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We discuss error propagation in the slope-based and the difference-based wavefront estimations. The error
propagation coefficient can be expressed as a function of the eigenvalues of the wavefront-estimation-related
matrices, and we establish such functions for each of the basic geometries with the serial numbering scheme
with which a square sampling grid array is sequentially indexed row by row. We first show that for the wave-
front estimation with the wavefront piston value determined, the odd-number grid sizes yield better error
propagators than the even-number grid sizes for all geometries. We further show that for both slope-based and
difference-based wavefront estimations, the Southwell geometry offers the best error propagators with the
minimum-norm least-squares solutions. Noll’s theoretical result, which was extensively used as a reference in
the previous literature for error propagation estimates, corresponds to the Southwell geometry with an odd-
number grid size. Typically the Fried geometry is not preferred in slope-based optical testing because it either
allows subsize wavefront estimations within the testing domain or yields a two-rank deficient estimations ma-
trix, which usually suffers from high error propagation and the waffle mode problem. The Southwell geometry,
with an odd-number grid size if a zero point is assigned for the wavefront, is usually recommended in optical
testing because it provides the lowest-error propagation for both slope-based and difference-based wavefront
estimations. © 2006 Optical Society of America

OCIS codes: 080.2720, 220.4840, 120.6650, 010.7350.

1. INTRODUCTION
Wavefront estimation is a basic problem in optical testing.
On the basis of slope-type data, the method converts
wavefront slope or wavefront difference (WFD) measure-
ments into wavefront values (or further into wavefront
phase, which is a multiplication of the wavefront value
with the constant 2� /�). The wavefront estimation is a
numerical solution to a partial differential equation, spe-
cifically, Neumann’s boundary problem of the Poisson
equation. Using a two-dimensional (2-D) finite-difference
grid to cover the testing domain (usually the testing is
performed over the optical pupil), one can discretize this
problem and evaluate the wavefront values at each grid
point by solving a difference equation set defined on the
grid. The matrix equation set for this problem can be ex-
pressed as

CW = S, �1�

where C is wavefront estimation matrix, W is the vector
of wavefront values, and S is the vector of the WFD be-
tween the neighboring grid points, which can be con-
verted from the wavefront slope vector G by

S = �aMG, �2�

where � is a constant related to the given geometry, a is
the pitch size of the sampling grid, and M is the conver-
sion matrix for a given geometry. Owing to the measure-
ment noise, Eq. (1) has its weak solutions only, and an un-
biased least-squares approximation can be employed. The
normal matrix equation for the least-squares solution is

CTCW = CTS, �3�

which is a discretization form of the Poisson equation

�2W = �S = f�y,z�, �4�

where �2W is the Laplacian of the wavefront, �= �� /�x�i
+ �� /�y�j, and f�y ,z� is a function given. It shall be noted
that the Tikhonov regularized least-squares solution,
adopted widely in other applications such as adaptive op-
tics, provides a biased estimate that would not be desir-
able in optical testing.1

The wavefront estimation errors can be categorized
into two types. One type is from the algorithm discretiza-
tion errors, which depends on the basic estimation
scheme we adopted, and the other type is from the WFD
error, which can be converted from the slope measure-
ment noise if the measurements are wavefront slopes.
The discretization error, the accuracy of a wavefront esti-
mation geometry, some of which were detailed in a sepa-
rate paper,2 are not considered in this paper. The noisy
WFD vector can be written as S=S0+N, where S0 is the
vector of the true WFD values, and N is the measurement
noise of the WFD. If the induced wavefront error from
measurement noise N is �, then the estimated wavefront
can be written as W=W0+�, where W0 is the true wave-
front values.

The error propagation coefficient provides a quantita-
tive metric for evaluating wavefront estimation. As de-
fined in the previous literature,3–5 the error propagation
coefficient � is the ratio of the mean variance of the wave-
front estimation error �w

2 given by
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�w
2 = ���2

2/m, �5�

where � · �2 is the Euclidian norm and m is the total num-
ber of grid points (m= t� t for a square array, t is the grid
size), to the variance of the WFD measurement error �n

2,
i.e.,

� =
�w

2

�n
2 . �6�

In this paper, this definition is referred to as the WFD-
based error propagation coefficient, which is a quantita-
tive indicator of the error propagator in the WFD-based
wavefront estimation. In Section 2, we briefly review the
previous work published on error propagation in wave-
front estimation; in Section 3, we generally formulate the
WFD-based error propagation coefficient with the matrix
eigenvalues; in Section 4, a serial numbering wavefront
estimation scheme is introduced; in Section 5, we apply
the error propagation formulation for the Hudgin geom-
etry, the Southwell geometry, and the Fried geometry, and
we derive a formula of error propagation coefficient for
each case. The simulation result is discussed. In Section
6, we introduce the definition of the slope-based error
propagation coefficient and formulate it for each of the ba-
sic geometries, and in Section 7 we conclude the analysis
in this paper.

2. BRIEF REVIEW OF PREVIOUS WORK
Wavefront estimation can be performed on the three in-
troduced geometries: the Hudgin geometry,6 the South-
well geometry,4 and the Fried geometry.7 As shown in Fig.
1, the slope measurements (or alternatively the WFD
measurements) are denoted by small arrows, and the grid
points are denoted by small circles in each of the geom-
etries to follow the convention adopted previously.8 The
slope measurements are performed at the midpoint be-
tween each neighboring grid points in the Hudgin geom-
etry and at the center point circled by each four neighbor-
ing grid points in the Fried geometry. The Southwell
geometry is characterized by taking the wavefront slope
measurements and the wavefront value estimations at
the same nodes. It was given by Southwell that this latter
geometry has the lowest error propagation in wavefront
estimation across relatively small grid sizes,4 as shown in
Fig. 2.

We focus the analysis of error propagation on the zonal
wavefront estimation induced by the WFD measurements
with the estimation geometries. As shown in Fig. 2, the
error propagation coefficient for each wavefront estima-

tion geometry was shown to be logarithmic dependent on
the grid size t.4,6,7 From Eq. (35) in Ref. 7, we obtained the
result given by Fried as

�Fried = 0.6558 + 0.3206 ln�t�, �7�

and from Eq. (32) in Ref. 6, we obtained me result given
by Hudgin as

�Hudg = 0.561 + 0.103 ln�t�. �8�

For the Southwell geometry we least-squares fit our dis-
crete coordinate measurements of curve A in Fig. 2 on
page 1003 of Ref. 4 given by Southwell, and we obtain

�South = − 0.10447 + 0.2963 ln�t�. �9�

By using a general Green’s function, Noll analytically de-
rived that the error propagation with a square aperture is
a logarithmic-dependent function of its grid size t, which
is3

�Noll = 0.1072 + 0.318 ln�t�. �10�

In modal estimation with discrete Fourier transform,
Freischlad and Koliopoulos also showed that the error
propagation satisfies a logarithmic dependence of
�H,S;modal=a+ �1/��ln�t� for the Hudgin (H) geometry and
the Southwell (S) geometry, and a logarithmic dependence
of �F;modal=a+ �3/��ln�t−1� for the Fried (F) geometry.9

On the basis of the Hudgin geometry and a fast-Fourier-
transform-based algorithm, which requires an even size,
Freischlad confirmed that it is almost identical to Noll’s
theoretical result with5

�Frei = 0.09753 +
1

�
ln�t�. �11�

Hunt extended Hudgin’s method for error coefficient pre-
diction in terms of the discrete Fourier transform and ob-
tained a result that shares the constant term with Noll
and the logarithmic term with Fried and Hudgin, which
yields little difference from both Noll’s and Freischlad’s
results.10

Figure 2 shows that the Southwell geometry is superior
to all the other geometries regarding the error propaga-
tion when t is small, but the Hudgin geometry tends to be

Fig. 1. Wavefront estimation schemes: (a) Hudgin geometry, (b)
Southwell geometry, (c) Fried geometry.

Fig. 2. Previous results on error propagation.
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slightly superior to the Southwell geometry when the grid
array size t becomes large (when t�30).

3. FORMULATION OF THE ERROR
PROPAGATION IN WAVEFRONT
ESTIMATION WITH THE MATRIX METHOD
Given Eq. (1) and considering that in the case of zero
noise Eq. (1) reduces to S0=CW0, the WFD error N and
the induced wavefront error � should satisfy the equation

C� = N. �12�

In the general case, the least-squares solution for Eq. (12)
can be written as

� = C+N, �13�

where C+ is the Moore–Penrose pseudo-inverse of matrix
C. Given the relationship between the WFD vector and
the wavefront slope vector provided by Eq. (2), similarly,
the WFD error N and the wavefront slope noise N� should
satisfy

N = �aMN�. �14�

Starting with the expression of the mean variance given
by Eq. (5), the Euclidian norm for a statistical wavefront
error vector is defined as

���2 � ��
j=1

m

��j
2�	1/2

= �tr���T��1/2, �15�

where the bracket �·� denotes the averaging operator, tr�·�
is the matrix trace, and

��T = C+NNT�C+�T = C+�aMN�N�TMT�a�C+�T, �16�

where N�N�T is given by1

N�N�T = 

n1

2 n1n2 ¯ n1nm

n2n1 n2
2

¯ n2nm

� � � �

nmn1 nmn2 ¯ nm
2
� . �17�

If we simply assume that the wavefront slope noise is ran-
dom, independent, and has zero mean with the same vari-
ance �s

2, the ensemble statistical average of the slope er-
rors yields

�ninj� = �s
2�ij = 
 0, when i � j

�s
2, when i = j

. �18�

So the slope noise covariance matrix is given by

�N�N�T� = �s
2I, �19�

where I is the identity matrix. Therefore, Eq. (16) yields

���T� = �2a2�s
2C+MMT�C+�T. �20�

Accordingly the mean variance of the wavefront estima-
tion error �w

2 is given by

�w
2 =

1

m
���2

2 =
1

m
tr����T�� =

�2a2�s
2

m
tr�C+MMT�C+�T�.

�21�

Similarly,

�n
2 =

1

m
�N�2

2 =
1

m
tr��NNT�� =

�2a2�s
2

m
tr�MMT�. �22�

With the definition of the error propagation coefficient
given in Eq. (6), we can write

� =
�w

2

�n
2 =

tr�C+M�C+M�T�

tr�MMT�
. �23a�

This equation is useful for the computation of the error
propagation coefficient. It can be noted that Eq. (23a) can
also be written in the form of Frobenius norm11 as

� =
�C+M�F

2

�M�F
2 . �23b�

Equations (23) provide a generalized expression for the
error propagation coefficient in zonal wavefront estima-
tion. This formulation is good for both the slope measure-
ments and the direct WFD measurements, because we
can convert either the slope measurements or any other
specific WFD measurements into the wavefront piston
value difference between each neighboring grid points,
which is actually the direct WFD measurement in the
Hudgin geometry. Before we present the error propaga-
tion coefficient for each of the basic geometries in Section
5, the serial number scheme (SNS) adopted for wavefront
estimation will be introduced in Section 4.

4. SERIAL NUMBERING SCHEME FOR
WAVEFRONT ESTIMATION
The SNS, as adopted in the previous literature,1,2 makes
wavefront estimation become a standardized process. In-
stead of numbering the estimation grid array with 2D co-
ordinates �i , j� as previously provided,4–7 the grid array is
indexed sequentially from 1 to m row by row as illus-
trated in Fig. 3.

With such a numbering mode, a regular and banded
sparse estimation matrix is predefined, which resembles

Fig. 3. Grid array with serial numbering scheme (SNS).
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Hunt’s matrix formulation.2,10 One main application of
such a numbering scheme was to develop a high-precision
iterative wavefront estimation algorithm for any shaped
pupils.8 Recently we found that adopting this numbering
scheme in the wavefront estimation provides new results
in the analysis of error propagation.

5. WAVEFRONT DIFFERENCE BASED
ERROR PROPAGATORS
In this section we apply the generalized formula of the er-
ror propagation coefficient for three basic estimation ge-
ometries: the Hudgin geometry, the Southwell geometry,
and the Fried geometry. The wavefront estimation matrix
for each of the geometries is established, and the eigen-
values for each estimation-related matrix are computed
numerically, from which the formulas of the WFD-based
error propagation coefficients are established.

A. Hudgin Geometry
In the Hudgin geometry, the wavefront slopes are mea-
sured at the midpoint between two neighboring grid
points, and the WFD between each pair of neighboring
grid points in the x and y directions can be estimated as

Sxi+1,i
= gxi+1,i

·a,

Syi,i+t
= gyi,i+t

·a, �24�

where a is the pitch size of the sampling grid array, gxi+1,i
is the wavefront slope in the x direction at the midpoint
between point i and point i+1, and gyi,i+t

is the wavefront
slope in the y direction at the midpoint between point i
+ t and point i. With the SNS the wavefront estimation
equations can be written in the x direction as

wi+1 − wi = Sxi+1,i
i = 1,2, . . . ,m, i � kt, k integer,

�25�

and in the y direction as

wi − wi+t = Syi,i+t
, i = 1,2, . . . ,m − t. �26�

When written in matrix form, the estimation equation set
for the Hudgin geometry is given by

HW = S, �27�

where H is the wavefront estimation matrix, S=aG is the
WFD vector, and G is the wavefront slope vector. S=aG
in comparison with Eq. (2) yields �=1 and M=I, where I
is the identity matrix. From Eqs. (23a) and (23b), where C
equals H, � takes the form

�H =
tr�H+�H+�T�

tr�I�
=

1

m
tr��HTH�+� =

1

m
�H+�F

2 . �28�

In optical testing, it is the wavefront shape from a ref-
erence, not the absolute wavefront piston values, that is
desirable. Thus it is common to set a point on the wave-
front as the reference point, namely, the“zero point”, at
which the wavefront value is assigned to zero or another

constant. Setting a “zero point” for the wavefront will not
affect the estimated shape, as any piston value in the es-
timation can be subtracted.

The rank of matrix HTH is 	=m−1.2 Matrix HTH be-
comes of full rank �	=m� after a “zero point” is set for the
wavefront, and its generalized inverse is H+

= �HTH�−1HT. Therefore we have tr�H+�H+�T�
=tr��HTH�−1�. If the nonzero eigenvalues of matrix �HTH�
are �H,i�0 �i=1,2, . . .	�, then the nonzero eigenvalues of
matrix �HTH�+ are �H,i

−1 �0 �i=1,2, . . .	�. The WFD-based
error coefficient for the Hudgin geometry can be therefore
expressed as

�H =
1

m
tr��HTH�+� =

1

m��
i=1

	

�H,i
−1 	 . �29�

This result is somewhat similar to the result obtained by
Southwell for modal wavefront estimation.4

In this paper the numerical methods, such as the Ja-
cobi and the singular value decomposition (SVD) meth-
ods, are employed to evaluate the matrix eigenvalues.
The Jacobi method approximates the eigenvalues of sym-
metric matrices by reducing the off-diagonal elements to
zero, while the SVD method approaches the eigenvalues
by decomposing the matrix into a diagonal matrix multi-
plied by an orthonormal matrix on each side.

The eigenvalues of matrix HTH are sensitive to the po-
sition of the wavefront “zero point”, the matrix dimension
size, and the number parity of the matrix dimension. In
this paper, the “zero point” mentioned is located at the
center point of the estimation grid array for all geom-
etries, at which the matrix has its smallest condition
number.2 Given that the coefficients in matrix HTH are
predefined,2,10 the eigenvalues of matrix HTH for differ-
ent grid sizes can be computed numerically. The simula-
tion results are plotted in Fig. 4.

Fitting the numerical results (up to t=50) in the least-
squares sense, we obtain the error propagation coefficient
for the Hudgin geometry as

�H,odd = 0.3797 + 0.3171 ln�t − 0.6672�

� 0.3222 + 0.3316 ln�t� �t is odd�, �30�

Fig. 4. WFD-based error propagators for the Hudgin geometry.
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�H,even = 0.3294 + 0.479 ln�t − 0.2136�

� 0.3049 + 0.4856 ln�t� �t is even�. �31�

When no “zero point” is appointed, the rank of matrix
HTH is 	=m−1. The solution space for the matrix equa-
tion has one degree of freedom. With the Moore–Penrose
pseudo-inverse of matrix HTH, we obtained the least-
squares solution with minimum norm (LSMN), which is a
least-squares solution that holds the same wavefront
shape as that with a “zero point” set but has the mini-
mum Euclidian norm of the wavefront values. In that
case, we computed the eigenvalues of the estimation ma-
trix with SVD, and obtained the simulation results with
data up to t=50 as

�H,LSMN = 0.3252 + 0.1593 ln�t − 1.1208�

� 0.2605 + 0.1764 ln�t�. �32�

Figure 4 shows that the behavior of the error propagation
is logarithmic dependent on the grid size as previously es-
tablished in the literature.3,6 The error propagation
curves for the SNS with the “zero point” given (curves 2
and 3) are higher than the curves of Noll’s result (curve 0)
and the Hudgin result (curve 1). However, the error
propagation curve for the SNS with the LSMN solution
(curve 4) is the lowest of all, nevertheless, at the expense
of extensive computations; moreover, it is approaching the
Hudgin result when the grid size increases. For wavefront
estimation with a “zero point” set, an odd-number grid
size is preferable for the Hudgin geometry.

B. Southwell Geometry
In the Southwell geometry the slope measurements and
the wavefront estimate are located at each grid point. As
Southwell did,4 we adopted the average of the measured
slopes over two neighboring grid points as an estimate of
the slope at the midpoint. The wavefront estimation equa-
tion set can be obtained with the SNS in the x and y di-
rections as

wi+1 − wi =
a

2
�gxi

+ gxi+1
�, �33�

where i=1,2, . . . ,m−1 (i�kt, k integer), gxi
is the slope

data in the x direction, and

wi − wi+t =
a

2
�gyi

+ gyi+t
�, �34�

where i=1,2, . .m− t, and gyi
is the slope data in the y di-

rection. In matrix form,

HW = SH, �35�

where matrix H is the same wavefront estimation matrix
as for the Hudgin geometry, and SH is the WFD vector,
which is given by SH= 1

2aCsG. Comparing SH with Eq. (2),
we obtain �=1/2 and M=Cs. It should be noted that ma-
trices Cs and H are closely related: Matrix Cs can be ob-
tained by changing the sign of the coefficient −1 in matrix
H.

According to Eq. (23), we have

�S =
tr�H+Cs�H+Cs�T�

tr�CsCs
T�

=
tr�Cs

T�H+�TH+Cs�

tr�HHT�
, �36�

where tr�HHT�=4t�t−1�=4�m− t�. Given that H+

= �HTH�+HT,12 then the WFD-based error propagation co-
efficient for the Southwell geometry is expressed as

�S =
tr�Cs

T�H+�TH+Cs�

4�m − t�
=

tr�Cs
TH��HTH�+�2HTCs�

4�m − t�
.

�37�

Finally,

�S =
1

4�m − t���i=1

	

�s,i	 , �38�

where �s,i�i=1,2, . . .	� are the nonzero eigenvalues of ma-
trix Cs

TH��HTH�+�2HTCs, and 	 is the rank of this matrix.
When a “zero point” is set, HTH is invertible, and we

have 	=m and H+= �HTH�−1HT. The simulation results
are shown in Fig. 5. We least-squares fit the numerical re-
sults (up to t=50) and obtain the error propagation coef-
ficients for the Southwell geometry as

�S,odd = 0.1489 + 0.2936 ln�t − 0.06186�

� 0.1428 + 0.2952 ln�t� �t is odd�, �39�

�S,even = 0.04941 + 0.4662 ln�t + 2.7673�

� 0.2861 + 0.41 ln�t� �t is even�. �40�

When no “zero point” is appointed, the LSMN solution is
sought to make the Euclidian norm of the wavefront mini-
mum. We computed the eigenvalues of the estimation ma-
trix for this case with SVD up to t=50 and obtained the
error propagation coefficient as

�S,LSMN = 0.205 + 0.1487 ln�t + 0.2562� � 0.217

+ 0.1455 ln�t�. �41�

In Fig. 5, when a wavefront “zero point” is assigned, the
error propagation curve for the SNS is above the curve of

Fig. 5. WFD-based error propagators for the Southwell
geometry.
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the Noll’s result (curve 0) for the even-number sizes of
grid (curve 3), and it is equivalent to (or slightly below) it
for the odd-number sizes of grid (curve 2). Although both
of the above error propagators (curves 2 and 3) are shown
to be worse than Southwell’s result (curve 1), the error
propagator of the LSMN solution (curve 4), when no “zero
point” is set for the wavefront, is shown to be clearly bet-
ter for the large grid size �t�8�. It is similar to the Hud-
gin geometry in that an odd-number size of grid is prefer-
able for the Southwell geometry when a “zero point” is
assigned.

C. Fried Geometry
In the Fried geometry, the grid for wavefront slope (or al-
ternatively phase difference) measurements and the grid
for wavefront estimation are interleaved by a distance of
a /2 both in the x and in the y directions as shown in Fig.
1. Fried proposed that the phase difference across the
�i , j�th aperture element in the x direction (or in the y di-
rection) can be estimated as the average of the phase dif-
ferences along its two parallel borders in the x direction
(or in the y direction).7 To compare the work in this paper
with Fried’s result, a similar WFD estimation equation
set as found in Fried’s work was established. For the
Fried geometry with the SNS, we have

wi+1 − wi + wi+t+1 − wi+t = 2sxj
, �42�

wi + wi+1 − wi+t − wi+t+1 = 2syj
, �43�

where i=1,2, . . . ,m− t−1, with i�kt (k is an integer); sxj
=gxj

a and syj
=gyj

a are the WFDs in the x and y directions;
and j=1,2, . . . �t−1�2, where �t−1�2 is the total number of
the measurement elements in the grid array. Writing
them in matrix form, we have

FW = S, �44�

where F is a predefined matrix for wavefront estimation
for the Fried geometry, S=2aG is the WFD vector, and G
is the wavefront slope vector. As defined in Eq. (2), we ob-
tain �=2 and M=I, where I is the identity matrix. Given
Eqs. (23), the WFD-based error propagation coefficient for
the Fried geometry can be written as

�F =
tr�F+�F+�T�

tr�IIT�
=

1

m
tr��FTF�+�. �45�

Herrmann showed that the rank of the normal matrix
FTF is m−2.13 If the nonzero eigenvalues of FTF are
�F,i�0 �i=1,2, . . .	�, where 	 is the rank of matrix FTF,
then

�F =
1

m��
i=1

	

�F,i
−1	 . �46�

When a grid point is frozen as the “zero point,” the rank of
matrix FTF becomes 	=m−1, and the piston value term
of the estimated wavefront is defined. However, there is
still one degree of freedom in the least-squares solution
space, called the waffle mode, at which the wavefront at
the estimation grid points can be pushed up and down
with the same value in a checkerboard pattern, while it
still satisfies the WFD estimation equation set defined in

Eqs. (42) and (43). In other words, the Fried geometry
cannot sense the waffle mode error of the wavefront,14

which is not desirable in optical testing.
Given a “zero point” for the wavefront, the LSMN solu-

tion is to seek a least-squares solution in a one-
dimensional (1D) solution space that makes the Euclidian
norm of the wavefront shape minimum. While no “zero
point” is assigned for wavefront, we have 	=m−2, and
the LSMN solution is to seek a least-squares solution in a
2D solution space to minimize the Euclidian norm of the
wavefront shape, which includes both the overall piston
mode and the waffle mode errors. Theoretically, when the
wavefront is flat, the LMSN solution can get rid of the
waffle mode error. However, since the waffle mode error
usually coexists with the wavefront shape, it is impossible
to avoid the waffle mode error for the Fried geometry with
the LMSN solution. The simulation results are shown in
Fig. 6.

For a wavefront with a “zero point” set, the matrix ei-
genvalues for the LSMN (1-D) solution are computed up
to t=50, which yields the error propagation coefficients as

�F,odd = 0.4461 + 0.2 ln�t − 0.8805�

= 0.4146 + 0.207 ln�t� �t is odd�, �47�

�F,even = 0.4933 + 0.2866 ln�t − 0.6547�

= 0.4338 + 0.3022 ln�t� �t is even�. �48�

For a wavefront with no “zero point” set, the matrix ei-
genvalues for the LSMN (2-D) solution are computed up
to t=50, which yields the error propagation coefficients as

�F,LSMN = 0.475 + 0.114 ln�t − 1.821� � 0.4076

+ 0.1303 ln�t�. �49�

Similar to the Hudgin and Southwell geometries, for a
wavefront with a “zero point” set, an odd-number size of
grid is preferable for wavefront estimation. The error
propagators for the LSMN (1-D) solution (curves 2 and 3)
are better than Fried’s result (curve 1), worse than Noll’s
result (curve 0) for the even-number sizes of grid (curve
3), and better than the large odd-number sizes of grid �t

Fig. 6. WFD-based error propagators for the Fried geometry.
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�16� (curve 2). For a wavefront with no “zero point” set,
the LSMN (2-D) solution offers the best error propagator
for the Fried geometry.

It should be noticed that for wavefront estimation with
the Fried geometry, it can either yield a LSMN solution
on the full size of the estimation grid that suffers the
waffle mode error, or yield a least-squares solution on a
subsized estimation grid by discarding some of the wave-
front boundary values (for example, the corner points).
However, these solutions may not be acceptable in some
optical testing cases.

D. Comparisons of the Error Propagators
To compare the error propagations in different wavefront
estimation schemes, the simulation results for the Hud-
gin, Southwell, and Fried geometries are plotted in Fig. 7.
The simulation results quantify how the error propagator
depends on the parity of the wavefront estimation grid
size, the wavefront estimation scheme, and the solution
method used to solve the wavefront estimation.

Importantly, the odd-number grid sizes are shown to
yield lower error propagation than the even-number grid
sizes for all geometries. This can be explained by the fol-
lowing. If the grid size is odd, the “zero point” can be eas-
ily set at the geometrical center of the grid array so that
the estimation scheme is symmetric and yields an estima-
tion matrix with its minimum condition number,2 which
is steady and less sensitive to random noise disturbance.
But if the grid size is even, there is no direct way to set a
“zero point” at the geometrical center of the sampling
grid; therefore, the estimation scheme is typically non-
symmetric, which is liable to be affected by random noise
disturbance.

For wavefront estimation with a “zero point” set, the
Fried geometry offers the best error propagator for the
even-number grid sizes, and the Hudgin geometry offers
the worst for both even- and odd-number grid sizes. For
the odd-number grid sizes, the Southwell �t
22� and
Fried geometries �t�22� offer the best error propagators,
and the error curve of the Fried geometry almost overlaps
that of the Southwell geometry, which well confirms both
Noll’s and Freischlad’s results. It is interesting to notice
that the error propagator for the Hudgin geometry with
the odd-number grid sizes is equivalent to that of the
Fried geometry with the even-number grid sizes. When no
“zero point” is set for the wavefront, the error curves for
Fried and Hudgin geometries superpose together, and the
Southwell geometry still offers the best error propagator.
The detailed qualitative comparisons are listed in Table 1.

6. SLOPE-BASED ERROR PROPAGATORS
An alternative to Eq. (6) is to define the error propagation
coefficient as the ratio of the mean variance of the wave-
front estimation error to the variance of the wavefront
slope error, i.e.,

�� =
�w

2

�s
2 =

�2a2

m
tr�C+M�C+M�T�, �50�

or

�� = K�, �51�

where �� is named the slope-based error propagation co-
efficient, � is the WFD-based error propagation coefficient
defined in Eq. (6), and

Fig. 7. (Color online) Comparison of the WDF-based error propagators.

W. Zou and J. P. Rolland Vol. 23, No. 10 /October 2006 /J. Opt. Soc. Am. A 7



K =
�2A0 tr�MMT�

m
, �52�

where A0=a2 is the pitch area of the sampling grid. With
this new definition, we can see the direct effect of the
pitch area of the sampling grid on the error propagation.
The larger the pitch area, the worse the error propaga-
tion. To compare the slope-based error propagators for dif-
ferent geometries, the slope-based error propagation coef-
ficient is normalized with A0=1. For the Hudgin
geometry, it becomes

�H� =
A0

m
tr��HTH�+� = KH�H, �53�

where KH=1, and �H is the WFD-based error coefficient
defined by Eq. (29). For the Southwell geometry, it be-
comes

�S� =
A0

4m
tr�Cs

T�H+�TH+Cs� = KS�S, �54�

where KS= �m− t� /m, and �S is the WFD-based error coef-
ficient defined by Eq. (37). For the Fried geometry, it be-
comes

�F� =
4A0

m
tr��FTF�+� = KF�F, �55�

where KF=4, and �F is the WFD-based error coefficient
defined by Eq. (45).

From the WFD-based definition to the slope-based defi-
nition, except for the effect of the pitch size, the error
propagator remains the same for the Hudgin geometry,

slightly improves for the Southwell geometry, and be-
comes four times worse for the Fried geometry. The slope-
based coefficient may prove to be useful for the design of a
slope-based optical testing system. Given the slope mea-
surement noise and the wavefront error expected, for ex-
ample, we can determine the pitch size required for the
testing system.

The slope-based error propagators for the basic wave-
front estimation geometries are plotted in Fig. 8. The
Southwell geometry is shown to be better than the Hud-
gin geometry, and the Fried geometry performs the worst.
As previously found, the parity of the sampling grid size
also affects the error propagator: A grid with an odd-
number size is preferable to a grid with an even-number
size. For wavefront estimation with no “zero point” set,
the LSMN solution offers lower error propagators in com-
parison with the wavefront estimation with a “zero point”
set for all geometries, among which the Southwell geom-
etry offers the best.

Generally speaking, for a slope-based wavefront esti-
mation in optical testing, the Fried geometry is not pre-
ferred because of its interlaced sampling scheme, which
yields inadequate slope information for estimating the
wavefront over the entire sampling grid, and its high er-
ror propagation.

For both the slope-based and the WFD-based wavefront
estimation, the Southwell geometry is preferred because
it offers the best error propagator for the wavefront esti-
mation over the entire testing domain. The performance
of the Southwell geometry can be explained by the noise-
averaging effort in the WFD estimates. When slope data
(or WFD) are estimated at the midpoint between the
neighboring grid points, the estimated slope noise is re-
duced by the slope data averaging.

7. CONCLUSION
In this paper, the error propagation coefficient for the
WFD-based wavefront estimation was derived with the

Table 1. Qualitative Comparisons of the WFD-Based Error Propagators
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matrix formulation. We established the functions depict-
ing the error propagation behaviors for three basic wave-
front estimation geometries based on the wavefront
estimation-related matrix eigenvalues.

The simulation results show that, for wavefront esti-
mation with a “zero point”, the odd-number grid sizes are
preferable to the even-number grid sizes. The Southwell
geometry �t
22� and the Fried geometry �t�22� with the
odd-number grid sizes offer the best error propagators if a
“zero point” is set. The Southwell geometry offers the best
error propagator for all grid sizes when no “zero point” is
set.

Given the popularity of the slope-based wavefront sen-
sors in optical testing, a slope-based error propagation co-
efficient is defined. The benefit of this metric is that, given
the rms noise in slope data, the rms error in wavefront
value can be directly estimated. Furthermore, this metric
shows the direct dependence of the error propagation on
the pitch size. Using this metric, the Southwell geometry
offers the best error propagators for wavefront estimation
with and without a “zero point” set. Therefore, in optical
testing the Southwell geometry is highly desirable. The
Fried geometry is not recommended because of its high
error propagation and the ambiguity in wavefront shape
estimation. Not limited with the three basic geometries
listed in this paper, the generalized formulation pre-
sented here can be applied in any other estimation geom-
etries, and the corresponding formulas for the error
propagation coefficients can be established with numeri-
cal simulations.
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