimation, with classification (including detec-
tion) being the usual task in radiplogy.® Bur-
beck and Pizer® suggest classifying rthe visual
tasks as detection, object and structure extrac-
tion, ang recognition. In modeling the CSF for
contrast threshold detection, we are only consid-
ering the detection aspect, and effort should be
made to study the effects of the higher level
functions as well. Although it would be desir-
able to incorporate all of these effects, we are
not curréntly aware of theoretical or experimen-
tal results that would allow the definition and
incorporation of the other effects into the visual
models,

Can a Represenrative CSF Be Determined?

Because the predictions made from visual
models are expected to be accurate for the
specific presentation conditions described by
the parameters and not necessarily for the more
general situation encountered in the display of
medical nage data, we face ihe problem of
choosing a specific visual model, and more
importantly, parameters of that model that are
representative of a range of clinical conditions.
Ta address this 1ssue, we determinad the range
of values for each of the parametsrs of the
Barten model,’? and then calculated the result-
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ing CSF values for all possible combinations of
these parameter values.' Analysis of the result-
ing CSF values showed a concentration of
vajues in one region. Furthermore, when the
CSF values were plotted versus the luminance
axis as needed for modeling the luminance to
peroeived brightness relationship, the result was
a family of ¢urves with similar shape with
respect to the luminance axis, and slightly differ-
ent heights with respect to the CSF axis.* From
this result 2 single representative CSE curve,
matching the most sensitive CSF values from
tha family of curves was chosen.? Although this
single choice of parameters can not accurately
model all possible clinical applications, it serves
two important purposes. First, it describes the
shape of the curve thar is representative of the
family of curves. This 15 wnportant because
perceptual linearizations are not affected by
multiplicative changes (height of CSF curve),
which simply scale the size of the threshold
steps, but only the shape of the curve. Second, it
provides us with a geod upper bound target for
designing our DACLUM ¢urves be¢ause it rep-
resents the highest sengitivity achizvable under
expectad clinical conditions. Importantly, the
specific parameters of the CSF identified in our
work closely matched those arrived at indepen-
dently by Blume et al.2

Experimental Resulis

Little work has heen done in this area. The
only previous published work the avthors are
aware of was the initial work performed at UNC
during the development of perceptual ineariza-
tion.) %" Although these expenments were per-
formed mainly in the interest of actually measur-
ing and implementing perceptual linsazization
on display systems in our laboratory, effort was
made to make the experimental tasks realistic
for medical image presentation conditions,

We recently conducted two additionzl experi-
mentst? to address three specific questions: how
would an experimentally measured clinical task
compare with the predicted Barten CSF curve

-(as wel) as with our earlier experiments); what
was the interobscrver vanability; and did ihe
presentation (ime differsnce modeling the ef-
feet of directed versus undirected search (4
seconds v 1 second) cause a significant differ-
ence in CSF values? The CSF curves were

27

found to be similar in shaps 10 those predicted
by the visual models, but with some differences
caused by irsufficient contrast resolution of the
DAC on our display system, and visual effects
not accounted for by the model ! Measerement
of the interobserver variability s important if
perceptual linearization is used for display fune-
tion standardization. For the five observers used
in our previous experiments’ we did not find a
significant difference in different observers con-
trast threshold values. However, with the larger
number of subjects in these experiments, we
found a statistically significant difference i
sontrast threshold values for the diferent ob-
servers using a nonparametric randomized block
analysis of veriance calculation.® However, im-
portantly, the shape of the curve was consistent
for all observers, meaning that the same percep-
tual linearization can be used because linsariza-
tion is insensitive to multiplicarive changes as
discussed earlier. However, this does imply that
for perceprual linearizarion 1o worlt as a method
of standardization, it must be based on the more
semsitive subjects, ie, the smallest contrast
threghold values. This also implies that the steps
in luminance values betweer adjacent DDLs
must be less than the observer’s smallest con-
rrast threshold values for those luminances.
Shortening presentation times generally has the
effect of decreasing performance as the task
becomes more difficulr. In these experiments,
detecting the target was more difficnlt when the
local surround was significantly different from
thart of the global surround. A significane inter-
action was found between presentation time
and local surround luminance, with podrer per-
formance (smaller CSF values) when local sur-
rounds differed more from the global surround
and whea presentation time was shorr."?

Discussion of CSF Cholces

Although there are differences between the
predictione from models and our experimental
results, we know that both the Daly and Barten
models provide good predictions for empirical
vision research results. Also, the models predict
sifilatly shaped cuives comparsd with our re-
sults, omly shifted upwards reflesting higher
{mare sensitive) CSF values. Because the mode!
can easily be used to provide predictions for the
CSF for specific chinical situations, as well as
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generalized or representative CSF curves 10
compate against, using the models provides an
advantage over using results from specific experi-
ments. More importantly, the adoption of 2
specific mathematieal formula for calculating
the CSE as part of the perceprual linsarization
would accrue the significant advantage of allow-
ing it to be standardized and easily imple-
mented on all display systems. Thus, as recently
proposed by Blume et al,’? we also recommend
using a madel such as Barten’s or Daly’s for the
CSF function 2§ 2 bagis for ealculating the
resulting linearization display function from the
inverse of CSFeDACLUM and the acoption of
specific parameters to these models (based on
gither the previous Blume &t 217 or Hemminger
et al'3 regnlrs). However, we would recommend
that such models be extended to incorporate
multiple levels of surround, different types of
stimuli, and presentation times a5 parameters.
Also, unril the differences berween the model’s
predictions and our empirical reguits are more
completely explained, one should bear in mind
that the model may overestimate the CSF val-
ues compared with experimental results for
stimul! more similar to medical image presenta-
tions.

DAC TO LUMINANCE RELATIONSHIP

The DACLUM curve shows the digital dnv-
ing levels and how they correspond to lumi-
nances generated on the monitor. An exampie
for our Sun $parc2 workstation (Sun Microsys-
tems Inc, Mountain View, CA) is shown in Fig
3. There are threc important attributes: the
overall luminance range of the monpitor; the
number of digital driving levels of the DAC; and
the distribution of output voltages of the DAC
for these levels.

Lumingrice Range of Moritors and Fitm

The luminance range of & standard worksta-
tion monitor 15 ~0 to 100 cd/m?, with some
medical image displays ranging up to ~200
wifm?, and momiors capable of G600 cd/w?
eurrently under davelopment. For comparison,
the maximum Juminarnce of a standard light box
is 2,056 cd/m?, a mammography lightbox is
3,426 cd/m? and a hot lamp is 17,130 cd/m?
These values are from standard clinical equip-
ment in our departmaent, and ar¢ not through

HEMMINGER £T AL

film, so the maxinum luminance when emitied
throngh the lowest densities on film will be
slightly less.

Number of DAC DDLs

BEucept for gpecial purpose or prototype
DACs, all the DACs made today for graysscale
monitors support 8 bits of contrast information
resulting in 256 input levels. Most digital repre-
sentations of medical image data are 4,09
levels (12 birs), although in some modalities
sometimes slightly less than this number of
levels conrain significant information.’” Thus,
the 4,096 possible input image date values must
be represented as one of enly 256 cutput DAC
valnes, How many output lgvels are ¢linically
necessaty depends on the image, the image
processing, and the specific clinical task.

Clearly, & trade-off is being made i nor
presenting all the informarion in the image data
in a single presentation. Thus, from an informa-
tion transfer standpoint, we are compromiging
the darta if we use anything less than a 12-bit
DAC to achieve 4,096 levels equally spaced in
perceptual space, although the spacing berween
DDLs would be less than one contrast threshold
step in this case. However, from a clinical
standpoint, we may be able to make a satisfae-
tory clinical decision with fewer DDLs than the
upper bound of 4,096 levels. To date, the
authors are not aware of careful scientific srud-
ies that have evaluated the number of levels
needed for specific clinical tasks. Someé authors
have anacked the lower bound of this problem
by trying to answer the question, “how many
DDLs s 100 few?” Most of these efforts have
addressed the guestion of when the observer
sees texture-comtouring artifacrs caused by the
use of too few DDLs, Sezan et al*® found that
texture artifacts in radiographs could be avoided

by using at least 9 to 10 bits with a visual

model-based CSF (logarithmic, '4 power, and
local cone), whereas using a default identity
mapping still showed quantization artifacts at
12 bits. However, it is imponiant 10 remember
that thess studies have addressed the question
of whether a visua) artifact is detected, not
whether clinical performance changes.

The contrast threshold relationship between
AL/L and L at each DDL is shown for our Sun

monitor with an 8-bit DAC in Fig 3. An idenrity
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Fig 3. Monitor curves for the Sur Sparc station with 2sbit
DAC, axtrapolated 10- and 12-bit DAL surves for coma ayatam,
a répretentative COF sunig, and retent UNC experimental data
are plotted a5 contrast threshold curves. Vertical axis is ALSL,
and harlzgmial axls s luminange tn ¢andedas per $gudre meter,
Both axes are plotted in log seale. The large oscitlations in the
monitar ¢urves at smell Juminance values [1#55 than 1077) are
caused by the bouncing back and forth between almost no
change in luinance {{ag of AL/L, when AL/L is almost zero}
and very small changes in luminsnes dividad by vary amafl
Swbrage lurinanie (lag of AL/L, when AL/L is almost equal to
1].

mapping (no perceptual linearization) is used,
and the analog contrast and brightness levels on
the monikor ar¢ set to maximize the luminance
range of the monitor while aot introduding
visual artifacts such as blooming. To represent
the monitor characteristics as a contrast thresh-
old function, we calculated the contrast thresh-
old, AL/L, as

{AL/L} = (L{DDL,..] = L[DDL,]}/
[(L[DDL,] + LIODL,,])/2] (1)

where n ranges across all the DDL values (2
10 256), and LfDDL, ] s the luminance at DDL
. Overlaid on Fig 3 is our representative C3F
curve and the most recent UNC experimental
results, as described ia the previous section. By
interpolating between the values of an B-bit
DAC, we have estimated what the 10-kit and
12-bit DACs with similar distributions mught
took tike (Fig 3). Ideally, to see as many distiner
gray levels as possible, the contrast threshold
step sizes for the monitor curves should be
equal to or less than the CSF curve. However, in
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Fig 3, the 8-bit DAC curve is entirely above the
CSF curve, whereas the 10-bit DAC curve is
close to the representarive CSF curve, and the
12-bit DAC curve is cornpletely below it. In Fig
3, the default momitor curves are based on
identity mappings rather than ones that prop-
erly march the CSF eurve, 50 we would expect
from the work on quantizarion artifacts?® that
fewer levels will be required when the distribue
tion of luminance levels of the DAC are better
matched to a CSF. Figure 3 suggests that
around 10 bits for a CSF matched function or 12
bitg for a defanlt identity mapping would bz
required to represent each conirast threshold
step. This correlates well with the results of
Sezan et al. *

Disribution of DAC Luminange Levels

Ag important as the number of levels sup-
ported by the DAC is the distribution of ourput
voltage levels produced. DACs generally pro-
duce a uniform linear function distribution of
voltage levels versus the input DDLs. These
voltage levels are input to the monitor's CRT,
which directs a beam of electrons onto the
phosphorescent material coating the surface of
the monitor. The lumincus outpur of the phos-
phor is not directly proportional to the input
driving voltage lavel, bur ingtead, roughly fol-
lows 3 nonlinear power fanction. Ideally, the
step sizes between the adjacent DDLs should be
constant on a perceived brightness scale. This
matching of the DACLUM and CSF curves
maximizes the transfer of contrast information
to the human obsarver” However, in actual
practice, there are often significant variations.

Although the monitor curves are similar in
shape to the representative CSF curve in Fig 3
above, there are several important differences.
Fizst, the slope on the monitor curves is differ-
ent from the representative CSF ar Jow jumi-
nances (10-# to 10-1) and at high luminances (0
to 5 x 10%). This implies that the DACLUM
curve does not match the CSF curve well, thus it
does not optitaize the transfer of contrast infor-
mation. A second point is that there is sigoifi-
£4nt variation in the contrast threshold scep size
along the monitor curves. Variations in AL/L
values appear as up and down movements
(spikes) along the contrast threshold curve in
Fig 3. At low luminances, thers are extreme
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variations because at some points AL/L is
nearly ) between adjacent DDLs, whereas in
tther cases there 15 a very small luminance
¢hange at a very small average luminance val-
ues, resulting in AL/L: being nearly equal to 1.
From 010 10 ed/m?, the AL/L values ars mostly
the same, with only a few values significantly
different (seen as small spikes); however, from
20 cd/m? to 80 cd/m?, there is greater variation,
often with one interval having AL/L values
twice that of their adjacent neighboring inter-
vals. The large varistions in the low leminance
and higher luminance ranges undermine the
proportionality needed to achieve percepiug)
linearization.

Discussion of Menitor Desiph Choices

Several changes in the design of mgniters
would help improve the number and disribu-
tion of distinguishable luminance levels produc-
ible on the monitor. First, increasing the lumi-
nance range of a2 momtor would increase its
potential PDR. However, it is apparant that, at
least for our representative CSF curve and for
the latest UNC experiments as shown in Fig 3,
almost all of the 256 levels are at least one
contrast threshold step apart, and thus increas-
mg the luminance range would not result in 2
significantly greater PDR. To take advantage of
a larger luminanee rangs, more digital driving
levels on the DAC are required.

Second, the number of bits on the DAC
needs to be increased to increase the number of
DDLs 2vailable. The exast number required is
difficult to determine, and may well depend on
the task. However, according to studics measur-
ing quantization artifacts, it seems Jikely that 10
bits are required if the distribution matches the
CSF; more are required if the distribution does
not. This correlatcs well with analysis of the
CSF representative curve which suggests thar
about 10 bits are required for an example
workstation monitor. It may well be useful to
increase the number of bits all the way 1o 12 bits
10 completely represent the input displayable
intensities, as well as provide additional levelg
t¢ help compensate for poor distributions of
luminance levels. Although these arguments
sugpest the need for 10 or more bits in the DAC,
work needs 10 be done to ¢valuate whether
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clinical perfotmance improves as the number of
bits i ingreased above 8.
Third, whereas the DACLUM eurva for exise-

* Ing display systems is somewhat similar to CSF

curves, changing the distribution of the DAC
luminance levels to more accurately maich the
curvature of the CSF curve and minimizing the
fluctuarions in the DACLUM curve would im-
prove the proportionality of the final DAC-to-
perceivedsbrightness relationship. The authors
are¢ not aware of previous work examining
nonstandard DAC distributions based on ruatch-
ing CSF distributions,

CALCULATING THE LINEARIZATION FUNCTION

The charactenistics of the human observer’s
visual system, ie, the ranpe of perseived bright-
ness and the contrast sensitivity over that ran e,
arc essentially fixed, although these vary some-
what depending on viewing conditions, image
content, and visual task. The provider of the
display system controls the three factors of the
DACLUM reiartionship: the monitor Juminance
range, the number of diserate levels of the
DAC, and the distribution of the resulting
Juminance levels. These are usually determined
by economic factors. In the ideal sitvation, the
manufacturer of the display system would sup-
port a perceptually uniform system through a
DAC luminance djgrribution that matehes the
human visual CSF. If this is not practicat, then
the display system can be perceptually linear-
ized by a postlinearization remapping step.
Several methods for computing a hinearization
function from the DACLUM and CSF curves
have been suggested. Essentially the task is 10
compose the DACLUM and CSF functions into
a single function and then derive the inverse of
this function. Applying this inverse function to
the digplayable intensities, eg, through a display
lookup table (je, LUT in Fig 1) will result in 2
proportional relationship between the display-
able intensities and the sensation of perceived
brighiness.

Calevlarion of Perceptugl Linearization Funciion
Pizer and Chan, in their initial description of
perceptual linearizarion, gave both an intuitive

and a formal analytical approach.’! In the intui-
tive approach one caloulates

Li=Liy + (Li-} x [U(CSF(L.,)),  (2)
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until L; reaches or exceeds the luminance of the
maximum DDL. L, represents the luminance at
the ith DDL value, and (1/{CSF(Ly)], the con~
trast threshold at luminance f;. Thus in the
mtuitive formulation one simply steps 1 contrast
threshold in luminance at each step, starting at
the minimum lnminancs, until the maximum
luminance is reached. The analytical formula-
tion is given by Pizer and Chan and the specifics
of Implementing the linearirarion by Cromartie
et al® Also, an approximation that further
simplifics the analytical solution is given by Ji et
al® In similar work on color scales, other
authors have developed methods that super
sample in the perceptual scale, and then choose
the closest digital driving scale of the moni-
tor. 359

In all of thes¢ approachss, the final step takes
a calculated desired luminance level and then
selects the DDL that mgst ¢losely matches this
luminance. Because there are limited discrete
samples in the DDL range (256), and because
they are often nor distributed in a fashion
matching the CSF function, errors may be
introduced during each of these matching steps.
Qverall, this error may negate the intended
effect of equal perceprual steps if the valuss are
not chosen with regard to minimizing the pereep-
tual error of the overall process. Examples of
this can be seenm in Fig 4, which shows a
linearization function previously used in our
laboratory versus the standard monitor curve
and the repregentative CSF cuave. As observed
earlier, there j§ significant variation in the
monitor step sizes at very low luminance levels,
small spikes in the midrange, and larger varia-
tion {up to 200% changes in step sizes) in higher
luminance levels. Sorprisingly, though, the lin-
earized curve is flawed as well. The variation in
step sizes of luminance output levels of the
linearization curve is consistently larger than
that of the default monitor curve throughout
most of the range. This is mainly caused by the
distribution of DAC luminance levels not marchs
ing the CSF well and suggests that a larger
number of DDLs miay be necessary 1 compen-
sate for display systems with suboprimal digtrib-
tions of DAC luminance levels.

Another important issue is the number of
DDLs in the resulting map. As noted in the
DACLUM section, the luminance step size
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Fig 2. Monitor DACLUM curve for the Bun $parcZ $1ation
and rezulting linearization. Linearization is based on CIELUY
{% power law] aigerithm for CBF, measured meniter lumi-
nance levels of the display for the DACLUM, and & 128-levat
finsarization remappivg calculsted using the standard ap.
proach of choosing the DOL wath the luminance level nearece
to that given by the linearization funcien. [, B-bie monitar
default; (4, Sbit monitor lnearized; [---), ropresentative
ourva,

between adjacent DDLs should ideally be Jess
than the contrast threshold at that luminance.
For a system with a limited number of DDLs
with which t¢ work, increasing the number of
DDLs wsed in the linearization remapping usu-
ally means increasing the perceptua) error in
the mappirg. Thus, one trades improved con-
trast resolution (size of contrast threshold step)
for quality of the rendition (perceptual error in
linearization). Ideally, one wouid have a way to
quantify this tradeoff.

Oprimally Calcwlaring the Linearization
Remapping .

None of the above techniques attempt to
minimize the error introduced during this mateh-.
ing of {CSFDACLUM)"! desired luminances
and actual avajlable discrete luminance levels.
General solutions exist for the similar signal
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quantization problem of mapping a continuous
variable into a discrete one.*®! This problems
differs in that (1) we have fixed nonuniform
spacing of the luminancss resulting frem the
DDLs; (2) we can use any or ail of the DDLs in
the mapping; (3) we want to minimize the
equalness of the steps, not simply the distance
from the result sample points to the desired
ones: and (4) we would like to maximize the
number of RDL levels steps usad (o avoid aver
quantizing the input data) but not at the cost of
compromising the accuracy of the linearization.
We have proposed the development of an opii-
mal solution to this problem, one that mini-
mizes the perceptual error in the resulting
linearization and degeribes the acrual resulting
PR or achisvable FDR. In recent work, we
have suggested a methodology for calculating
the minimurm perceptual error in the lineariza-
tion based on the statistical variance of the
contrast thrashold of each step of the lineariza-
tion remapping.®

Discussion of Linearization

To date, the methods developed have been
aimed at simply Implementing a reasonable
(CSFDACLUM)"! function. For many moni-
tars, the limitation of 8-bit DACs and subopti-
mal luminance distributions (not matching the
CSF) mean that calculated linearizations may
not be very optimal, and in s0me cases like the
oné shown in Fig 4, turn out to be worse than
not linearizing. Developers of DACs need 1o
better march their distributions to CSF distribu-
tions, both to improve the inherent perceptual
linearity of their system, and to better allow for
aftep-market perceptual linearization correc-
tions of the display system. Finally, work needs
to be done to compare methods for calculating
the remapping function matching the lineariza-
tion function, (CSF-DACLUM)", for a given
sot of luminance values of a display system.

CONCLUSIONS
Use of Visual Mode! for CSF
Fairly good models for the CSF (Barten and
Daly) exist, but they need 10 be expanded 10
include rnultiple levels of surround, more gen-
eral types of stimuli, and different viewing
times. Although there is no single C5F that can
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represent zll different visual tasks and differcnt
clinical viewing conditions, we have derived 2
single CSF that 18 representative of most ¢linieal
conditions. This CSF function matches the CSF
previously recommended by Blame ct al, and
aiso, the predictions from it are similar to our
mMOst recent experimental results, although the
experimental results seggest 1638 sensitivity over-
all, especially when the stimulus and its loeal
surround are cignificantly different in lumi-
nance from the overall surround to which the
eye is adapted. Sull, we recommend using the
Barten or Daly models for the CSF part of the
lingarization process. Work ngeds to be done in
comparing visval model-based CSF lineariza-
tions with existing default monitor configura-
tions for specific clinical tasks to cvaluate
whether improvements in clinical performance
Occur.

Display System Characteristics (DACLUM)

Qurrent DACs are not sufficient, especially as
we go to higher luminance monitors. More
driving levels are required and, thus, more bits
in the DAC. For an optimal DAC luminance
distribution (ie, matching the CSF}, ~10 bils
should be sufficient 1o eliminate quantization
artifacts and 1o allow step sizes of around one
contrast threshold. The distribution of lumi-
nance levels of the DAC should more closely
match the CSF of the human observer. Increas-
ing the mumber of available DDLs can compen-

.. sate somewhat for suboptimal DACLUM digtri-

butions by providing more choices for the
linearization step. Work needs to be done
cvaluating whether the increases in bits in DAC
and improved DAC Iuminance level distribu-
tions actually improve clinical performance in
observer experiments- Such improvemente would
have to be rraded off against the cost of manufac:
turing systems with larger numbers of DDLs
and better DAC distriburions.

Caleulation of Linearization Funciion

Ideally, the linearization would gccur in the
choice of the DAC Iuminance distribution. If
further correetion of the luminance distribution
is required, it can be accomplished by applying
the inverse of the CSF-DACLUM relationship
via a post remapping step. Several methods for
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this exist, but they do not attempt to minimize
the error in matching the desired luminance
vatues of the linearization function versus the
actual ones avallable on the DAC. We propose
an optimal solution to the linearization remap-
ping caleulation that minimizes perceptual er-
ror in the linearization and determines the
achievable PDR. of the display system. Lineariza-

m

tions nead to be evaluated 1o test the benefit of
different methods of ealeiating the lineariza-
tion remapping.
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