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Abstract:  In this paper, we show that the error propagation coefficient in a slope-

type zonal wavefront estimate can be expressed as a function of the eigenvalues of the 

wavefront reconstruction matrix. With a new indexing order for the grid array of Hudgin 

model, we show that the new optimized model with an odd-number of dimension size 

minimizes the error propagation in wavefront reconstruction, which is even better than 

Noll’s theoretical expectation. In fact, Noll’s theoretical result is equivalent to the 

optimized configuration with an even-number of dimension size. This finding illustrates 

that the new optimized reconstruction scheme with an odd-number dimension grid should 

be adopted in high-precision wavefront estimation. 
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1. Error propagation in wavefront estimation 

In optical testing, wavefront reconstruction is a technique that converts wavefront 

measurements into wavefront phases.  Write this conversion in matrix form, which is  

 SCW = ,       (1) 

where C is the wavefront reconstruction matrix, and S is the wavefront difference vector, 

and W is the wavefront phase vector. Due to the measurement noise this matrix equation 

does not have an exact solution but weak solutions, which can be obtained by the least 

square method. The normal matrix equation is 

SCCWC TT = .      (2) 

This is a discretization form of Poisson equation 
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)z,y(fSW =∇=∇ 2       (3)   

The reconstructed wavefront errors are from two sources, one is the algorithm 

discretization errors, which depends on the basic reconstruction scheme we adopted; the 

other one is from the wavefront sensor measurements, such as the CCD centroiding errors. 

If we consider the wavefront measurement noise N only, we have NSS += 0 , 

where 0WS0 ∇=  is the vector of theoretical wavefront difference, and 

( )TmnnnN L21=   is the vector of measurement errors in the wavefront difference. 

 Suppose the vector of wavefront error induced from the wavefront slope errors is 

( )Tmε εεε L21= , then we have 

NCCεC TT =       (4) 

If CCT  is invertible, then we have 

NCC)(Cε T1T −=       (5) 

Therefore, 

 1TTT1TT C)C(CNNCC)(Cεε −−= .    (6) 

Where  
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If we assume that the wavefront-difference errors are independent, uncorrelated, of the 

same variance 2
nσ  with zero mean, the ensemble statistical average of the slope errors 

provides 1 
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or  

 IT 2
nσ=NN ,       (9) 

Then Eq.(6) becomes 

1T2T C)(Cσεε −= n                      (10) 

Taking Frobenius norms in both sides of the Eq.( 10).  For the left side, we have 
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where  
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is the Euclidian norm of vector ε .  For the right side Eq.(10), we have 

( ) ( )[ ] 21T1T1T2
nF

1T2
nF

1T2
n σσσ

/













==

−−−− CCCCtrC)(CC)(C   (13) 

Therefore,  

( )[ ]{ } 21
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2
CCtrε −
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where ( )[ ]2
CCtr

−T  is the trace of matrix ( ) 2T −
CC .  If an eigenvalue of CCT  isλ , then  

XλCXC =T
      (15) 

where X is called an eigenvector for eigenvalueλ . Obviously, 

( ) XXCCT 22 −−
= λ ,     (16) 

and the eigenvalue of ( ) 2−
CCT  is 2−λ . We know that  
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 so we have 
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If we define the error propagation coefficient η  as the ratio of the mean variance of the 

wavefront reconstruction error, given by  

mw /2

2
2 ε=σ       (19) 

 to the variance of the wavefront difference measurement error 2
nσ

2,3,4, i.e. 
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This formula tells that the error propagation in zonal wavefront reconstruction is 

determined by the eigenvalues and the matrix dimension size of the wavefront 

reconstruction matrix only.  Once the eigenvalues of the reconstruction matrix are 

determined, the error propagation coefficient is known.   Now the problem is how to find 

the eigenvalues of the wavefront reconstruction matrix. Since the normal equation 

matrices are symmetrical matrices, we can employ the classical Jacobi method5 , for 

example, to evaluate the eigenvalues.   

2. Wavefront reconstruction schemes 

2.1 Review of the error propagation estimations 

Wavefront reconstruction schemes can be categorized into three reconstruction 

geometries: the Hudgin model,6  the Southwell model 3, and the Fried model.1   The 
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discretization errors of this wavefront reconstruction geometry are not our concern in this 

paper7 . An analysis of error propagation from the wavefront slope measurement will be 

detailed in this part.  

 

Fig. 1. The Wavefront reconstruction schemes 

 (1) Hudgin model (2) Southwell model (3) Fried model. 

The error propagation coefficient in wavefront reconstruction is defined as the ratio of 

mean-square phase errors to the variance of the phase difference measurements. The 

simulation results for the three reconstruction geometries are shown as below: 

Fried model1 

)ln(3206.06558.0 tFried +=η ,        (21) 

Hudgin model6 

)ln(103.0561.0 tHugin +=η        (22) 

Southwell model3 

)ln(2963.010447.0 tSouthwell +−=η .     (23) 
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The Southwell geometry is characterized by taking the wavefront slope measurements 

and wavefront phase estimations at the same nodes, and it has been demonstrated to have 

the lowest error propagation in wavefront reconstruction3, as shown in Figure 2.  
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Fig. 2  Previous plots of error propagations 

Noll proved analytically that a Ln(t) dependent theoretical formula for error propagation 

for a square aperture can be expressed as8 

)ln(318.01072.0 tNoll +=η .      (24) 

Based on the Hudgin model and FFT-based algorithm, Freischlad confirmed Noll’s result 

with9  

πη /)ln(09753.0 tFreischlad += .      (25) 

As shown in Figure 2, regarding the error propagation Hudgin model tends to overcome 

Southwell model when the grid array size t becomes large, but the Southwell model is 

superior to all the other models when t is small. 
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2.2 Error propagation in a new optimized reconstruction scheme 

 Recently we found that if we take the indexing mode into account in wavefront 

reconstruction, and index the grid array sequentially from 1 to m row by row as 

illustrated in Fig. 3, the reconstruction matrix will become extremely regular and sparse.7 

 

Fig. 3.  Reconstruction grid (Hudgin) with the new indexing sequence 

Take the Hudgin geometry as example, we have 

interger an isk  kt,ibut  m,1,2,...,i ,
11 ≠==−

++ iiyii sww
,

  (26) 

t-2,..m 1,i , 1 ==− ++ iiztii sww ,      (27) 

Where 
iiys
,1+

and iizs ,1+  are the wavefront differences in y- and z- directions, which are the 

slopes at the mid-point between two neighbor grids times the grids interval. Write them 

in matrix form, we have  
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or 

SW =A            (29) 

All the coefficients in matrix A is predetermined in this optimized reconstruction scheme, 

and it is easy to derive its normal matrix equation7, which is  

SW TT AAA =      (30) 

where  
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and 
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We can prove that rank(ATA)=m-1.7  The eigenvalues of matrix AAT are sensitive with 

the position of wavefront zero-point, the matrix dimension size, and even the number 

parity of the matrix dimension. We demonstrated that the matrix has its smallest 

condition number when the zero-point is set at the center of the reconstructed wavefront. 

7 When the zero-point is determined, matrix AAT  will be positive, and we can employ the 

classical Jacobi method to compute its eigenvalues.  We set the zero-point at the center of 

the wavefront, and employ the eigenvalue-based formula Eq.(20) we derived to evaluate 

the curve of the error propagation coefficient versus the grid size. The results are shown 

in Fig. 4.  

We fit the numerical results with least-squares method, and find that the error coefficients 

of the wavefront reconstruction matrices can be expressed by  

 odd is t when13790140080 ),ln(.. todd +=η       (35)   

and 
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even is t when270980181230 ),ln(.. teven +=η      (36) 
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Fig. 4 Comparisons of error propagation with different reconstruction schemes 

If we define the condition number of AAT  as  

min

max)(
λ
λ

=AAcond T        (37) 

where maxλ  and minλ are the maximum and minimum of the eigenvalues of matrix AAT , 

respectively.  Then the error propagation of parity dependence is also reflected in the 

curve of the matrix condition numbers as shown in the Fig.5.  By making a least squares 

fitting of this curve, we obtained the condition number of the wavefront estimation matrix 

by 
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Fig. 5. Normal matrix condition number versus grid dimension size 

Comparing these results, we can see that the error coefficients can be even smaller than 

that of Noll’s theoretical result, and even better than Southwell’s result. The new 

optimized reconstruction model with an odd-number of grid dimension performs best 

regarding the error propagation, and Noll’s result described the case when the new 

optimized model with an even-number of grid dimension.  

3. Conclusion 

In this paper, we derived the formula for error propagation, which was found to be a 

function of the eigenvalues of the wavefront reconstruction matrix.  With this formula, 

we evaluated the error propagation of the Hudgin model with the new indexing mode, 

and found that the new optimized reconstruction model performs the best of all when the 

dimension number of the grid is odd.  This result illustrates that the new optimized 

reconstruction model should be adopted in wavefront reconstruction, and an odd number 

of the sampling grid array is preferable to its closest even number.   
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