Abstract: 1n this paper, we show that the error propagation coefficient in a slope-

type zonal wavefront estimate can be expressed as a function of the eigenvalues of the
wavefront reconstruction matrix. With a new indexing order for the grid array of Hudgin
model, we show that the new optimized model with an odd-number of dimension size
minimizes the error propagation in wavefront reconstruction, which is even better than
Noll’s theoretical expectation. In fact, Noll’s theoretical result is equivalent to the
optimized configuration with an even-number of dimension size. This finding illustrates
that the new optimized reconstruction scheme with an odd-number dimension grid should
be adopted in high-precision wavefront estimation.

@2004 Optical Society of America

OCIS codes: 000.3860, 010.7350, 220.4840

1.  Error propagation in wavefront estimation

In optical testing, wavefront reconstruction is a technique that converts wavefront
measurements into wavefront phases. Write this conversion in matrix form, which is

CW=S§, (1)
where C is the wavefront reconstruction matrix, and S is the wavefront difference vector,
and W is the wavefront phase vector. Due to the measurement noise this matrix equation
does not have an exact solution but weak solutions, which can be obtained by the least
square method. The normal matrix equation is

Cc'Cw=C'Ss. 2

This is a discretization form of Poisson equation



VW =VS =1{(y,z) 3)
The reconstructed wavefront errors are from two sources, one is the algorithm
discretization errors, which depends on the basic reconstruction scheme we adopted; the
other one is from the wavefront sensor measurements, such as the CCD centroiding errors.

If we consider the wavefront measurement noise N only, we have S=S;+N ,
where S, =VW, is the vector of theoretical wavefront difference, and
N= (n1 n, - n, )T is the vector of measurement errors in the wavefront difference.
Suppose the vector of wavefront error induced from the wavefront slope errors is
32(51 & gm)T,then we have

C'Ce=C'N “)

If C'C is invertible, then we have

£e=(C'"O)'C'N (5)
Therefore,
e’ =(C'O)'C'NN"c(Cc'O)". (6)
Where
n’  nn, nn,
NN =| ™ "22 ol (7)
n,n, nm.n2 n;f,

If we assume that the wavefront-difference errors are independent, uncorrelated, of the
same variance s> with zero mean, the ensemble statistical average of the slope errors

el
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Then Eq.(6) becomes
g’ =62(C"'C)" (10)
Taking Frobenius norms in both sides of the Eq.( 10). For the left side, we have
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is the Euclidian norm of vector €. For the right side Eq.(10), we have

€0y ,= ci(tr{(CTC)l [(CTC)I]THW (13)

0.(CO)| =0,

Therefore,
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where tr KCTC)%J is the trace of matrix (CTC)f2 . If an eigenvalue of C'C is A, then
C'CX=31X (15)
where X is called an eigenvector for eigenvalue A . Obviously,
T )2 -2

and the eigenvalue of (CTC)f2 is A7 . We know that



i=1 , (17)

so we have
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If we define the error propagation coefficient 7 as the ratio of the mean variance of the

wavefront reconstruction error, given by

ol =g, /m (19)
to the variance of the wavefront difference measurement error o>, i.e.
) m 1/2
o 1 5
=—2=— > A . (20)
ey

This formula tells that the error propagation in zonal wavefront reconstruction is
determined by the eigenvalues and the matrix dimension size of the wavefront
reconstruction matrix only. Once the eigenvalues of the reconstruction matrix are
determined, the error propagation coefficient is known. Now the problem is how to find
the eigenvalues of the wavefront reconstruction matrix. Since the normal equation
matrices are symmetrical matrices, we can employ the classical Jacobi method”, for

example, to evaluate the eigenvalues.

2. Wavefront reconstruction schemes

2.1 Review of the error propagation estimations

Wavefront reconstruction schemes can be categorized into three reconstruction

geometries: the Hudgin model,® the Southwell model °, and the Fried model.'! The



discretization errors of this wavefront reconstruction geometry are not our concern in this

paper’ . An analysis of error propagation from the wavefront slope measurement will be

detailed in this part.
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Fig. 1. The Wavefront reconstruction schemes

(1) Hudgin model (2) Southwell model (3) Fried model.

The error propagation coefficient in wavefront reconstruction is defined as the ratio of
mean-square phase errors to the variance of the phase difference measurements. The
simulation results for the three reconstruction geometries are shown as below:

Fried model'

Mg = 0.6558+0.32061n() 1)
Hudgin model°

M tgn = 0.561+0.103 In(7) (22)
Southwell model®

Msouamen = —0-10447 +0.2963In(r) (23)



The Southwell geometry is characterized by taking the wavefront slope measurements
and wavefront phase estimations at the same nodes, and it has been demonstrated to have

the lowest error propagation in wavefront reconstruction’, as shown in Figure 2.
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Fig. 2 Previous plots of error propagations

Noll proved analytically that a Ln(t) dependent theoretical formula for error propagation
for a square aperture can be expressed as”®

Moy = 0.1072+0.318In(r) (24)

Based on the Hudgin model and FFT-based algorithm, Freischlad confirmed Noll’s result
with’

Neveiseniad= 009753+ In@)/ 7 ) (25)

As shown in Figure 2, regarding the error propagation Hudgin model tends to overcome
Southwell model when the grid array size t becomes large, but the Southwell model is

superior to all the other models when t is small.



2.2 Error propagation in a new optimized reconstruction scheme
Recently we found that if we take the indexing mode into account in wavefront
reconstruction, and index the grid array sequentially from 1 to m row by row as

illustrated in Fig. 3, the reconstruction matrix will become extremely regular and sparse.’
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Fig. 3. Reconstruction grid (Hudgin) with the new indexing sequence

Take the Hudgin geometry as example, we have

Wi =W, =S, . 1=1,2,...,m,buti# kt, k is an interger (26)
W, =W, =S, ,,1=1,2,.m-t 27)
Where s, .and s _ . are the wavefront differences in y- and z- directions, which are the

slopes at the mid-point between two neighbor grids times the grids interval. Write them

in matrix form, we have
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All the coefficients in matrix A4 is predetermined in this optimized reconstruction scheme,

and it is easy to derive its normal matrix equation’, which is

A" AW = A"S
where
_El -1
-1 E, -1
ATA= )
~-1 E,
i -1
and

(30)
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We can prove that rank(ATA)=m-1.” The eigenvalues of matrix A" A are sensitive with
the position of wavefront zero-point, the matrix dimension size, and even the number
parity of the matrix dimension. We demonstrated that the matrix has its smallest
condition number when the zero-point is set at the center of the reconstructed wavefront.
7 When the zero-point is determined, matrix A” 4 will be positive, and we can employ the
classical Jacobi method to compute its eigenvalues. We set the zero-point at the center of
the wavefront, and employ the eigenvalue-based formula Eq.(20) we derived to evaluate
the curve of the error propagation coefficient versus the grid size. The results are shown
in Fig. 4.

We fit the numerical results with least-squares method, and find that the error coefficients
of the wavefront reconstruction matrices can be expressed by

1,40 =0.14008 +0.1379In(t ), when t is odd (35)

and



Mpen = 0.18123 +0.27098/n(t ), when tis even (36)
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Fig. 4 Comparisons of error propagation with different reconstruction schemes

If we define the condition number of 4™ A4 as

A
cond(A"A)= |/1ﬂ (37)

‘min

where A, and A, are the maximum and minimum of the eigenvalues of matrix 4" 4,

respectively. Then the error propagation of parity dependence is also reflected in the
curve of the matrix condition numbers as shown in the Fig.5. By making a least squares
fitting of this curve, we obtained the condition number of the wavefront estimation matrix

by

t

_ 7.518 ;
cond,(C'C) = 243.442 +150.870e 0 tis odd . (38)

—355.157 +223.750e% . tis even
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Fig. 5. Normal matrix condition number versus grid dimension size
Comparing these results, we can see that the error coefficients can be even smaller than
that of Noll’s theoretical result, and even better than Southwell’s result. The new
optimized reconstruction model with an odd-number of grid dimension performs best
regarding the error propagation, and Noll’s result described the case when the new

optimized model with an even-number of grid dimension.

3. Conclusion

In this paper, we derived the formula for error propagation, which was found to be a
function of the eigenvalues of the wavefront reconstruction matrix. With this formula,
we evaluated the error propagation of the Hudgin model with the new indexing mode,
and found that the new optimized reconstruction model performs the best of all when the
dimension number of the grid is odd. This result illustrates that the new optimized
reconstruction model should be adopted in wavefront reconstruction, and an odd number

of the sampling grid array is preferable to its closest even number.
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