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Abstract 

Technological advances in virtual environments 

facilitate the creation of distributed collaborative 
environments, in which the distribution of three-

dimensional content at remote locations allows efficient 

and effective communication of ideas. One of the 

challenges in distributed shared environments is 

maintaining a consistent view of the shared information, 
in the presence of inevitable network delays and variable 

bandwidth. A consistent view in a shared 3D scene may 

significantly increase the sense of presence among 

participants and improve their interactivity. This paper 

introduces an adaptive scene synchronization algorithm 

and a framework for integration of the algorithm in a 
distributed real-time virtual environment. In spite of 

significant network delays, results show that objects can 

be synchronous in their viewpoint at multiple remotely 

located sites. Furthermore residual asynchronicity is 

quantified as a function of network delays and scalability.  

1. Introduction 

 Advances in optical projection and computer graphics 

allow participants in virtual environments to span the 

virtuality continuum from real worlds to entirely 

computer generated environments, with the opportunity to 

also augment their reality with computer generated three-

dimensional objects [1][2]. These objects can be created 

in real-time using dynamic texture projection techniques 

on refined 3D models [3]. In the case of remotely located 

participants, the distribution of three-dimensional objects 

allows efficient communication of ideas through three-

dimensional stereo images that may be viewed in either a 

mixed reality or an immersive reality configuration. When 

designing a distributed application that takes advantages 

of virtual and mixed reality, large amounts of data may 

need to be distributed among the remote sites. This 

distribution must occur in real-time in order to ensure 

interactivity. For an effective collaboration, all the 

participants must be able to see the effects of the 

interaction at the same time. Every time the scene 

changes, new objects appear, or objects change their 

position and/or orientation, all participants must perceive 

these changes simultaneously, i.e. the dynamic shared 

state has to be consistent for all the participants. 

 This paper presents a scene synchronization algorithm 

that will compensate for the network latency, ensuring 

that all the participants to a distributed stereoscopic 

visualization session see the same pose (i.e. position and 

orientation) for the virtual objects in the scene.  The 

algorithm ensures optimal synchronization of the scenes, 

by adapting to the variations in the network delays among 

the participating nodes.  

 The paper is structured as follows. Section 2 discusses 

related work. Section 3 describes the adaptive scene 

synchronization algorithm employed to compensate for 

the network delays. Section 4 presents the integration of 

the algorithm in a framework and a method for 

synchronization assessment. Section 5 focuses on the 

experimental results. Finally, Section 6 concludes the 

paper and identifies areas of future research. 

2. Related work 

 From the distributed systems perspective, research in 

synchronization has been focused on time 

synchronization. The NTP [4] (Network Time Protocol) 

represents a way to keep the clocks of several nodes 

across the Internet synchronized. Miniaturization and 

low-cost design has led to active research in 

synchronization in large scale sensor networks [5].  

 Synchronization is a critical paradigm for any 

distributed virtual or mixed reality collaborative 

environment. Maintaining the consistency of the dynamic 

shared state in such an environment is one of the most 

difficult tasks. Previous work points to the need of 

synchronizing shared viewpoints.  One of the first and 

most intensive efforts in building a networked simulation 

was the SIMNET project started in 1983 followed by 

Naval Postgraduate School's NPSNet [6] a few years 

later. Dead reckoning algorithms were employed to 

maintain a fairly consistent shared state. In some recent 
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work, Schmalstieg and Hesina (2002) presented 

Studierstube, which uses a distributed shared scene graph 

to keep track of the actions applied on the shared scene by 

multiple participants [7]. The authors show that multiple 

concurrent operations on the objects in the scene may lead 

to inconsistent views. As communication delays increase, 

the inconsistency among remote participants grows even 

further. Therefore, synchronization is a key factor for 

maintaining a consistent view among the participants to a 

distributed mixed reality application. 

 There are several factors that affect the synchronicity 

of a distributed virtual reality (VR) or mixed reality (MR) 

system, including network delays and variable bandwidth.  

Various distributed VR systems address these two factors 

in different ways. In the DEVA3 VR system [8], each 

entity is composed of a single "object" that represents 

what the entity does, and a set of "subjects" that 

represents how the entity looks, sounds, and feels. The 

object position is updated only when the subject has 

moved a certain distance from its previously synchronized 

location. Another synchronization approach is available in 

the MASSIVE-3 [9], a predecessor of the HIVE VR 

system. The updates in MASSIVE-3 are effective 

combinations of centralized updates and ownership 

transfers. In this approach, where the updates are 

centralized, the problem is system scalability. Other 

factors that affect the synchronicity of a distributed VR or 

MR system, besides the network delays, are differences in 

the hardware architectures over the system’s nodes, 

hardware buffering, and software system delays [10]. 

Assuming similar rendering hardware for the system 

nodes, the most relevant factor is the network latency. 

The increase of LAN bandwidth and the decrease of 

queuing time facilitate the design of efficient 

synchronization algorithms that take into account the 

network characteristics. To the best of the authors' 

knowledge, algorithms for dynamic shared state 

maintenance in a virtual or a MR environment that take 

into account the network characteristics, have not been 

investigated. 

3. Preserving the consistency of the dynamic 

shared state 

 The first step in a distributed VR or MR application is 

to ensure that each participant has the appropriate 

resources to render the virtual components of the scene. If 

the distributed application must ensure a real-time 

behavior, the appropriate resources must be available at 

specific time instances. 

 The virtual 3D objects in the scene usually have a 

polygonal representation. This representation allows for 

quick rendering; however, the polygonal representation 

might require significant storage space.  Distributing these 

3D objects, in real-time, on a local area network to a large 

number of clients is not possible. Our approach is to 

asynchronously download these models locally at each 

node before the interactive simulation starts.  

 Section 3.1 categorizes VR and MR applications based 

on the update frequencies, while the adaptive scene 

synchronization algorithm is introduced in Section 3.2. 

3.1. Continuous vs. Discrete updates 

 Data flow in a distributed system, can be categorized 

as continuous or discrete. A discrete flow means that there 

are time intervals when the network infrastructure is not 

used. Similarly, when a VR or MR scene is modified, the 

modifications of the virtual components of the scene 

might have a continuous or a discrete pattern. For 

example, consider a scene that contains a virtual object, 

and whose position and orientation is given by a tracking 

system with a refresh rate of 120 Hz. An event-based 

mechanism will not fit this application since it would 

trigger an event every 8.33ms (1000/120). A distributed 

system built to fit such a model would have to 

continuously broadcast the tracking data to all its nodes. 

 On the other hand, if we consider that a participant 

changes the position and orientation of the object from a 

graphical user interface using a mouse, the participant is 

going to perform a sequence of actions (rotations and 

translations) on the object with a much slower rate. The 

fastest human-computer response time includes 

perceptual, conceptual, and motor cycle times, which add 

up to an average of about 240ms [11]. Moreover, some 

actions will generate continuous predictive movements. 

For example, the participant might spin the object for an 

indefinite period of time with a specific velocity around a 

specific axis. A distributed system built to fit such a 

model would have to discretely distribute the participant’s 

actions to all its nodes. The event-based approach is more 

feasible in this case. The scalability of the system is also 

improved, because the system nodes use the network only 

when updates on the shared scene are necessary.  

3.2. Adaptive scene synchronization algorithm 

 The adaptive scene synchronization algorithm assumes 

an event-based mechanism, triggered either by the 

participant actions on the shared scene or by a sensor (e.g. 

a tracking system) whose update cycle time is comparable 

or higher than the network latency. Such assumption is 

generally true as 100 Mbs local area networks (LANs) 

and optical routing are becoming increasingly available, 

decreasing delays and increasing bandwidth. 

 To control the position and orientation of the objects in 

the shared scene, each 3D object has a control packet 

associated with it. The control packet contains 

information about the position and orientation of the 

object, as well as information regarding the actions 

associated with each object: rotation, translation or 
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scaling. The small size of the control packet (i.e. several 

KB) ensures a very low propagation delay, which allows 

the development of scalable, distributed real-time 

applications on local area networks. As the control 

packets flow through the LAN, the adaptive scene 

synchronization algorithm uses their information to 

synchronize the shared scene among different 

participants. The information carried by the control 

packets is distributed to each participating node allowing 

them to compensate for the network delays. These delays 

are called here drift factors since they cause a 

position/orientation drift of the virtual objects seen by the 

remote participants. 

 From the system architecture point of view we assume 

a client-server design. The node running the server 

process has the capability to interact with the virtual 

objects in the scene. The server acts as a data provider by 

pushing scene updates to the clients whenever the scene 

changes. The client nodes pull information from the 

server about their individual communication delays. The 

determination of the time intervals at which the 

measurements are triggered is described in Section 3.3. 

 The interaction with the virtual components of the 

scene is done through a graphical user interface (GUI). 

Commonly the interaction with the mixed reality scene 

leads to position, orientation and scale changes of the 

virtual components, assuming the components are 

representations of rigid objects. For this reason we have 

designed a GUI which allows the participant to change 

the virtual object’s position and/or orientation with a 

specific velocity as seen in Fig.1. Each new event 

triggered from the graphical user interface that changes 

the object position or orientation is considered an action 

applied on that object. Each action has a velocity 

associated with it.  

Fig. 1 Graphical User Interface. The white sphere 
represents a mouse driven 3D pointer. All the 
participants are able to see the pointer as the 

participant running the server process points to 
different locations in the 3D scene. 

 For simulation purposes, we ignore the acceleration 

component. From the computational complexity point of 

view, second-order polynomials that include object 

acceleration will not affect the computation speed, 

however higher order polynomials might delay the entire 

system. Moreover, when object acceleration changes 

frequently, it is better to ignore the acceleration estimate 

than to produce an inaccurate prediction before the next 

update is received. 

 Let's define the drift value for a particular object i

present in the shared scene and a particular client node j

as the product between the action velocity for the object 

and the network delay from the server to that node. If we 

denote Mτ as the number of virtual objects in a shared 

scene of Nτ participating nodes, both at a given time τ, a 

drift matrix D(Mτ,Nτ) associated with the distributed 

system at a particular time τ may be defined as:  

tTSNMD ⋅=),( ττ (1) 

where S and T are both column vectors, S containing the 

action velocities for each object currently in the shared 

scene, and T the network delays from each participating 

client node to the server. T t
 represents the transpose of T.

The action velocity is extracted from each object’s control 

packet, while the network delay is measured by each 

client node using an adaptive probe that computes the 

round trip time from the node to the server. S is stored 

locally at each node and updated when the scene changes. 

 A decentralized computational approach strips the drift 

matrix in N column vectors, called drift vectors, which 

contain the drift values of all the objects in the scene for a 

particular node. The drift vectors are updated when a new 

3D object is inserted or removed from the shared scene by 

adding or respectively removing the entry associated with 

the new object from all nodes. The drift vectors are also 

updated when the participants perform actions on the 

objects in the shared scene. Whenever an action is applied 

to an object (e.g. a rotation), a control packet associated 

with that object is broadcasted to all the nodes. The 

information from the control packets is the first 

component used for synchronization. The second 

component accounts for the packet propagation and 

packet queuing delays. At specific intervals, each node 

"pings" the server to estimate an average network delay 

and computes the drift vectors associated with the objects 

in the scene as the product between the propagation delay 

and the objects' actions velocities. Each delay 

measurement between a node and the server triggers the 

node's drift vector update. 

 A sketch of the Adaptive Scene Synchronization 

algorithm is now described. The ComputeNodeDelay()

function returns the delay associated with the connection 

between a specific node and the server. The UpdateDrift() 

function updates the drift values for the objects in the 

scene on each node. Three Boolean variables are used: 

changedScene that accounts for the changes in the scene, 

newClientRequest which is set if a new client has joined, 
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and trigger, used in tracking the network behavior as 

described in Section 3.3. Finally the functions 

ReceiveChanges() and BroadcastChanges() ensure correct 

scene updates among the nodes of the system and the 

server. Each node's scene is synchronized with the server 

scene. Hence, a consistent dynamic shared state is 

maintained over all the participants. 

Algorithm: Adaptive Scene Synchronization  
 Output: Synchronized shared scenes for a distributed  

 interactive VR/MR application.

Client side:

  Initialization: 

   Tn ← ComputeNodeDelay() 

   Sn ← UpdateAction(); 

   Dn ← UpdateDrift() 
   UpdateLocalScene(); 

  Main: 

if (trigger)  

    Tn ← ComputeNodeDelay() 

    Dn ← UpdateDrift() 
   end if  
   if (changedScene) 

    Sn← ReceiveChanges() 

    Dn ← UpdateDrift() 
   end if 

 Server side:

  for ever listen 

   if (newClientRequest)  

    SendToClient(Sn); 

   end if 
   if (changedScene) 

    BroadcastChanges(); 

   end if 

  end for 

3.3. Fixed threshold vs. adaptive threshold 

 As a result of the network jitter, the round trip times 

among different nodes vary. To achieve the best 

synchronization possible among collaborating nodes, 

delay measurements must be triggered whenever 

significant variations appear. These data are necessary to 

obtain an estimate of the average delay for each node (i.e. 

participant) that joins the distributed application. An 

average round trip time can be obtained by sending "ping" 

messages to the newly arrived node when it joins the 

group. Half of this delay represents an average delay from 

the node to the server. 

 The adaptive synchronization algorithm uses two 

approaches to trigger the information collection. In the 

first approach, at regular time intervals, using ICMP, a 

node opens a raw socket and measures the round trip time 

to the server. We call this the "fixed threshold" approach. 

However, gathering all this data implies additional delays 

at the client side and additional network traffic. The time 

intervals at which these measurements are triggered 

impact the real-time behavior and the scalability of the 

algorithm. 

 An alternative approach consists of adaptively 

triggering the round trip measurements for each node, 

based on the delay history, which better characterizes the 

network traffic and the application. In this approach, a 

fixed threshold is initially used at each node to build the 

delay history denoted Hp. The delay history is a sequence 

of p delay measurements hi where i=1,p (e.g. in the 

implementation we have chosen p to be 100).  

 Let σ and hmean be the standard deviation and the mean 

of Hp , respectively. Let h0 be the most recent delay, i.e. 

the last number in the Hp sequence, and γ0 the current 

frequency of delay measurements, expressed as the 

number of measurements per second. The adaptive 

strategy is to decrease γ0  by 1 unit if  h0∈ [ hmean - σ , 

hmean + σ ] and to increase γ0  by 1 if h0 does not belong to 

this interval.  

4. DARE 

 The adaptive scene synchronization algorithm has been 

embedded in DARE, a Distributed Artificial Reality 

Environment, which is developed at the ODALab 

(http://odalab.creol.ucf.edu/dare). DARE [12] is a 

framework which uses virtual environments and 

distributed systems paradigms to improve human-to-

human interaction enhancing the real scene that a person 

sees with 3D computer generated objects. Applications 

built using this framework range from distributed 

scientific visualization to interactive distributed 

simulations and span the entire virtuality continuum [13]. 

4.1. System components 

 The first collaborative environment that we have 

developed based on DARE consists of several sites 

located on a local area network. From the hardware point 

of view each site consists of at least one head-mounted 

display [14], a Linux based PC and a quasi-cylindrical 

room, called Artificial Reality Center (ARC) [2]. 

Fig. 2 Remote participant and a 3D virtual 
jawbone 
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 As participants wearing head-mounted displays enter 

the ARC, they gradually start immersing themselves in 

virtuality. Initially, the scene is augmented with floating 

objects as seen in Fig.2. 

 These virtual objects augment the participant’s reality 

and they may appear to multiple participants wearing 

head-mounted displays as illustrated in Fig.3.  

Fig. 3 Local collaboration 

 Participants can also interact with the 3D models. 

Using a three-dimensional graphical user interface they 

can point in the virtual space to different parts of the 

virtual objects and they can manipulate them. 

 Several ARC rooms can be interconnected on a LAN 

allowing remote stereoscopic visualization. People 

located in these rooms, as shown in Fig.4, can visualize 

and manipulate virtual objects from a shared scene. 

ARC 

Internet 

Extranet 

Intranet 

ARC 

ARC

Fig. 4 NOE's ARCs (Networked Open 
Environments Artificial Reality Centers) 

4.2. Method for synchronization assessment 

 To assess the efficiency of the synchronization 

algorithm we measured the amount of drift between the 

orientations of a 3D object at remote sites. The 

measurements were done pair-wise between the server 

node and each of the client nodes. Each node pair shared 

the same virtual 3D scene; one acted as a server and the 

other as a client. As described in Section 3.2, a GUI was 

available at the server site, which allowed the participant 

at that node to change the object position applying 

rotations around the Cartesian axis. This participant 

generated events from the GUI, and each time an event 

was generated, the position/orientation of the virtual 

object is recorded at every participating node. Because of 

the network latency, different vectors at each node 

described the orientation of the object. The rotations can 

be easily expressed using the quaternion notation. 

 Let qs express the rotation of an object at one node 

(e.g. server node) and let qc express the rotation of the 

same object at another node (e.g. client node). Both nodes 

render the same virtual scene and the displayed object 

should have exactly the same position and orientation. To 

quantify the difference between the orientations of the 

object on two different nodes we can compute the 

correction quaternion qE between the nodes every time the 

participant triggers a new event. The correction can be 

expressed as follows: 

                   cEs qqq =                        (2)

 And thus    

                    
1−= csE qqq                        (3)

 The quaternion qE may be further expressed as 

))k,zj,yi)(x(),(()v, (q EEE
ˆˆˆ

2
sin

2
cos== �

(4)

 where 

                )(cos2 1

Eωα −=                   (5). 

 The angle  represents the drift between the 

orientations of a 3D object as seen by the two nodes.  

5. Experimental setup and results 

 To evaluate the performance of the algorithm, we first 

calculated the network latency using a latency 

measurement probe on a 100 Mbps LAN. The average 

round trip time for this setting was 1.5 ms.  

 To investigate the effect of the network latency, given 

that the drift value for an object is the product between 

the action velocity and the network latency, as defined in 

Section 3.2, we repeated the experiments at different 

action velocities. 

 To prove the scalability of the system, regarding the 

number of participants, two sets of experiments were 

performed. The first set contained two nodes, one acting 

as a client, the other one as a server. The second set 

contained 5 nodes, one acting as a server and the other 4 

as clients.  

5.1. Two nodes setup: network latency analysis 

 Running the distributed visualization with and without 

the synchronization algorithm, we can assess the 

effectiveness of the algorithm. Fig.5 provides a plot of the 
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drift angle ( ) for various action velocities before 

synchronization. The actions in this case are random 

rotations of a virtual object around its coordinate axis 

with the angular velocity of: 10, 50 and 100 degrees per 

second. The plot shows that as the action velocities 

increase, the drift also increases as expected and the 

magnitude of the drift reaches after 24 actions over 140 

degrees for high action velocities. Overall, the drift 

increases in time as more and more actions are applied on 

the object. The sudden drops in the drift are caused by the 

compensating factor of the random rotations (e.g. 

clockwise followed by counterclockwise rotations of the 

object around the same axis). The drifts created will 

compensate each other to some extent. 
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Fig. 5 The angular drift ( ) without 
synchronization for different angular velocities 

 The synchronization module activation causes a 

significant decrease in the drift as shown in Fig.6.  
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Fig. 6 The angular drift ( ) with synchronization 
for different angular velocities 

 As the action velocity is increased, the drift oscillation 

amplitude also increases, however the drift value is 

maintained at an average of 2.4 degrees in the worst case, 

when the action velocity is 100 degrees per second. 

Moreover the average drift value has almost a constant 

value during the simulation.  

 Increasing the action velocity to 100 degrees per 

second on a network having 1.5 ms latency would be 

equivalent, in terms of drift magnitude, to running the 

simulation on a network having 15 ms latency using 

action velocities of 10 degrees per second. This proves 

that the synchronization algorithm is effective at 

maintaining the dynamic shared state of a distributed VR 

or MR application over nodes separated by network 

latencies of 15 ms. 

 The adaptive approach for triggering the network delay 

measurements, described in Section 3.3, has a positive 

impact on the scalability of the applications deployed on a 

stable network infrastructure. On the other hand, if the 

latency of the network infrastructure varies, the frequency 

of measurements triggered by each client node increases. 

If the number of participants also increases, the server 

might become ping flooded. Strategies in the category of 

ping flood protection might be employed in this case, 

which will limit the number of participants in the mixed 

reality collaborative simulation. 

5.2. Five nodes setup: scalability analysis 

 To test the scalability of the algorithm, a five nodes 

setup was tested. This setup allowed 5 remote participants 

to be part of the distributed interactive simulation. One of 

the nodes runs the server process and the participant on 

this node is able to change the position and orientation of 

the virtual objects in the scene. In the current 

implementation, the other 4 participants do not interact 

with the scene. They are only able to visualize the virtual 

scene. During the simulation we monitor the orientation 

of one virtual object while the participant on the server 

node applies rotations on it with different speeds. The 

other four nodes run client processes and they are able to 

visualize the same virtual scene. Every new event 

generated from the server node triggers an orientation 

update on the virtual object on each node. At the same 

time, the current orientation is recorded in a file on each 

node. 

 From the hardware point of view, the nodes are 

heterogeneous. The network cards on all nodes support 

100Mbps connections. Below is a table containing a brief 

specification of each node’s hardware components. 

Table. 1 Hardware systems attributes 

Node 

no. 

Arch CPU 

(GHz)

RAM 

(MB)

Video card 

(GeForce)

1 Desktop 1.5  AMD 1024 4 Ti4600 

2 Desktop 1  P3 1024 2 Mx 

3 Desktop 1.7  P4 512 4 Mx 440 

4 Desktop 1.7 AMD 1024 4 Ti4600 

5 Laptop 2 P4 1024 4 Go440 

 In the first stage, the simulation was run without 

synchronization and at different action velocities. Fig.7 

presents a plot of the angular drifts for different speeds for 

each client node. The legend for Node 2 applies to Node 

3, 4 and 5.  Node 1 is acting as a server and was used as a 

reference for the drift computation. 
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Fig. 7 The angular drift ( ) without 
synchronization for different angular velocities 

on different nodes 

 As in the first set of experiments, the results show that 

the drift increases as the action velocity increases. The 

drift variation over different nodes is caused by the 

hardware heterogeneity of the nodes. 

 The second stage of the simulation was executed with 

the synchronization module active and at different action 

velocities. As the action velocity increases, it negatively 

affects the drift correction, however in all cases the 

average drift angle at 100 degree/second action velocity 

does not exceed 3.5 degrees, and over all the nodes the 

drift average is 2.9 degrees.  

 Fig.8 illustrates the drift variations over different nodes 

with the synchronization module active. The legend for 

Node 2 applies to Node 3, 4 and 5.  Node 1 is acting as a 

server and was used as a reference for the drift 

computation. 
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Fig. 8 The angular drift ( ) with synchronization 
for different angular velocities on different nodes 

 The current client-server architecture on which the 

algorithm was deployed seems to introduce the 

disadvantage of a centralized approach. Scale is clearly 

limited by the capacity of the server, and centralized 

systems are often thought of as having a low degree of 

scalability. However, in our approach the majority of the 

computation is distributed among participating nodes. 

Each node renders its own scene and computes its own 

drift value. The only burden on the server node, which 

increases with the number of nodes, is the reply to each 

delay measurement message sent by a client node.  

 We can define a metric analyzing the relationship 

between the number of nodes in the system and the drift 

values. Provided that the algorithm is activated, let ψi be 

the average drift value over all the nodes, when i+1 nodes 

are in the system and the action velocity is set to 100 

degrees per second, for example. In the case of a two 

nodes setup results show that the average drift is ψ1 = 2.4 

degrees while in the case of 5 nodes setup the average 

drift is ψ4 = 2.9 degrees. An algorithm with low degree of 

scalability would have at least a linear increase in drift, 

i.e. ψn =  n ψ1 , while a high degree of scalability would 

mean ψn ≈ ψ1  . Using this metric in the 5 nodes setup, a 

low degree of scalability would translate to ψ4 = 4*ψ1  = 

9.6 degrees. The experimental results show that ψ4 ≈ ψ1.

The algorithm scales well with the number of participants 

6. Conclusion and future work 

 We have presented an adaptive synchronization 

algorithm that addresses the impact of network latency on 

shared scenes in distributed mixed and virtual reality 

applications. The fundamental property of our design is 

that the algorithm takes into account the network latency. 

Moreover, by taking into account the measurement 

history of the end-to-end network delays between the 

nodes and the server, the network jitter is taken into 

consideration. The decentralized computation approach 

for the drift values, carried out independently at each 

node, improves the system’s scalability and its real-time 

behavior.  

 The proposed algorithm works under the assumption 

that the system is driven by events generated by a human 

actor or a sensor with low update frequency. As the 

widespread use of high speed optical networks and optical 

routing becomes increasingly common, the approach 

presented will be widely applicable. Future work will 

involve testing the current algorithm when high frequency 

update sensors are connected to the system (e.g. tracking 

systems and haptic devices). 

 If the network latency is high, disconcerting jumps in 

the object position and orientation will occur at some 

nodes. We are investigating the possibility of eliminating 

these jumps using interpolation.  
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