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ABSTRACT 
 
A framework for real-time visualization of a tumor-influenced lung dynamics is presented in this paper. This 
framework potentially allows clinical technicians to visualize in 3D the morphological changes of lungs under different 
breathing conditions. Consequently, this technique may provide a sensitive and accurate assessment tool for pre-
operative and intra-operative clinical guidance. The proposed simulation method extends work previously developed 
for modeling and visualizing normal 3D lung dynamics. The model accounts for the changes in the regional lung 
functionality and the global motor response due to the presence of a tumor. For real-time deformation purposes, we use 
a Green’s function (GF), a physically based approach that allows real-time multi-resolution modeling of the lung 
deformations. This function also allows an analytical estimation of the GF’s deformation parameters from the 4D lung 
datasets at different level-of-details of the lung model. Once estimated, the subject-specific GF facilitates the simulation 
of tumor-influenced lung deformations subjected to any breathing condition modeled by a parametric Pressure-Volume 
(PV) relation.  
Keywords: Organ Morphology, Green’s Function, 3D Medical Simulation 
 
 

1. INTRODUCTION 
 
 Medical simulation is a critical component to understanding and planning procedural interventions and predicting 
patient outcomes. Current physically based simulation techniques, such as Finite Element Modeling (FEM) and Finite 
Difference Modeling (FDM), extend the utility of simulating the complex anatomy and physiology into both 3D space 
and the fourth dimension of time.[1] Medical visualization is a critical component to planning procedural interventions 
and predicting patient outcomes.[2] Recent advances in computer technology provide a further revolution in medical 
visualization, that of coupling medical simulations with patient-specific anatomical models and their physically and 
physiologically realistic organ morphology.[3] An important application of such a coupling of simulation and 
visualization is for the treatment procedures for lung tumors, a pathophysiological lung state that is the leading cause of 
cancer related mortality in the United States and accounts for 29% of cancer related mortality in 2005.[4] Radiation 
oncology procedures aim at exposing the lung tumor of a human patient to radiation that destroys the tumor. The 
importance of organ movement and tracking for the radiation oncology has been previously discussed by [5, 6]. The 
effectiveness of the radiation oncology procedure can be significantly increased when the movement of the tumor and 
the overall lung can be predicted in real-time. The real-time simulation capability and the physical accuracy of the 
proposed deformation would facilitate the development of a real-time clinical guidance system for radiation oncology. 
The main focus of our research is to simulate a patient’s normal and patho-physical breathing behavior, which can then 
be visualized dynamically and in real-time. The end result of such an effort will provide visualization for clinicians to 
more accurately track and treat tumor areas as they change over time. The focus of this paper is on simulating and 
visualizing the patient-specific tumor-influenced lung dynamics. The method presented allows us to visualize tumor-
influenced 3D lung dynamics by first estimating the deformation parameters from patient-specific high-resolution 3D 
lung models and then re-simulating the 3D lung dynamics under different breathing conditions modeled by the PV 
relation. 
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The paper is further sub-divided as follows: Section 2 discusses the formation of lung tumor cells and the related work 
in mathematical modeling of 3D lung deformations. Section 3 briefly discusses the method adopted for modeling 
tumor-influenced 3D lung deformations. It is followed by a discussion on the inverse dynamics method applied for the 
estimation of the deformation kernel. Section 4 discusses the results and the future work of the inverse dynamics and 
the simulated PV curves.  
 
 

2. RELATED WORKS 
 

In this section we discuss the literature review on clinical analysis of tumor-influenced lungs and modeling lung 
dynamics 
 
2.1 Lung Tumors 
Healthy lungs inhale 10000 liters of air per day and during exercise they enable 2.5 liters of oxygen per minute to be 
exchanged through the blood-gas interface.  This level of activity requires a finely tuned system of airways  to direct the 
gas to the respiratory membranes.  Unlike other body surfaces, such as skin, the non-abrasive nature of the inhaled 
medium does not ordinarily result in a need for a high rate of continuous cell replication. The filtration of damaging 
particles en route by the nasal and upper respiratory tract epithelia may not be complete especially when small particles 
such as carcinogenic fibers and chemicals are inhaled. Damage resulting from such particles results in cells death. The 
eplitheleal cells of the lung possesses mechanism that can replace these dead cells. Extensive research work has been 
undergone in stimulating these epithelial cells for cell replication.  
A brief account of these replicative cells (also known as stem cells) are as follows: The three types of replicative cells 
are  (1) the basal cells of the bronchi, (2) the clara cells of the bronchiole and (3) type II pneumocyte of the alveoli. Of 
particular importance is the epithelium of the alveoli. They are mainly populated by the type I and II pneumocytes. The 
former constitute 86% of the alveolar surface area by virtue of their shape and mainly contributes to the gas exchange. 
The latter, which are secretory cells, occupies the corners of the alveoli and mainly contributes to the alveolar 
morphology.  
 Lung damage to these replicative cells can be classified into two origins: (1) mineral particles, and (2) chemical 
compounds. Mineral particles reach different levels of the lung based on their size and shape. Dust particles are filtered 
by the conducting airways and removed by mucociliary action. In contrast, roughly spherical particles that are  below 5 
micrometers in diameter can penetrate the alveoli and may become lodged there with much potential for long-term 
damage. Most of these cells are indigestible and result in the death of the cells and the formation of fibrosis. More 
importantly, dusts reaching the type II pneumocytes may promote the release of excess amounts of surfactant which can 
fill the alveoli. Type I cells are exquisitely sensitive to these dust particles. It was also shown in an animal study that 
these particles since their exposure  to the animals were retained by the animals in their lungs for over a year.  Thus the 
presence of these dust particles in the alveoli leads to cell  death of type I pneumocytes and the cell replication process 
is initiated by the type II pneumocytes. Chemical compounds such as nitrogen dioxide or the supra normal oxygen 
affect the alveolar epithelium which subsequently leads to the death of type I pneumocytes. Upon return to normal 
conditions the epithelium recovers during which the type II cells rise dramatically without a concomitant rise in the type 
I cells. Thus the gas exchange process of the alveoli is significantly reduced. Based on the level of exposure to these 
chemical compounds the damage to type I pneumocytes occur.  Additionally the presence of high levels of type II 
pneumocytes in the alveolar epithelium leads to the creation of cell tumors.  
 
 
2.2. Lung Deformations 
Lung deformations have been studied for verifying different brands of medical imaging equipments such as myocardial 
SPECT, [7-9] understanding pulmonary mechanics, [10-12] registering MRI images,[13] [14] generating in-vitro lung 
models,[15] and for medical training purposes [16]. The initial methods developed to model 3D human lung 
deformations were based on physiology and clinical measurements.[17] Significant amount of work has been 
undergone in understanding and modeling pulmonary mechanics using animal and human data.  Key parameters 
extracted from pulmonary imaging modalities are the Green’s strain tensor and Jacobian of the displacement gradient. 
While the Lagrangian strain tensor quantifies the change in length of the edges in the 3D data, the Jacobian of the 
displacement gradient provides information regarding the local change in lung volume.  
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From a simulation and visualization perspective, we concentrate on deforming a given 3D human lung model for a 
known air-flow entering the lungs. It is accomplished using both the stress and strain components at every lung node 
and using a physics-based deformation paradigm that relates the stress and strain in a local lung neighborhood. Under 
this context, the human lung modeling literature has been mainly divided into two approaches: (1) Single compartment 
model and (2) multi-compartment model. The physically-based deformation of the human lung model as a linearized 
single-compartment model was proposed by Promayon.[18] An FEM based single-compartment model was proposed 
by Decarlo for real-time medical visualization.[19] It was then extended by Kaye in order to model pneumothorax 
related conditions.[20] Additionally, a visualization-based training method was developed for pneumothorax using a 
single-compartment model.[16] The method had an analogy for lung deformations to an electrical circuit.[20] A multi-
compartment functional FEM model, which modeled the tissue constituents (i.e. parenchyma, bronchiole and alveoli) of 
lungs was done by Tawhai. This effort aimed in analyzing the anatomical functions of lungs during breathing.[21] The 
run-time computational complexity of this approach was reduced by modeling solely the bronchioles and the air-flow 
inside the lung.[22] Of particular importance is the role of air-flow inside lungs. Based on medical image analysis, the 
spatial air distribution inside lungs was shown to be dependent on the gravity and thus the orientation of the subject. 
From the perspective of a  physically-based deformation, the air distribution defines the force applied on the lung model 
and thus needs to be accounted for./ 
A non-physically based analysis of lung morphology has been extensively investigated in the field of lung physiology 
and imaging. Some of the key works include the analysis of lung morphology using image warping.[23] A non-
physically-based method to lung deformations was also proposed using NURBS surfaces based on imaging data from 
CT scans of actual patients.[8] The usage of a high-resolution model for lung deformations and its real-time 
visualization were not addressed in these efforts. From a modeling and simulation perspective, the physically-based 
deformation methods are apt for simulating lung dynamics since they allow the inclusion of different breathing 
parameters.  

 
 

3. METHODS 
 
The method adopted for modeling tumor-influenced lung dynamics takes into account both the behavioral and 
anatomical changes in the thoracic system. The behavioral changes take into account the summary muscle resistance 
caused by the diaphragm and rib-cage and is as discussed in [24-26]. The anatomical changes are taken into account by 
first estimating the elastic properties of tumor-influenced 3D lung models which allows a physically-based method to 
model the tumor-influenced lung deformations. The estimated deformation operator encapsulates the effects of tumor 
discussed in section 2.1. The approach adopted for such estimation is to first use a forward lung dynamics that can 
account for the morphological changes from one 3D model to another during breathing.  The forward lung dynamics is 
further discussed in section 3.1. The method to estimate the deformation operator and model the changes in the PV 
relation are discussed in section 3.2 and 3.3 respectively.  
 
 
3.1 Forward lung dynamics 
In this section we outline the methodology adopted for the dynamic simulation of 3D lungs deformation. This method is 
sub-divided into two components, which has been addressed in [25, 27] and [28]. In the first component we 
parameterized the change in lung volume for a change in pressure referred to as trans-pulmonary pressure. This change 
in pressure, which causes the air-flow inside lungs, accounts for both the local muscle resistance caused by anatomical 
components, such as lung tissue, diaphragm and rib-cages, as well as the motor drive of breathing controlled by a 
network of neurons in the medulla. The relation between the lung volume and the trans-pulmonary pressure is referred 
to as a PV relation. Both normal and abnormal PV relations may be simulated. 
In the second component we estimated the change in the global lung shape for an increase in lung volume[28]. This was 
obtained using a physically-based deformation method. For real-time purposes, a single compartment based approach 
are used for modeling the lung deformations. Within the context of computer animation, a GF-based deformation was 
chosen since it facilitates multi-resolution representation of lung models (extending from macroscopic to microscopic 
levels). In the implementation discussed in this paper the total number of nodes on each of the 3D high-resolution lung 
models is approximately 400,000.  
From a physically based approach, a Young’s modulus (YM) was first associated to every node of the 3D lung model 
based on the lung’s regional alveolar expansion. A unit force was then applied on each node and a transfer function 
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matrix was computed using an iterative approach. In each step of the iteration, the force applied on a node was shared 
with its neighboring nodes based on a local average of YM as described in [28]. The iteration stopped when the sharing 
of applied force reached equilibrium. At this point of equilibrium the force shared by a node with its neighbors formed a 
row of the transfer function matrix. An upright orientation was considered in order to deform the 3D lung model. The 
applied force due to the air-flow inside the lungs was given by the vertical pressure gradient of lungs[23, 29, 30]. The 
computed force was then normalized so that the sum of the applied force magnitude on all the nodes was equal to a unit 
increase in volume. A unit increase in volume was set as the ratio between the tidal volume of human lungs (i.e. 500 
ml) and the product of the deformation steps per second (i.e. 66.66 steps/sec) by the ventilation rate of inhalation or 
exhalation (normally 5 sec/breathing). Thus for each increase in lung volume the subsequent change in lung shape was 
computed[28]. 
A GPU-based computational optimization of the 3D lung dynamics was described in [31]. We considered a per-vertex 
approach for deforming and rendering 3D lung models. We presented a method to optimally compute the matrix-vector 
multiplication in a GPU during run-time. Specifically the matrix-vector multiplication was represented in steps, which 
can be partially pre-computed off-line. The columns of the transfer function matrix were pre-computed and represented 
using SH coefficients. These coefficients were obtained from orthonormal decomposition of the transfer function matrix 
using SH transformations[32]. The per-vertex nature of SH coefficients allowed us to use GPU for improving the 
computation-speed. 

 
 
3.2 Estimation of deformation parameters for tumor-influenced 3D lung deformations 
In this section we present a method to estimate the deformation operator, which represents the inter-nodal elastic 
interaction. The estimated kernel can then be used for deforming lung models at any physical condition as previously 
shown in [31]. Additionally, the YM of every node can also be estimated from the deformation kernel allowing us to 
simulate variations in elasticity.[28, 33]  
We take as input two 3D CT datsets (one at the start and another at the end of the inhalation) obtained using breath-hold 
procedure and a theoretical estimation of the airflow during the imaging process. We then extract 3D polygonal models 
from each of the 3D-CT datasets.  As a reference, we also consider another 4D CT dataset of a normal human subject 
previously used in [33]. We shall now discuss in Section 3.2.1 the steps for computing the nodal displacements.  We 
shall then discuss the relation derived for estimating the transfer function in 3.2.2. 

 
3.2.1 Preliminary data processing 
The direction and the magnitude of the displacement vector associated with each node is now computed as follows. We 
employ the method discussed in [33] to obtain the  directions of the model’s nodal displacement. Let min and max be 
two vectors that represent the bounding co-ordinates of the lungs at the start of inhalation. Let pi be the position of node 
i at the start of inhalation, and di be a vector that represents the displacement direction of node i. Under the hypothesis 
that the direction of displacement is constant, the components of di may be simply modeled as first-order polynomials 
given by 

di .X = c1 × pi .X − min.X
max.X − min.X
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

c2

,      (1) 

di .Y = c3 × pi .Y − min.Y
max.Y − min.Y
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

c4

,              (2) 

di .Z = c5 × pi .Z − min.Z
max.Z − min.Z
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

c6

,         (3) 

where c1, c2, c3,c4, c5, and c6 are direction constants.  Based on our previous analysis, the values of the constants are set 
as shown in Table.1. In order to compute the magnitude of the nodal displacement, a ray from each node of the 3D 
model at the start of inhalation is projected to intersect with the 3D model at the end of the inhalation. The magnitude of 
the projected ray of each node is considered as the required magnitude of the nodal displacement. 
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Table.1 Tabulation of direction constants 

Lung C1 C2 C3 C4 C5 C6 C7 C8 C9 

Left 0.09 0.23 0.4 0.5 0.1 2.3 0.01 0.95 0.07 

Right 0.09 0.22 0.39 0.51 0.11 2.2 0.01 0.96 0.05 
 
 
3.2.2 Deformation Operator.  
The general formula of the GF as an operator in continuous space is given as 

D(I) = K(J,I) × f (J)
J
∑ ,               (4) 

where D(I) is the displacement of the node I, f(J) is the force applied on node J, and K(J,I) is the GF operator 
(deformation kernel), which represents the elastic interaction between nodes taking into account both the inter-nodal 
distance and elastic properties. The general form of the kernel row is described in two different representations. The 
first one is given as 

),(sin),(cos),( IJzQIJzPIJK II += ,                        (5) 
where ),( IJz  is a function that returns a value in the range of zero to π2 .[34] PI and QI are arbitrary constants that 
take values between zero to 1.[35] Such a representation of the kernel row is also referred to as a discrete spectral 
representation. The values of PI and QI can be arbitrarily varied in order to simulate variations in the breathing 
conditions. With respect to the lung dynamics, the steerable constants of the discrete spectral representation can be used 
to model variations induced by diaphragm and abdominal movements. The above equation represents the kernel as a 
continuous trigonometric function discretized by the values of ),( IJz . A further mathematical simplification of 
equation (5) can be given as 

),('cos),( IJzCIJK I= ,                            (6) 
where CI is an arbitrary constant and ),(' IJz is a function that returns a value in the range of 0 to 2/π . Equation (6) 
represents a row of the kernel matrix as a cosine function. The second general form of the kernel row is described as a 
proportionality function of the piecewise Euclidean distance d(J,I) between I and J.[36] It can thus be written as 

),(4
),(

IJd
DIJK I

π
= ,       (7) 

where ID  is a proportionality constant, which depends on the deformation mechanics of the lungs. Equation (7) has 
been used for modeling unique cases pertaining to the mechanics. These unique cases discussed by Stakgold presents 
the different values of the proportionality constant.[35] In the case of lungs, the proportionality constant ID  remains 

unknown. We now merge the two definitions of the kernel in order to solve for z’(J,I). Since both CI and ID  of 

equation (6) and (7) act as proportionality constants, the values of cos(z’(J,I))  and 
1

4πd(J,I)
 can be equated.  z’(J,I) 

can now be written as 

z'(J,I) = cos−1( 1
4πd(J,I)

)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
.                           (8) 

It can be seen that for higher values of the Euclidean distance between J and I, the value of K(J,I) tends to zero. 
Additionally, the values of z’(J,I) and d(J,I) are proportional. However, in the case of lungs we consider a heterogenous 
elastic representation in order to account for the regional variations in the alveolar expansion. Thus equation (8) is 
modified as  

z'(J,I) = cos−1( 1
4πd'(J,I)

)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 ,                                 (9) 
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where d’(J,I) is a function that takes into account both the distance and the local elastic properties. For higher values of 
d’(J,I) the value of K(J,I) tends to zero. An initial representation for d’(J,I) is given as a linear combination of the 
distance and the elastic interaction.  

d'(J,I) = AI d(J,I) + BJe(J,I) ,                       (10) 
where AI and BI are arbitrary constants. These constants are also referred to as structural constants in the paper, since 
they both compute the function d’. The function e(J,I), which represents the elastic interaction between nodes J and I, is 
given as a difference in the alveolar expansion of the region surrounding nodes J and I. Such a representation is based 
on the fact that the air flows to the region of least resistance, which in our case is the region of higher alveolar 
expandability. The regional alveolar expandability is thus an indirect indicator of the YM. The regional alveolar 
expandability has been previously discussed in [37], [38], and [29]. The function e is thus defined as 

)()(),( IaJaIJe −= ,                (11) 
where a(J) is a function representing an estimated alveolar expandability in the region surrounding node J. The 
definition of the function  in terms of the alveolar expansion is an essential factor in estimating the kernel for the 3D 
lungs. It can be seen that the inverse lung deformation problem mathematically relates to computing the values of AI, BI, 
and CI for each node I. We now continue our discussion on (i) estimating the values of AI ,BI, and CI for each node I, 
and (ii) estimating the values of PI , QI and the  function Z’(J,I).  
A method to estimate the values of AI and BI using simultaneous equation based representation of equation (9) coupled 
with approximated kernels, discussed in [33], is as follows. For the 3D lung model extracted from the patient-data, two 
different estimates of the deformation kernel are first computed. Each deformation kernel is estimated, using only the 
structural parameters (piecewise Euclidean distance, and regional alveolar expandability). The second kernel is 
computed with the distance between any two nodes to be twice as that of the distance used in the estimation of the first 
kernel. Now using equation (7) we form two simultaneous equations for each node I, with the unknown being AI and BI. 
One may also note that ID   is eliminated in these equations. The values for the structural constants for each node are 
thus solved. The value of CI can be computed using equation (5) as  

CI = D[I]

f [J] × cos(z'(J,I))
J = 0

N

∑
.             (10) 

The values of CI for left and right lung models are plotted in Fig 1a and 1b respectively. For comparison purposes, we 
show the values of CI for normal left and right lung models in Fig 1c and 1d. It can be seen that changes in both the left 
and right lungs can be seen in tumor-influenced lung dynamics when compared to normal lungs. Such changes are 
attributed to the effects caused by the tumor.  
Now the values of IP  and IQ  can be written as 

III CP φcos=  and III CQ φsin= ,     (11) 
where φI  is an arbitrary parameter that takes value between 0 to π2 . The variations in lung deformations induced by 
varying the values of φI  are discussed in section 4. 
 
 
3.3 Pressure-Volume relation 
Changes in the PV curve are caused by the additional work during inspiration and expiration,[39] and are modeled 
using a bio-mathematical model discussed in [40]. The PV relation during inhalation and exhalation is represented 
using a second-order differential equation with a variable parameter. This parameter is further computed as a linear 
summation of products of a set of control parameters and trigonometric basis functions that represent the summary 
muscle resistance. The values of control parameters are extracted from patient’s specific clinical data.[41] We simulate 
a PV curve that represents tumor-influenced lung dynamics by varying the normal control constants discussed in [41]. 
One key property of the control constants that we use is that they form a converging sequence and the rate of 
convergence is observed to be slower under lower drive conditions. We thus decrease the rate of convergence of control 
parameters during inhalation by first multiplying every parameter with its exponent and then dividing the resultant with 
the exponent of the first parameter in order to keep the parameters in the same range of values. Let inh

iC  and exh
iC  be the 
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array of control constants during inhalation and exhalation and let inh
id  and exh

id  be the modified control constants 
respectively. The method to vary the control constants is given by        

( )
( )ϕ

ϕ
×
×

×= inh

inh
iinhinh

i C
C

Cd
0

0 log
log

 ,     (12) 

 

( )
( )ϕ

ϕ
×
××= exh

exh
iexhexh

i C
CCd

0
0 log

log
 ,     (13) 

where ϕ is a proportionality constant that relates the change in control constants to the amount of additional work. For 
experimental analysis the value of ϕ is set to 0.1. The PV curve generated for the modified control constants is shown 
in Fig 2. 
 

4. DISCUSSION 
 

Through our research we aim to extend the thoracic simulation paradigm to include real-time visualization of both 
normal and pathophysical 3D lung dynamics. This is achieved by estimating the deformation operator from a given 
patient data (discussed in section 3.2.2) and simulating the lung dynamics using a GPU based optimization (briefly 
discussed in section 3.2.1 and detailed in [31]). Such an approach coupled with the PV relation (discussed in section 
3.3) allows us to simulate tumor-influenced 3D lung deformations. The usage of a physically-based deformation 
approach for lung deformations allows us to model lung deformations with varations in physics-based parameters.  
Results of the 3D lung deformations are as shown in Fig 3a and 3b. Fig 3a shows the initial shape of lungs at the start of 
inhalation and Fig 3b shows the shape of lungs at the end of the inhalation cycle.  

The proposed framework takes into account the changes in deformation constraints imposed by the tumor (through the 
PV curve) on the lung’s air-volume. The deformation operator is represented using the discrete spectal representation of 
the GF, which facilitates obtaining physically-realistic variations of 3D lung deformation caused by variations in the 
rib-cage and diaphragm movements. The feasibility of simulating such variations in demonstrated in Fig.4a and 4b. For 
example, in Fig 4a the value of φI  was set to the normalized distance from the supporting surface (posterior side of 
lungs). In Fig 4b the the value of φI  was set to the square of the normalized distance from the supporting surface. The 
accuracy of such variations needs to be further verified and will be discussed in future investigations.  

The choice of a single compartmental model enables visualization of high-resolution 3D lung deformations. The 
accuracy in the usage of single compartmental model has been validated by some of the peers. The validation however 
needs to be performed for tumor-influenced lung dynamics across a wide range of human subjects of various age and 
race. The simulated lung dynamics also needs to be compared with 4D HRCT images of tumorous lung subjects with 
different breathing conditions.  Also, the direction constants (discussed in section 3.2.1) also need to be analyzed using 
tumorous 4D HRCT images for its correspondence with normal 4D HRCT images.  
The usage of the regional alveolar expandability (function a) as one of the parameters allows the proposed method to 
account for the physiology of human subjects. The variations in the alveolar expandability caused by a tumor need to be 
investigated by analyzing the CT datasets of tumor-influenced subjects across a wide range of age and race. The results 
of such an analysis will be discussed in future investigations. One may also note that the variations in the air 
constituents can lead to changes in the alveolar blood pressure, which subsequently alters the alveolar expandability. 
The proposed method can be expanded in order to address this aspect of the lung physiology.  
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    (a)       (b) 

      
    (c)       (d) 
Fig.1. The values of constants CI are plotted against the normalized Z values of the vertexes for the tumor-influenced 
left and right lung ((a) and (b)) and normal left and right lung ((c) and (d). 
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Fig 2. Normalized PV curve simulated for tumor-influenced lung dynamics. 

 

  
    (a)            (b) 

Fig.3. 3D models of  tumor-influenced lungs (a) at the start of inhalation and (b) at the end of inhalation. 
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    (a)       (b) 
Fig4. 3D deformed point-cloud models (red color) of tumor influenced lungs superimposed over 3D point-cloud models 
(white color) at the start of inhalation. Variations induced in the deformation is simulated by (a) setting the value of φI  
for each node I to the normalized distance from the supporting surface (posterior side of lungs), and (b) setting the value 
of φI   for each node I to the square of the normalized distance from the supporting surface. 
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