

Distributed Consistency Maintenance Scheme for
Interactive Mixed Reality Environments

Felix G. Hamza-Lup1, Charles E. Hughes1, Jannick P. Rolland1,2

(1) School of Computer Science
(2) College of Optics and Photonics: CREOL/FPCE

University of Central Florida
fhamza@cs.ucf.edu

ABSTRACT

Advances in computer networks and rendering systems facilitate
the creation of distributed collaborative environments in which
the distribution of information at remote locations allows
efficient communication. Particularly challenging are
distributed interactive Mixed Reality (MR) environments that
allow knowledge sharing through 3D information.

In a distributed interactive MR environment the dynamic shared
state represents the changing information that multiple
machines must maintain about the shared virtual components.
One of the challenges in such environments is maintaining a
consistent view of the dynamic shared state in the presence of
inevitable network latency and jitter. A consistent view of the
shared scene will significantly increase the sense of presence
among participants and facilitate their interactivity. In further
consideration of the latency problems and in the light of the
current trends in interactive distributed applications, we
propose a hybrid system architecture for sensor based
distributed environments that has the potential to improve the
system real-time behavior and scalability.

Keywords: Mixed Reality, Human Computer Interaction,
Distributed Systems, Sensors, Shared State.

1. INTRODUCTION

One of the challenges in distributed interactive virtual
environments is maintaining a consistent view of the shared
state in the presence of inevitable inconsistency factors. It is
only recently that researchers have begun to examine
systematically the effects of consistency on one's sense of
presence. A consistent view in a shared scene may facilitate
user interactions and thus significantly increase the sense of
presence among participants [1]. One way in which interaction
is related to presence is its ability to strengthen a participant's
attention and involvement [2].

The interactive and dynamic nature of a collaborative virtual
environment is constrained by latency. Latency generators can
be roughly grouped in two categories: computing system
latency and network infrastructure latency. In a Mixed Reality
(MR) environment, in describing the equipment (e.g. head-
mounted display) that provides stereoscopic visualization and
body parts tracking, the latency is increased with the time
elapsed from detecting the body part motion to the time the
appropriate image is displayed. The computing system latency
includes rendering delays (e.g. image-generation delay, video
sync delay, frame delay and internal display delay), mismatches
in data speed between the microprocessor and input/output
devices, sensor delays (e.g. tracker delays) and inadequate data
buffers [3]. However, rapid advances in hardware technology

are making computing system latency much smaller then that
caused by the network infrastructure. Hence, our focus here is
on reducing the network's contribution to potential
inconsistencies.

In this work we introduce and assess a new architecture for
sensor-based interactive distributed MR environments that falls
in-between the atomistic peer-to-peer model and the traditional
client-server model. The architecture facilitates the development
of distributed MR collaborative applications in which data
collected from real-time sensors is shared among the users.
Each node in the system is autonomous and fully manages its
resources and connectivity. The dynamic behavior of the nodes
is dictated by the human participants who manipulate the
sensors attached to those nodes.

The contribution of this paper consists of a shared state
maintenance scheme involving a hybrid architecture for sensor
based MR environments combined with a dynamic shared state
maintenance algorithm. We built and deploy a prototype
distributed MR environment using the proposed shared state
maintenance scheme and assess the levels of consistency
achieved as the number of participants varies.

2. RELATED WORK

A common approach for dynamic shared state maintenance is to
keep the state for each participant in a file. A networked file
system can be employed to provide distributed access to the
centralized information. Examples of such systems can be found
in [4],[5]. However such approaches suffer from scalability
issues.

Several research efforts have been directed towards dead-
reckoning algorithms to address the update rate problem by
maintaining a loose consistency of the shared state. The idea
behind dead reckoning is to transmit state updates less
frequently and to use the information contained in the available
updates to approximate the true shared state, in an effort to
improve scalability. Dead reckoning protocols for distributed
Virtual Reality (VR) environments imply two phases:
prediction and convergence. In the prediction phase the current
state is computed at each participant based on the previous
information. In the convergence phase the inaccuracies in the
predicted state are corrected and a smooth transition is assured.
To obtain better prediction results several research efforts have
been concentrating on matching the virtual entity characteristics
with the prediction algorithm to obtain an object-specialized
prediction [6-8].

While traditional distributed virtual environments separate
graphical and application state, several research projects like
Studierstube [9] , Repo-3D [10] and Avocado [11] try to

simplify the development of distributed virtual environments
by unifying the graphical and non-graphical state into a single
data structure shared over the network. In DIV [12] for
example, distribution is performed implicitly through a
mechanism that keeps multiple local replicas of a scene graph
synchronized without exposing this process to the application
programmer. The scene graph changes are propagated using
reliable multicast.

With advances in computer graphics and tracking systems the
research community has shifted attention to collaborative
environments that span the entire virtuality continuum, e.g.
Mixed Reality [13] and a subset of MR, Augmented Reality
(AR). As a common feature, the applications emerging from
these projects make extensive use of sensors (e.g. position
tracking, haptic devices) although they are based on local
collaboration paradigm. None of the research efforts concurrent
to these projects consider the possibility of collecting and
distributing real-time sensory information from multiple remote
sensors for supporting an interactive distributed MR
environment.

3. HUMAN COMPUTER INTERACTION - ACTION
FREQUENCY PATTERNS

Let's consider the following application scenario. A surgeon
located in an office building is analyzing a 3D model of the
mandible of a patient. This physician would like to discuss the
surgical procedure that will follow shortly with a colleague,
whose office is in another building. As part of the discussion,
they have to analyze the 3D model of the patient's mandible.
They use the 3D distributed visualization platform implemented
on the hospital's local area network. For stereoscopic
visualization, each office is equipped with a head mounted
display (HMD) [14] and a sensing glove [15] . In this scenario,
the distributed visualization platform allows one participant to
modify the position and orientation of the 3D model from a
mouse-driven graphical user interface (GUI) or through the
sensing glove illustrated in Fig.1.

(a) GUI based interaction. (b) Glove based interaction.

Fig.1. Interaction with the virtual world

There are two problems that arise from this scenario. The first is
related to the network latency. As one of the participants
manipulates the 3D model, the network latency desynchronizes
their common viewpoints. Moreover, since network jitter is also
present, the position/orientation drift among the views increases
in time while the participants are not aware of the inconsistency
of their viewpoints.

The second problem pertains to the nature of the interaction
with the objects in the shared scene. In this scenario, the 3D
object can be manipulated either from a GUI through discrete
and predictable actions, or by using the glove-like peripheral
device which updates the environment at a higher rate and
allows relatively unpredictable actions. The participant acting

on the GUI through the mouse, for example, cannot exceed a
certain frequency of actions mainly because of his motor
reaction time. The action frequency is limited by the fact that
the human-computer response time includes perceptual (i.e. user
perceives the items on the display or auditory signals), cognitive
(i.e. user retrieves information from his own memory), and
motor cycle times which can add up to an average of 240ms
[16]. At the same time, since the position and the orientation of
the object are set through the interface, predictable actions are
applied on the object (e.g. by pressing the GUI's "Rotate around
OX axis" button).

In contrast to the GUI, the glove-like peripheral device
generates updates at high frequencies e.g. a P5 glove [17] has an
optical tracking system attached that has a refresh rate of 60Hz
which is going to capture the participant actions at a higher
frequency than is attainable through the GUI. As a result, we
have two types of interaction with the 3D model that have
distinct patterns.

While the network latency problem is well known in distributed
interactive environments, the second problem is more subtle and
requires further analysis. Based on the above observations, we
proposed a novel criterion for categorization of distributed
interactive applications [18].

4. HYBRID NODES WITH REAL-TIME SENSORS

Distributed interactive MR environments involve the interaction
of several remote participants translated in a significant amount
of data that has to be collected from sensors and devices
attached to the participants. While some of the participants
actively modify the shared scene, other participants are passive,
in the sense that they do not interact with the shared scene.
From this point of view we define two categories of
participants: active participants and passive participants.

A node in the distributed system is viewed as a computing
device that allows a participant to interact with the virtual
components of the environment. Without loss of generality, we
will consider that each node has a set of sensors that provide
position and orientation information and a collection of
peripheral devices (e.g. mouse, keyboard). The discussion can
easily be extended to other types of sensors (e.g. haptic) and
other devices that can be part of the distributed system's
resources. The system must ensure that the data captured by
each node's sensors is distributed with minimum delay to all
interested participants to maintain the environment consistency.
Moreover, each node in the system will need to exchange its
sensory data with all or a predefined subset of the system's
nodes.

An active participant triggers the virtual object state changes
from a graphical interface or through a sensor attached to
his/her node. Passive participants do not trigger any
modifications of the shared scene. They just receive visual,
haptic and/or audio feedback from the environment. The
active/passive attributes of the participants can dynamically
change during collaboration. An active participant can become
passive and vice-versa depending on the collaboration needs.

A pure centralized data distribution approach (e.g. client-server)
would not be efficient because of the additional delay associated
with the data collection stage, followed by the data distribution.
An atomistic peer-to-peer approach would not fit either because
of the additional overhead in the data distribution. As a

fundamental property, the nodes in a sensor based distributed
system may act as data producers, consumers and distributors,
simultaneously. Based on this observation we define four types
or running modes for the distributed system's nodes: active
nodes, passive nodes, active forward nodes and passive forward
nodes. A description of each type of node and the processes that
run on them is available in . In what follows we briefly describe
the states of a node in a distributed interactive MR environment.

Let's denote the states as: {A, P, AF, PF}. "A" stands for
"active", "P" for "passive", "AF" for "Active Forwarder" and
"PF" for "Passive Forwarder". Let's denote the conditions that
trigger the change in state using a binary representation {00, 01,
10, and 11}

• 00 - the state changes from inactive to active
• 01 - the state changes from active to inactive
• 10 - the state change from forwarding off to on
• 11 - the state change from forwarding on to off

The behavior of a node can be represented as a state machine as
illustrated in Fig.2.

Fig. 2 State machine representing the hybrid node

Based on the above discussions, we introduce a data distribution
scheme targeted towards the development of sensor-based
distributed interactive MR environments.

Hybrid Data Distribution Scheme

The dynamic membership property of the environment as well
as the constraints of the interactive environment pointed us
towards a hybrid between a client-server and peer-to-peer
model. The proposed algorithm for data distribution is driven by
the assumption that each active node manages a small network
of potentially real-time sensors as illustrated in Fig. 3.

Fig. 3 Distributed interactive MR environment nodes and

sensors

The algorithm builds an overlay network at the application level
in which we employ the Core-Based Trees techniques for
multicast tree construction. Each node that becomes active (i.e.
"A" node) will advertise the availability of information to all

participants. Interested participants will join the multicast tree
cored at the "A" node. At a particular moment in time the
distributed interactive environment could contain several core-
based trees rooted at the "A" nodes. Fig. 4 provides a snapshot
in time of the distributed system.

Fig.4 Snapshot of a Distributed Interactive MR Environment.

Consistency Maintenance Algorithm

In a MR environment the proportion of virtual and real changes
continuously based on the participant's gaze and the interactions
in the environment. As opposed to Virtual Reality, a MR
environment might be less demanding on rendering and more
demanding on sensor and other data (e.g. each objects position
and orientation) distribution. Assuming a fairly homogenous
system, our main focus is the delay caused by the infrastructure
where the application is deployed.

To compensate for these communication delays and for the
variation in the delay (i.e. jitter) we have proposed an adaptive
consistency maintenance algorithm [19]. This algorithm was
combined with the hybrid architecture [20] and an interactive
3D AR environment has been implemented for assessment.

5. EXPERIMENTAL SETUP

To investigate the efficacy of the consistency maintenance
scheme we have developed a prototype application using the
Distributed Artificial Reality Environment DARE [21] and
VESS [22] frameworks.

System Setup

The application was deployed in a distributed system containing
six nodes interconnected on a 100 Mbps local area network.
Additionally two optical tracking sensors were used to insert
information into the environment at 60 Hz regarding the
position and orientation of the virtual objects in the scene.

Fig.5 Six-participant setup

"A" node

"PF" node "P" node

Network
WAN/LAN

Real-Time
Sensors

A P

AF PF

01

00

10 11

00

01

11 10

01,11 00,11

01,10 10,00

N1

Sensor 1 Sensor 2N2

N3

N5

N4

LAN

N6
GUIGUI

GUI

GUI

The interaction of the participants at nodes N1 and N3 on the
shared scene, is captured using optical tracking sensors attached
to the nodes as shown in Fig. 5. Participants at the other sites
may interact on the shared scene through a GUI. From the
hardware point of view each site consists of one head-mounted
display , a Linux based desktop and an ARC display [23] as
illustrated in Fig. 6.

(a) Optical See-through HMD (b) ARC Display

Fig. 6 Hardware components

Distributed Interactive AR/MR

At each location, the real environment is augmented with
floating 3D objects seen through the HMD as illustrated in
Fig.7.

Fig.7 Interactive 3D Visualization;
Participant and virtual 3D object

Participants can interact with the 3D objects in two ways. Using
a GUI they can point in the virtual space to different parts of the
virtual objects and they can manipulate them. An alternative
interaction method is using a position tracking probe (e.g.
glove) attached to an optical sensor. By manipulating the probe
the user can change the position and orientation of the virtual
objects. The application captures the information from the
tracking sensors at 60 Hz.

6. EXPERIMENTAL RESULTS AND ASSESSMENT

To assess the consistency maintenance scheme, the amount of
orientation drift between the node (participant) that interacts
with the virtual shared object and each of the other participating
nodes is computed. We have focused our experiments on the
assessment of the orientation drift. A similar assessment can be
done for the object's position.

To emphasize the process we describe a simple scenario. We
use two nodes denoted A and P, sharing the same virtual 3D
scene. A GUI is available at A, which allows the participant to
change the 3D object orientation by applying rotations around
the Cartesian axes. In this way, one participant generates events
from the interface, and each time an event is generated, the

object's orientation at both sites A and P is recorded. Because of
the network latency, different vectors at each node will describe
the orientation of the object. The rotations can be easily
expressed using quaternion notation.

Let qA express the rotation of an object at the A node and let qP
express the rotation of the same object at the P node. Both
participants see the same virtual scene and the object should
have exactly the same orientation. To quantify the difference
between the orientations of the object as rendered on each node,
we can compute the correction quaternion qE every time the
user triggers a new action. The correction can be expressed as

 PEA qqq = (1)

and thus
 1−= PAE qqq (2)
where
)(cos2 1

Eωα −= (3)

The angle α represents the drift between the orientations of the
3D object as seen by the two participants. To investigate the
effects of the network latency, we performed experiments at
different action velocities, given that the drift value for an
object is the product between the action velocity applied on that
object and the network latency. For example, let's assume a
simple scenario consisting of two nodes representing an active
and a passive participant. Suppose the average delay between
these nodes is tij= 0.2ms and the active participant applies an
action (e.g. a rotation around axis) on a 3D object in the shared
scene with the angular velocity ω = 10(degrees/s). The angular
drift in this case will be given by:

αij = ω tij= 0.002 (degrees)

On a higher delay infrastructure in which the delay is 15ms, the
same action would produce a drift:

α'ij = ω t'ij= 0.02 (degrees)

While keeping the same delay (tij= 0.2 ms), the drift increase
can be simulated by increasing the action velocity, i.e. ω = 100
degrees/sec. Therefore in order to simulate higher latency
networks in our experiments we vary the action angular velocity
from 1(degree/s) to 100(degrees/s). In this way we can simulate
network latencies of up to 20(ms) on a 0.2(ms) average delay
local area network.

Two participants

In the first set of experiments we've computed the orientation
drift as the participant applies actions on the virtual objects
without any compensation. The reason for these measurements
is to obtain a reference for the drift magnitude and see its
behavior as a participant interacts on the shared scene. The
variation of the orientation drift value and its trend line (i.e.
third order polynomial fit), while a set of fifty consecutive
actions (i.e. random rotations) were applied on the virtual
object, is illustrated in Fig.8.

Without any compensation the drift accumulates and the drift
angle reaches over 210 degrees after 50 consecutive random
rotations around the object axes when the rotations angular
velocity is 100 degrees/second.

R2 = 0.9829

R2 = 0.9735

R2 = 0.9534

0

30

60

90

120

150

180

210

240

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

No Update (speed=10 degrees/sec)

No Update (speed=50 degrees/sec)

No Update (speed=100 degrees/sec)

Fig. 8 Drift behavior with no drift compensation

In a second set of experiments we update the position of the
virtual object after each change in action attributes (i.e. after
each event). These changes are generated by the participant
interacting on the virtual object. As illustrated in Fig. 9, the
orientation drift is maintained at a fairly constant value. The
trend lines use a high order polynomial fit. The drift angle is
maintained at an average value of 11 degrees after 50
consecutive random rotations with an angular velocity of 100
degrees/second.

R2 = 0.511

R2 = 0.6713

R2 = 0.3671

0

2

4

6

8

10

12

14

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

Event U. (speed=10 degrees/sec)
Event U. (speed=50 degrees/sec)
Event U. (speed=100 degrees/sec)

Fig.9 Drift behavior using the Event Update compensation

In a third set of experiments, we have employed the adaptive
scene synchronization algorithm [19] to compensate for the
communication delay and jitter. As shown in Fig. 10 the drift
value is significantly decreased and kept at a constant level. A
higher order polynomial fit was used for the trend lines. As in
the case of event update the trend line has a sinusoidal shape
which has a negative effect on the correlation coefficient (R).
The sinusoidal shape of the trend line can be explained as an
effect of the buffering and other system threads at the network
and operating system level.

R2 = 0.7342

R2 = 0.4422

R2 = 0.5003

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50
Sample Number

D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)

ASA (speed=50 degrees/sec)

ASA (speed=100 degrees/sec)

Fig.10 Drift behavior using the Adaptive Synchronization

Algorithm

When the adaptive synchronization algorithm is used, the drift
angle is maintained constant at a value that is two orders of
magnitude lower that the average drifts without update and
approximately four times smaller that the average drift for the
event update.

Scalability Analysis

To start investigating the scalability of the approach, we have
increased the number of participants consecutively to three,
four, five and six. To quantify the scalability of the adaptive
synchronization algorithm regarding the number of participants
we define a metric analyzing the relationship between the
number of participants in the system and the drift values among
their views.

Let ψi be the average drift value over all the participants, when
i+1 participants are in the system. Without loss of generality,
let us consider an action velocity of 100 degrees per second. In
the case of a two-participant setup, results show that the average
drift is ψ1 equal 2.83 degrees, while in the case of a six
participants setup the average drift is ψ5 equal 3.17 degrees. An
algorithm with a low degree of scalability would have at least a
linear increase in drift, i.e. ψn equal n* ψ1. On the other end, a
high degree of scalability would mean ψn ≈ ψ1. Using this
metric, in the six participant setup, a low degree of scalability
would translate to ψ5 equal 5*ψ1 or 14.15 degrees. However, the
experimental results and trend lines in Fig. 11 show that ψ5 ≈
ψ1. Thus, the algorithm gives promising results in terms of
scalability regarding the number of participants. The trend lines
have been plotted using linear regression. The slope of the
regression line increases slightly with the action speed as
illustrated in Fig. 11.

R2 = 0.7858

R2 = 0.7352

R2 = 0.8953

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Number of Nodes

A
ve

ra
ge

 D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

Fig.11 Drift behavior as the number of participants increases

7. CONCLUSION

We have proposed a novel approach for managing distributed
sensors as part of an interactive distributed MR environment
that combines a hybrid architecture with an adaptive delay
compensation algorithm. The proposed approach allows
dynamic behaviors for the distributed systems nodes allowing
interactive data capturing and distribution. Furthermore we
avoid a complex architecture as we believe simplicity is a key
component in developing interactive real-time applications.

The distributed visualization application implemented on a
hybrid node infrastructure is a simple example of a distributed
interactive MR environment that utilizes sensors. We plan to

experiment with other interactive distributed MR applications in
the near future.

A preliminary assessment of scalability regarding the number of
passive participants gives promising results. We are in the
process of investigating the scalability of the system regarding
active participants.

8. ACKNOWLEDGEMENTS

We wish to thank our sponsors: The Link Foundation, NSF/ITR
IIS-00-820-16 and the US Army Simulation, Training, and
Instrumentation Command (STRICOM) for their invaluable
support for this research.

9. REFERENCES

[1] Meehan, M., Razzaque, S., Whitton, M. C., et al. Effect of

Latency on Presence in Stressful Virtual
Environments. in IEEE Virtual Reality. 2003. Los
Angeles, CA.

[2] Lombard, M. and Ditton, T., At the Heart of it all: The
concept of presence. Journal of Computer-Mediated
Communication, 1997. 3(2).

[3] Swindells, C., Dill, J. C., and Booth, K. S. System Lag
Tests for Augmented and Virtual Environments. in
13st ACM Symposium on User Interface Software and
Technology. 2000. San Diego, CA.

[4] Callaghan, B., Pawlowski, B., and Staubach, P., NFS
version 3 protocol specification. Request for
Comments (RFC) 1813. 1995, Information Sciences
Institute: Marina del Rey, CA.

[5] Campbell, R. Managing AFS: The Andrew File System.
1998. Saddle River, NJ: Prentice-Hall.

[6] Katz, A. and Graham, K. Dead reckoning for airplanes in
coordinated flight. in Tenth Workshop on Standards
for the Interoperability of Defense Simulations. 1994.
Orlando, FL: Institute for Simulation and Training.

[7] Pratt, D. R., A software architecture for the construction
and management of real-time virtual worlds., in
Computer Science. 1993, Naval Postgraduate School:
Monterey, CA.

[8] Friedman, M., Starner, T., and Pentland, A. Device
Synchronization using an optimal linear filter. in
Symposium on Interactive 3D graphics. 1992.
Cambridge, MA: ACM SIGGRAPH.

[9] Schmalstieg, D. and Hesina, G. Distributed Applications for
Collaborative Augmented Reality. in IEEE Virtual
Reality 2002. 2002. Orlando, Florida.

[10] MacIntyre, B. and Feiner, S. A Distributed 3D Graphics
Library. in ACM SIGGRAPH. 1998.

[11] Tramberend, H. Avocado: A Distributed Virtual Reality
Framework. in IEEE Virtual Reality. 1999. Houston,
TX.

[12] Hesina, G., Schmalstieg, D., Fuhrmann, A., et al.
Distributed Open Inventor: A Practical Approach to
Distributed 3D Graphics. in ACM Virtual Reality
Software and Technology. 1999. London.

[13] Tamura, H. Overview and final results of the MR project.
in International Symposium on Mixed Reality. 2001.
Yokohama, Japan.

[14] Rolland, J. P., Biocca, F., Hua, H., et al., Teleportal
Augmented Reality System: Integrating virtual
objects, remote collaborators, and physical reality for
distributed networked manufacturing., in Virtual and
Augmented Reality Applications in Manufacturing,

S.K.O.a.A.Y.C. Nee, Editor. 2004, Springer-Verlag
London Ltd. p. 400.

[15] Sturman, D. J. and Zeltzer, D., A survey of glove-based
input. IEEE Computer Graphics and Applications,
1994. 14(1): p. 30-39.

[16] Eberts, R. E. and Eberts, C. G., Four Approaches to
Human Computer Interaction, in Intelligent
interfaces: theory, research, and design, P.A.
Hancock and M.H. Chignell, Editors. 1989, North-
Holland. p. 69-127.

[17] Essential Reality, i., P5 Manual. 2002.
[18] Hamza-Lup, F. and Rolland, J. P., Scene Synchronization

for Real-Time Interaction in Distributed Mixed
Reality and Virtual Reality Environments.
PRESENCE: Teleoperators and Virtual
Environments, 2004. 13(3).

[19] Hamza-Lup, F. and Rolland, J. P. Adaptive Scene
Synchronization for Virtual and Mixed Reality
Environments. in IEEE VR 2004. 2004. Chicago, MI.

[20] Hamza-Lup, F., Hughes, C., and Rolland, J. P. Hybrid
Nodes with Sensors - Architecture for Interactive
Distributed Mixed and Virtual Reality Environments.
in 8th World Multiconference on Systemics,
Cybernetics and Informatics. 2004. Orlando, FL.

[21] Hamza-Lup, F. G., Davis, L., Hughes, C. E., et al., Where
Digital Meets Physical - Computer-Based Distributed
Collaborative Environments, in CrossRoads, ACM,
Editor. 2003.

[22] Daly, J., Kline, B., and Martin, G. VESS: Coordinating
Graphics, Audio, and User Interaction in Virtual
Reality Applications. in IEEE Virtual Reality. 2002.
Orlando, FL.

[23] Davis, L., Rolland, J. P., Hamza-Lup, F., et al., Enabling a
Continuum of Virtual Environment Experiences.
IEEE Computer Graphics & Applications, 2003.
23(2): p. 10-12.

