
 

Distributed Consistency Maintenance Scheme for  
Interactive Mixed Reality Environments 

 
Felix G. Hamza-Lup1, Charles E. Hughes1, Jannick P. Rolland1,2 

(1) School of Computer Science 
(2) College of Optics and Photonics: CREOL/FPCE 

University of Central Florida 
fhamza@cs.ucf.edu 

 
 

ABSTRACT 
 

Advances in computer networks and rendering systems facilitate 
the creation of distributed collaborative environments in which 
the distribution of information at remote locations allows 
efficient communication. Particularly challenging are 
distributed interactive Mixed Reality (MR) environments that 
allow knowledge sharing through 3D information.  
 
In a distributed interactive MR environment the dynamic shared 
state represents the changing information that multiple 
machines must maintain about the shared virtual components. 
One of the challenges in such environments is maintaining a 
consistent view of the dynamic shared state in the presence of 
inevitable network latency and jitter. A consistent view of the 
shared scene will significantly increase the sense of presence 
among participants and facilitate their interactivity. In further 
consideration of the latency problems and in the light of the 
current trends in interactive distributed applications, we 
propose a hybrid system architecture for sensor based 
distributed environments that has the potential to improve the 
system real-time behavior and scalability. 
 
Keywords: Mixed Reality, Human Computer Interaction, 
Distributed Systems, Sensors, Shared State. 
 

1. INTRODUCTION 
 
One of the challenges in distributed interactive virtual 
environments is maintaining a consistent view of the shared 
state in the presence of inevitable inconsistency factors. It is 
only recently that researchers have begun to examine 
systematically the effects of consistency on one's sense of 
presence. A consistent view in a shared scene may facilitate 
user interactions and thus significantly increase the sense of 
presence among participants [1]. One way in which interaction 
is related to presence is its ability to strengthen a participant's 
attention and involvement [2].  
 
The interactive and dynamic nature of a collaborative virtual 
environment is constrained by latency.  Latency generators can 
be roughly grouped in two categories: computing system 
latency and network infrastructure latency. In a Mixed Reality 
(MR) environment, in describing the equipment (e.g. head-
mounted display) that provides stereoscopic visualization and 
body parts tracking, the latency is increased with the time 
elapsed from detecting the body part motion to the time the 
appropriate image is displayed. The computing system latency 
includes rendering delays (e.g. image-generation delay, video 
sync delay, frame delay and internal display delay), mismatches 
in data speed between the microprocessor and input/output 
devices, sensor delays (e.g. tracker delays) and inadequate data 
buffers [3]. However, rapid advances in hardware technology 

are making computing system latency much smaller then that 
caused by the network infrastructure. Hence, our focus here is 
on reducing the network's contribution to potential 
inconsistencies.  
 
In this work we introduce and assess a new architecture for 
sensor-based interactive distributed MR environments that falls 
in-between the atomistic peer-to-peer model and the traditional 
client-server model. The architecture facilitates the development 
of distributed MR collaborative applications in which data 
collected from real-time sensors is shared among the users. 
Each node in the system is autonomous and fully manages its 
resources and connectivity. The dynamic behavior of the nodes 
is dictated by the human participants who manipulate the 
sensors attached to those nodes.  
 
The contribution of this paper consists of a shared state 
maintenance scheme involving a hybrid architecture for sensor 
based MR environments combined with a dynamic shared state 
maintenance algorithm. We built and deploy a prototype 
distributed MR environment using the proposed shared state 
maintenance scheme and assess the levels of consistency 
achieved as the number of participants varies. 
 

2. RELATED WORK 
 
A common approach for dynamic shared state maintenance is to 
keep the state for each participant in a file. A networked file 
system can be employed to provide distributed access to the 
centralized information. Examples of such systems can be found 
in [4],[5]. However such approaches suffer from scalability 
issues. 
 
Several research efforts have been directed towards dead-
reckoning algorithms to address the update rate problem by 
maintaining a loose consistency of the shared state. The idea 
behind dead reckoning is to transmit state updates less 
frequently and to use the information contained in the available 
updates to approximate the true shared state, in an effort to 
improve scalability. Dead reckoning protocols for distributed 
Virtual Reality (VR) environments imply two phases: 
prediction and convergence. In the prediction phase the current 
state is computed at each participant based on the previous 
information. In the convergence phase the inaccuracies in the 
predicted state are corrected and a smooth transition is assured. 
To obtain better prediction results several research efforts have 
been concentrating on matching the virtual entity characteristics 
with the prediction algorithm to obtain an object-specialized 
prediction [6-8]. 
 
While traditional distributed virtual environments separate 
graphical and application state, several research projects like 
Studierstube [9] , Repo-3D  [10] and Avocado [11] try to 



 

simplify the development of  distributed virtual environments 
by unifying the graphical and non-graphical state into a single 
data structure shared over the network. In DIV [12]  for 
example, distribution is performed implicitly through a 
mechanism that keeps multiple local replicas of a scene graph 
synchronized without exposing this process to the application 
programmer. The scene graph changes are propagated using 
reliable multicast. 
 
With advances in computer graphics and tracking systems the 
research community has shifted attention to collaborative 
environments that span the entire virtuality continuum, e.g. 
Mixed Reality [13] and a subset of MR, Augmented Reality 
(AR). As a common feature, the applications emerging from 
these projects make extensive use of sensors (e.g. position 
tracking, haptic devices) although they are based on local 
collaboration paradigm. None of the research efforts concurrent 
to these projects consider the possibility of collecting and 
distributing real-time sensory information from multiple remote 
sensors for supporting an interactive distributed MR 
environment. 
 

3. HUMAN COMPUTER INTERACTION - ACTION 
FREQUENCY PATTERNS 

 
Let's consider the following application scenario. A surgeon 
located in an office building is analyzing a 3D model of the 
mandible of a patient. This physician would like to discuss the 
surgical procedure that will follow shortly with a colleague, 
whose office is in another building.  As part of the discussion, 
they have to analyze the 3D model of the patient's mandible. 
They use the 3D distributed visualization platform implemented 
on the hospital's local area network. For stereoscopic 
visualization, each office is equipped with a head mounted 
display (HMD) [14]  and a sensing glove [15] . In this scenario, 
the distributed visualization platform allows one participant to 
modify the position and orientation of the 3D model from a 
mouse-driven graphical user interface (GUI) or through the 
sensing glove illustrated in Fig.1. 
 

 
(a) GUI based interaction. (b) Glove based interaction.

Fig.1. Interaction with the virtual world 
 
There are two problems that arise from this scenario. The first is 
related to the network latency. As one of the participants 
manipulates the 3D model, the network latency desynchronizes 
their common viewpoints. Moreover, since network jitter is also 
present, the position/orientation drift among the views increases 
in time while the participants are not aware of the inconsistency 
of their viewpoints.  
 
The second problem pertains to the nature of the interaction 
with the objects in the shared scene. In this scenario, the 3D 
object can be manipulated either from a GUI through discrete 
and predictable actions, or by using the glove-like peripheral 
device which updates the environment at a higher rate and 
allows relatively unpredictable actions. The participant acting 

on the GUI through the mouse, for example, cannot exceed a 
certain frequency of actions mainly because of his motor 
reaction time. The action frequency is limited by the fact that 
the human-computer response time includes perceptual (i.e. user 
perceives the items on the display or auditory signals), cognitive 
(i.e. user retrieves information from his own memory), and 
motor cycle times which can add up to an average of 240ms 
[16]. At the same time, since the position and the orientation of 
the object are set through the interface, predictable actions are 
applied on the object (e.g. by pressing the GUI's "Rotate around 
OX axis" button).  
 
In contrast to the GUI, the glove-like peripheral device 
generates updates at high frequencies e.g. a P5 glove [17] has an 
optical tracking system attached that has a refresh rate of 60Hz 
which is going to capture the participant actions at a higher 
frequency than is attainable through the GUI. As a result, we 
have two types of interaction with the 3D model that have 
distinct patterns.  
 
While the network latency problem is well known in distributed 
interactive environments, the second problem is more subtle and 
requires further analysis. Based on the above observations, we 
proposed a novel criterion for categorization of distributed 
interactive applications [18]. 
 

4. HYBRID NODES WITH REAL-TIME SENSORS 
  
Distributed interactive MR environments involve the interaction 
of several remote participants translated in a significant amount 
of data that has to be collected from sensors and devices 
attached to the participants. While some of the participants 
actively modify the shared scene, other participants are passive, 
in the sense that they do not interact with the shared scene. 
From this point of view we define two categories of 
participants: active participants and passive participants.  
 
A node in the distributed system is viewed as a computing 
device that allows a participant to interact with the virtual 
components of the environment. Without loss of generality, we 
will consider that each node has a set of sensors that provide 
position and orientation information and a collection of 
peripheral devices (e.g. mouse, keyboard). The discussion can 
easily be extended to other types of sensors (e.g. haptic) and 
other devices that can be part of the distributed system's 
resources. The system must ensure that the data captured by 
each node's sensors is distributed with minimum delay to all 
interested participants to maintain the environment consistency. 
Moreover, each node in the system will need to exchange its 
sensory data with all or a predefined subset of the system's 
nodes.  
 
An active participant triggers the virtual object state changes 
from a graphical interface or through a sensor attached to 
his/her node. Passive participants do not trigger any 
modifications of the shared scene. They just receive visual, 
haptic and/or audio feedback from the environment. The 
active/passive attributes of the participants can dynamically 
change during collaboration. An active participant can become 
passive and vice-versa depending on the collaboration needs. 
 
A pure centralized data distribution approach (e.g. client-server) 
would not be efficient because of the additional delay associated 
with the data collection stage, followed by the data distribution. 
An atomistic peer-to-peer approach would not fit either because 
of the additional overhead in the data distribution. As a 



 

fundamental property, the nodes in a sensor based distributed 
system may act as data producers, consumers and distributors, 
simultaneously. Based on this observation we define four types 
or running modes for the distributed system's nodes: active 
nodes, passive nodes, active forward nodes and passive forward 
nodes. A description of each type of node and the processes that 
run on them is available in . In what follows we briefly describe 
the states of a node in a distributed interactive MR environment. 
 
Let's denote the states as: {A, P, AF, PF}. "A" stands for 
"active", "P" for "passive", "AF" for "Active Forwarder" and 
"PF" for "Passive Forwarder". Let's denote the conditions that 
trigger the change in state using a binary representation {00, 01, 
10, and 11}  

• 00 - the state changes from inactive to active   
• 01 - the state changes from active to inactive  
• 10 - the state change from forwarding off to on 
• 11 - the state change from forwarding on to off 

 
The behavior of a node can be represented as a state machine as 
illustrated in Fig.2. 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2 State machine representing the hybrid node 
 
Based on the above discussions, we introduce a data distribution 
scheme targeted towards the development of sensor-based 
distributed interactive MR environments. 
 
Hybrid Data Distribution Scheme 
 
The dynamic membership property of the environment as well 
as the constraints of the interactive environment pointed us 
towards a hybrid between a client-server and peer-to-peer 
model. The proposed algorithm for data distribution is driven by 
the assumption that each active node manages a small network 
of potentially real-time sensors as illustrated in Fig. 3.   
 

 
Fig. 3 Distributed interactive MR  environment  nodes and 

sensors 
 

The algorithm builds an overlay network at the application level 
in which we employ the Core-Based Trees  techniques for 
multicast tree construction. Each node that becomes active (i.e. 
"A" node) will advertise the availability of information to all 

participants. Interested participants will join the multicast tree 
cored at the "A" node. At a particular moment in time the 
distributed interactive environment could contain several core-
based trees rooted at the "A" nodes. Fig. 4 provides a snapshot 
in time of the distributed system. 

 
 

Fig.4  Snapshot of a Distributed Interactive MR Environment. 
 
Consistency Maintenance Algorithm 
 
In a MR environment the proportion of virtual and real changes 
continuously based on the participant's gaze and the interactions 
in the environment. As opposed to Virtual Reality, a MR 
environment might be less demanding on rendering and more 
demanding on sensor and other data (e.g. each objects position 
and orientation) distribution. Assuming a fairly homogenous 
system, our main focus is the delay caused by the infrastructure 
where the application is deployed. 
 
To compensate for these communication delays and for the 
variation in the delay (i.e. jitter) we have proposed an adaptive 
consistency maintenance algorithm [19]. This algorithm was 
combined with the hybrid architecture [20] and an interactive 
3D AR environment has been implemented for assessment. 
 

5. EXPERIMENTAL SETUP 
 
To investigate the efficacy of the consistency maintenance 
scheme we have developed a prototype application using the 
Distributed Artificial Reality Environment DARE [21]  and 
VESS [22]  frameworks.   
 
System Setup 
 
The application was deployed in a distributed system containing 
six nodes interconnected on a 100 Mbps local area network. 
Additionally two optical tracking sensors were used to insert 
information into the environment at 60 Hz regarding the 
position and orientation of the virtual objects in the scene.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.5 Six-participant setup 
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The interaction of the participants at nodes N1 and N3 on the 
shared scene, is captured using optical tracking sensors attached 
to the nodes as shown in Fig. 5. Participants at the other sites 
may interact on the shared scene through a GUI. From the 
hardware point of view each site consists of one head-mounted 
display , a Linux based desktop and an ARC display  [23] as 
illustrated in Fig. 6. 
 

(a) Optical See-through HMD (b) ARC Display 
 

Fig. 6 Hardware components 
 

Distributed Interactive AR/MR  
 
At each location, the real environment is augmented with 
floating 3D objects seen through the HMD as illustrated in 
Fig.7.  
 

 
 

Fig.7 Interactive 3D Visualization;  
Participant and virtual 3D object 

 
Participants can interact with the 3D objects in two ways. Using 
a GUI they can point in the virtual space to different parts of the 
virtual objects and they can manipulate them. An alternative 
interaction method is using a position tracking probe (e.g. 
glove) attached to an optical sensor. By manipulating the probe 
the user can change the position and orientation of the virtual 
objects. The application captures the information from the 
tracking sensors at 60 Hz.  
 

6. EXPERIMENTAL RESULTS AND ASSESSMENT 
 
To assess the consistency maintenance scheme, the amount of 
orientation drift between the node (participant) that interacts 
with the virtual shared object and each of the other participating 
nodes is computed. We have focused our experiments on the 
assessment of the orientation drift. A similar assessment can be 
done for the object's position.  
 
To emphasize the process we describe a simple scenario. We 
use two nodes denoted A and P, sharing the same virtual 3D 
scene. A GUI is available at A, which allows the participant to 
change the 3D object orientation by applying rotations around 
the Cartesian axes. In this way, one participant generates events 
from the interface, and each time an event is generated, the 

object's orientation at both sites A and P is recorded. Because of 
the network latency, different vectors at each node will describe 
the orientation of the object. The rotations can be easily 
expressed using quaternion notation. 
 
Let qA express the rotation of an object at the A node and let qP 
express the rotation of the same object at the P node. Both 
participants see the same virtual scene and the object should 
have exactly the same orientation. To quantify the difference 
between the orientations of the object as rendered on each node, 
we can compute the correction quaternion qE every time the 
user triggers a new action. The correction can be expressed as 
 
  PEA qqq =     (1) 

and thus    
  1−= PAE qqq    (2) 
where 
  )(cos2 1

Eωα −=    (3) 
 

The angle α represents the drift between the orientations of the 
3D object as seen by the two participants. To investigate the 
effects of the network latency, we performed experiments at 
different action velocities, given that the drift value for an 
object is the product between the action velocity applied on that 
object and the network latency. For example, let's assume a 
simple scenario consisting of two nodes representing an active 
and a passive participant. Suppose the average delay between 
these nodes is tij= 0.2ms and the active participant applies an 
action (e.g. a rotation around axis) on a 3D object in the shared 
scene with the angular velocity ω = 10(degrees/s). The angular 
drift in this case will be given by: 
 

αij = ω tij= 0.002 (degrees) 
 

On a higher delay infrastructure in which the delay is 15ms, the 
same action would produce a drift: 
 

α'ij = ω t'ij= 0.02 (degrees) 
 
While keeping the same delay (tij= 0.2 ms), the drift increase 
can be simulated by increasing the action velocity, i.e. ω = 100 
degrees/sec. Therefore in order to simulate higher latency 
networks in our experiments we vary the action angular velocity 
from 1(degree/s) to 100(degrees/s). In this way we can simulate 
network latencies of up to 20(ms) on a 0.2(ms) average delay 
local area network.  
 
Two participants  
 
In the first set of experiments we've computed the orientation 
drift as the participant applies actions on the virtual objects 
without any compensation. The reason for these measurements 
is to obtain a reference for the drift magnitude and see its 
behavior as a participant interacts on the shared scene. The 
variation of the orientation drift value and its trend line (i.e. 
third order polynomial fit), while a set of fifty consecutive 
actions (i.e. random rotations) were applied on the virtual 
object, is illustrated in Fig.8.  
 
Without any compensation the drift accumulates and the drift 
angle reaches over 210 degrees after 50 consecutive random 
rotations around the object axes when the rotations angular 
velocity is 100 degrees/second. 
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Fig. 8 Drift behavior with no drift compensation 

 
In a second set of experiments we update the position of the 
virtual object after each change in action attributes (i.e. after 
each event). These changes are generated by the participant 
interacting on the virtual object. As illustrated in Fig. 9, the 
orientation drift is maintained at a fairly constant value. The 
trend lines use a high order polynomial fit. The drift angle is 
maintained at an average value of 11 degrees after 50 
consecutive random rotations with an angular velocity of 100 
degrees/second.   
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Fig.9 Drift behavior using the Event Update compensation 

 
In a third set of experiments, we have employed the adaptive 
scene synchronization algorithm [19] to compensate for the 
communication delay and jitter. As shown in Fig. 10 the drift 
value is significantly decreased and kept at a constant level. A 
higher order polynomial fit was used for the trend lines. As in 
the case of event update the trend line has a sinusoidal shape 
which has a negative effect on the correlation coefficient (R). 
The sinusoidal shape of the trend line can be explained as an 
effect of the buffering and other system threads at the network 
and operating system level.   
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Fig.10 Drift behavior using the Adaptive Synchronization 

Algorithm 

When the adaptive synchronization algorithm is used, the drift 
angle is maintained constant at a value that is two orders of 
magnitude lower that the average drifts without update and 
approximately four times smaller that the average drift for the 
event update. 
 
Scalability Analysis 
 
To start investigating the scalability of the approach, we have 
increased the number of participants consecutively to three, 
four, five and six. To quantify the scalability of the adaptive 
synchronization algorithm regarding the number of participants 
we define a metric analyzing the relationship between the 
number of participants in the system and the drift values among 
their views. 
 
Let ψi be the average drift value over all the participants, when 
i+1 participants are in the system.  Without loss of generality, 
let us consider an action velocity of 100 degrees per second.  In 
the case of a two-participant setup, results show that the average 
drift is ψ1 equal 2.83 degrees, while in the case of a six 
participants setup the average drift is ψ5 equal 3.17 degrees. An 
algorithm with a low degree of scalability would have at least a 
linear increase in drift, i.e. ψn equal n* ψ1.  On the other end, a 
high degree of scalability would mean ψn ≈ ψ1. Using this 
metric, in the six participant setup, a low degree of scalability 
would translate to ψ5 equal 5*ψ1 or 14.15 degrees. However, the 
experimental results and trend lines in Fig. 11 show that ψ5 ≈ 
ψ1. Thus, the algorithm gives promising results in terms of 
scalability regarding the number of participants. The trend lines 
have been plotted using linear regression. The slope of the 
regression line increases slightly with the action speed as 
illustrated in Fig. 11. 
 

R2 = 0.7858

R2 = 0.7352

R2 = 0.8953

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Number of Nodes

A
ve

ra
ge

 D
rif

t A
ng

le
 (d

eg
re

es
)

ASA (speed=10 degrees/sec)
ASA (speed=50 degrees/sec)
ASA (speed=100 degrees/sec)

 
Fig.11 Drift behavior as the number of participants increases 

 
7. CONCLUSION 

 
We have proposed a novel approach for managing distributed 
sensors as part of an interactive distributed MR environment 
that combines a hybrid architecture with an adaptive delay 
compensation algorithm. The proposed approach allows 
dynamic behaviors for the distributed systems nodes allowing 
interactive data capturing and distribution. Furthermore we 
avoid a complex architecture as we believe simplicity is a key 
component in developing interactive real-time applications. 
 
The distributed visualization application implemented on a 
hybrid node infrastructure is a simple example of a distributed 
interactive MR environment that utilizes sensors. We plan to 



 

experiment with other interactive distributed MR applications in 
the near future.  
 
A preliminary assessment of scalability regarding the number of 
passive participants gives promising results. We are in the 
process of investigating the scalability of the system regarding 
active participants. 
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