
Adaptive Scene Synchronization for Virtual and Mixed Reality Environments

Felix G. Hamza-Lup
1
 and Jannick P. Rolland

1,2

1
School of Electrical Engineering and Computer Science

2
School of Optics-CREOL

University of Central Florida

fhamza@cs.ucf.edu, jannick@odalab.ucf.edu

Abstract

Technological advances in virtual environments

facilitate the creation of distributed collaborative
environments, in which the distribution of three-

dimensional content at remote locations allows efficient

and effective communication of ideas. One of the

challenges in distributed shared environments is

maintaining a consistent view of the shared information,
in the presence of inevitable network delays and variable

bandwidth. A consistent view in a shared 3D scene may

significantly increase the sense of presence among

participants and improve their interactivity. This paper

introduces an adaptive scene synchronization algorithm

and a framework for integration of the algorithm in a
distributed real-time virtual environment. In spite of

significant network delays, results show that objects can

be synchronous in their viewpoint at multiple remotely

located sites. Furthermore residual asynchronicity is

quantified as a function of network delays and scalability.

1. Introduction

 Advances in optical projection and computer graphics

allow participants in virtual environments to span the

virtuality continuum from real worlds to entirely

computer generated environments, with the opportunity to

also augment their reality with computer generated three-

dimensional objects [1][2]. These objects can be created

in real-time using dynamic texture projection techniques

on refined 3D models [3]. In the case of remotely located

participants, the distribution of three-dimensional objects

allows efficient communication of ideas through three-

dimensional stereo images that may be viewed in either a

mixed reality or an immersive reality configuration. When

designing a distributed application that takes advantages

of virtual and mixed reality, large amounts of data may

need to be distributed among the remote sites. This

distribution must occur in real-time in order to ensure

interactivity. For an effective collaboration, all the

participants must be able to see the effects of the

interaction at the same time. Every time the scene

changes, new objects appear, or objects change their

position and/or orientation, all participants must perceive

these changes simultaneously, i.e. the dynamic shared

state has to be consistent for all the participants.

 This paper presents a scene synchronization algorithm

that will compensate for the network latency, ensuring

that all the participants to a distributed stereoscopic

visualization session see the same pose (i.e. position and

orientation) for the virtual objects in the scene. The

algorithm ensures optimal synchronization of the scenes,

by adapting to the variations in the network delays among

the participating nodes.

 The paper is structured as follows. Section 2 discusses

related work. Section 3 describes the adaptive scene

synchronization algorithm employed to compensate for

the network delays. Section 4 presents the integration of

the algorithm in a framework and a method for

synchronization assessment. Section 5 focuses on the

experimental results. Finally, Section 6 concludes the

paper and identifies areas of future research.

2. Related work

 From the distributed systems perspective, research in

synchronization has been focused on time

synchronization. The NTP [4] (Network Time Protocol)

represents a way to keep the clocks of several nodes

across the Internet synchronized. Miniaturization and

low-cost design has led to active research in

synchronization in large scale sensor networks [5].

 Synchronization is a critical paradigm for any

distributed virtual or mixed reality collaborative

environment. Maintaining the consistency of the dynamic

shared state in such an environment is one of the most

difficult tasks. Previous work points to the need of

synchronizing shared viewpoints. One of the first and

most intensive efforts in building a networked simulation

was the SIMNET project started in 1983 followed by

Naval Postgraduate School's NPSNet [6] a few years

later. Dead reckoning algorithms were employed to

maintain a fairly consistent shared state. In some recent

99
IEEE Virtual Reality 2004 March 27-31, Chicago, IL USA
0-7803-8415-6/04/$20.00©2004 IEEE.

Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

work, Schmalstieg and Hesina (2002) presented

Studierstube, which uses a distributed shared scene graph

to keep track of the actions applied on the shared scene by

multiple participants [7]. The authors show that multiple

concurrent operations on the objects in the scene may lead

to inconsistent views. As communication delays increase,

the inconsistency among remote participants grows even

further. Therefore, synchronization is a key factor for

maintaining a consistent view among the participants to a

distributed mixed reality application.

 There are several factors that affect the synchronicity

of a distributed virtual reality (VR) or mixed reality (MR)

system, including network delays and variable bandwidth.

Various distributed VR systems address these two factors

in different ways. In the DEVA3 VR system [8], each

entity is composed of a single "object" that represents

what the entity does, and a set of "subjects" that

represents how the entity looks, sounds, and feels. The

object position is updated only when the subject has

moved a certain distance from its previously synchronized

location. Another synchronization approach is available in

the MASSIVE-3 [9], a predecessor of the HIVE VR

system. The updates in MASSIVE-3 are effective

combinations of centralized updates and ownership

transfers. In this approach, where the updates are

centralized, the problem is system scalability. Other

factors that affect the synchronicity of a distributed VR or

MR system, besides the network delays, are differences in

the hardware architectures over the system’s nodes,

hardware buffering, and software system delays [10].

Assuming similar rendering hardware for the system

nodes, the most relevant factor is the network latency.

The increase of LAN bandwidth and the decrease of

queuing time facilitate the design of efficient

synchronization algorithms that take into account the

network characteristics. To the best of the authors'

knowledge, algorithms for dynamic shared state

maintenance in a virtual or a MR environment that take

into account the network characteristics, have not been

investigated.

3. Preserving the consistency of the dynamic

shared state

 The first step in a distributed VR or MR application is

to ensure that each participant has the appropriate

resources to render the virtual components of the scene. If

the distributed application must ensure a real-time

behavior, the appropriate resources must be available at

specific time instances.

 The virtual 3D objects in the scene usually have a

polygonal representation. This representation allows for

quick rendering; however, the polygonal representation

might require significant storage space. Distributing these

3D objects, in real-time, on a local area network to a large

number of clients is not possible. Our approach is to

asynchronously download these models locally at each

node before the interactive simulation starts.

 Section 3.1 categorizes VR and MR applications based

on the update frequencies, while the adaptive scene

synchronization algorithm is introduced in Section 3.2.

3.1. Continuous vs. Discrete updates

 Data flow in a distributed system, can be categorized

as continuous or discrete. A discrete flow means that there

are time intervals when the network infrastructure is not

used. Similarly, when a VR or MR scene is modified, the

modifications of the virtual components of the scene

might have a continuous or a discrete pattern. For

example, consider a scene that contains a virtual object,

and whose position and orientation is given by a tracking

system with a refresh rate of 120 Hz. An event-based

mechanism will not fit this application since it would

trigger an event every 8.33ms (1000/120). A distributed

system built to fit such a model would have to

continuously broadcast the tracking data to all its nodes.

 On the other hand, if we consider that a participant

changes the position and orientation of the object from a

graphical user interface using a mouse, the participant is

going to perform a sequence of actions (rotations and

translations) on the object with a much slower rate. The

fastest human-computer response time includes

perceptual, conceptual, and motor cycle times, which add

up to an average of about 240ms [11]. Moreover, some

actions will generate continuous predictive movements.

For example, the participant might spin the object for an

indefinite period of time with a specific velocity around a

specific axis. A distributed system built to fit such a

model would have to discretely distribute the participant’s

actions to all its nodes. The event-based approach is more

feasible in this case. The scalability of the system is also

improved, because the system nodes use the network only

when updates on the shared scene are necessary.

3.2. Adaptive scene synchronization algorithm

 The adaptive scene synchronization algorithm assumes

an event-based mechanism, triggered either by the

participant actions on the shared scene or by a sensor (e.g.

a tracking system) whose update cycle time is comparable

or higher than the network latency. Such assumption is

generally true as 100 Mbs local area networks (LANs)

and optical routing are becoming increasingly available,

decreasing delays and increasing bandwidth.

 To control the position and orientation of the objects in

the shared scene, each 3D object has a control packet

associated with it. The control packet contains

information about the position and orientation of the

object, as well as information regarding the actions

associated with each object: rotation, translation or

100Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

scaling. The small size of the control packet (i.e. several

KB) ensures a very low propagation delay, which allows

the development of scalable, distributed real-time

applications on local area networks. As the control

packets flow through the LAN, the adaptive scene

synchronization algorithm uses their information to

synchronize the shared scene among different

participants. The information carried by the control

packets is distributed to each participating node allowing

them to compensate for the network delays. These delays

are called here drift factors since they cause a

position/orientation drift of the virtual objects seen by the

remote participants.

 From the system architecture point of view we assume

a client-server design. The node running the server

process has the capability to interact with the virtual

objects in the scene. The server acts as a data provider by

pushing scene updates to the clients whenever the scene

changes. The client nodes pull information from the

server about their individual communication delays. The

determination of the time intervals at which the

measurements are triggered is described in Section 3.3.

 The interaction with the virtual components of the

scene is done through a graphical user interface (GUI).

Commonly the interaction with the mixed reality scene

leads to position, orientation and scale changes of the

virtual components, assuming the components are

representations of rigid objects. For this reason we have

designed a GUI which allows the participant to change

the virtual object’s position and/or orientation with a

specific velocity as seen in Fig.1. Each new event

triggered from the graphical user interface that changes

the object position or orientation is considered an action

applied on that object. Each action has a velocity

associated with it.

Fig. 1 Graphical User Interface. The white sphere
represents a mouse driven 3D pointer. All the
participants are able to see the pointer as the

participant running the server process points to
different locations in the 3D scene.

 For simulation purposes, we ignore the acceleration

component. From the computational complexity point of

view, second-order polynomials that include object

acceleration will not affect the computation speed,

however higher order polynomials might delay the entire

system. Moreover, when object acceleration changes

frequently, it is better to ignore the acceleration estimate

than to produce an inaccurate prediction before the next

update is received.

 Let's define the drift value for a particular object i

present in the shared scene and a particular client node j

as the product between the action velocity for the object

and the network delay from the server to that node. If we

denote Mτ as the number of virtual objects in a shared

scene of Nτ participating nodes, both at a given time τ, a

drift matrix D(Mτ,Nτ) associated with the distributed

system at a particular time τ may be defined as:

tTSNMD ⋅=),(ττ (1)

where S and T are both column vectors, S containing the

action velocities for each object currently in the shared

scene, and T the network delays from each participating

client node to the server. T t
 represents the transpose of T.

The action velocity is extracted from each object’s control

packet, while the network delay is measured by each

client node using an adaptive probe that computes the

round trip time from the node to the server. S is stored

locally at each node and updated when the scene changes.

 A decentralized computational approach strips the drift

matrix in N column vectors, called drift vectors, which

contain the drift values of all the objects in the scene for a

particular node. The drift vectors are updated when a new

3D object is inserted or removed from the shared scene by

adding or respectively removing the entry associated with

the new object from all nodes. The drift vectors are also

updated when the participants perform actions on the

objects in the shared scene. Whenever an action is applied

to an object (e.g. a rotation), a control packet associated

with that object is broadcasted to all the nodes. The

information from the control packets is the first

component used for synchronization. The second

component accounts for the packet propagation and

packet queuing delays. At specific intervals, each node

"pings" the server to estimate an average network delay

and computes the drift vectors associated with the objects

in the scene as the product between the propagation delay

and the objects' actions velocities. Each delay

measurement between a node and the server triggers the

node's drift vector update.

 A sketch of the Adaptive Scene Synchronization

algorithm is now described. The ComputeNodeDelay()

function returns the delay associated with the connection

between a specific node and the server. The UpdateDrift()

function updates the drift values for the objects in the

scene on each node. Three Boolean variables are used:

changedScene that accounts for the changes in the scene,

newClientRequest which is set if a new client has joined,

101Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

and trigger, used in tracking the network behavior as

described in Section 3.3. Finally the functions

ReceiveChanges() and BroadcastChanges() ensure correct

scene updates among the nodes of the system and the

server. Each node's scene is synchronized with the server

scene. Hence, a consistent dynamic shared state is

maintained over all the participants.

Algorithm: Adaptive Scene Synchronization
 Output: Synchronized shared scenes for a distributed

 interactive VR/MR application.

Client side:

 Initialization:

 Tn ← ComputeNodeDelay()

 Sn ← UpdateAction();

 Dn ← UpdateDrift()
 UpdateLocalScene();

 Main:

if (trigger)

 Tn ← ComputeNodeDelay()

 Dn ← UpdateDrift()
 end if
 if (changedScene)

 Sn← ReceiveChanges()

 Dn ← UpdateDrift()
 end if

 Server side:

 for ever listen

 if (newClientRequest)

 SendToClient(Sn);

 end if
 if (changedScene)

 BroadcastChanges();

 end if

 end for

3.3. Fixed threshold vs. adaptive threshold

 As a result of the network jitter, the round trip times

among different nodes vary. To achieve the best

synchronization possible among collaborating nodes,

delay measurements must be triggered whenever

significant variations appear. These data are necessary to

obtain an estimate of the average delay for each node (i.e.

participant) that joins the distributed application. An

average round trip time can be obtained by sending "ping"

messages to the newly arrived node when it joins the

group. Half of this delay represents an average delay from

the node to the server.

 The adaptive synchronization algorithm uses two

approaches to trigger the information collection. In the

first approach, at regular time intervals, using ICMP, a

node opens a raw socket and measures the round trip time

to the server. We call this the "fixed threshold" approach.

However, gathering all this data implies additional delays

at the client side and additional network traffic. The time

intervals at which these measurements are triggered

impact the real-time behavior and the scalability of the

algorithm.

 An alternative approach consists of adaptively

triggering the round trip measurements for each node,

based on the delay history, which better characterizes the

network traffic and the application. In this approach, a

fixed threshold is initially used at each node to build the

delay history denoted Hp. The delay history is a sequence

of p delay measurements hi where i=1,p (e.g. in the

implementation we have chosen p to be 100).

 Let σ and hmean be the standard deviation and the mean

of Hp , respectively. Let h0 be the most recent delay, i.e.

the last number in the Hp sequence, and γ0 the current

frequency of delay measurements, expressed as the

number of measurements per second. The adaptive

strategy is to decrease γ0 by 1 unit if h0∈ [hmean - σ ,

hmean + σ] and to increase γ0 by 1 if h0 does not belong to

this interval.

4. DARE

 The adaptive scene synchronization algorithm has been

embedded in DARE, a Distributed Artificial Reality

Environment, which is developed at the ODALab

(http://odalab.creol.ucf.edu/dare). DARE [12] is a

framework which uses virtual environments and

distributed systems paradigms to improve human-to-

human interaction enhancing the real scene that a person

sees with 3D computer generated objects. Applications

built using this framework range from distributed

scientific visualization to interactive distributed

simulations and span the entire virtuality continuum [13].

4.1. System components

 The first collaborative environment that we have

developed based on DARE consists of several sites

located on a local area network. From the hardware point

of view each site consists of at least one head-mounted

display [14], a Linux based PC and a quasi-cylindrical

room, called Artificial Reality Center (ARC) [2].

Fig. 2 Remote participant and a 3D virtual
jawbone

102Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

 As participants wearing head-mounted displays enter

the ARC, they gradually start immersing themselves in

virtuality. Initially, the scene is augmented with floating

objects as seen in Fig.2.

 These virtual objects augment the participant’s reality

and they may appear to multiple participants wearing

head-mounted displays as illustrated in Fig.3.

Fig. 3 Local collaboration

 Participants can also interact with the 3D models.

Using a three-dimensional graphical user interface they

can point in the virtual space to different parts of the

virtual objects and they can manipulate them.

 Several ARC rooms can be interconnected on a LAN

allowing remote stereoscopic visualization. People

located in these rooms, as shown in Fig.4, can visualize

and manipulate virtual objects from a shared scene.

ARC

Internet

Extranet

Intranet

ARC

ARC

Fig. 4 NOE's ARCs (Networked Open
Environments Artificial Reality Centers)

4.2. Method for synchronization assessment

 To assess the efficiency of the synchronization

algorithm we measured the amount of drift between the

orientations of a 3D object at remote sites. The

measurements were done pair-wise between the server

node and each of the client nodes. Each node pair shared

the same virtual 3D scene; one acted as a server and the

other as a client. As described in Section 3.2, a GUI was

available at the server site, which allowed the participant

at that node to change the object position applying

rotations around the Cartesian axis. This participant

generated events from the GUI, and each time an event

was generated, the position/orientation of the virtual

object is recorded at every participating node. Because of

the network latency, different vectors at each node

described the orientation of the object. The rotations can

be easily expressed using the quaternion notation.

 Let qs express the rotation of an object at one node

(e.g. server node) and let qc express the rotation of the

same object at another node (e.g. client node). Both nodes

render the same virtual scene and the displayed object

should have exactly the same position and orientation. To

quantify the difference between the orientations of the

object on two different nodes we can compute the

correction quaternion qE between the nodes every time the

participant triggers a new event. The correction can be

expressed as follows:

 cEs qqq = (2)

 And thus

1−= csE qqq (3)

 The quaternion qE may be further expressed as

))k,zj,yi)(x(),(()v, (q EEE
ˆˆˆ

2
sin

2
cos== �

(4)

 where

)(cos2 1

Eωα −= (5).

 The angle represents the drift between the

orientations of a 3D object as seen by the two nodes.

5. Experimental setup and results

 To evaluate the performance of the algorithm, we first

calculated the network latency using a latency

measurement probe on a 100 Mbps LAN. The average

round trip time for this setting was 1.5 ms.

 To investigate the effect of the network latency, given

that the drift value for an object is the product between

the action velocity and the network latency, as defined in

Section 3.2, we repeated the experiments at different

action velocities.

 To prove the scalability of the system, regarding the

number of participants, two sets of experiments were

performed. The first set contained two nodes, one acting

as a client, the other one as a server. The second set

contained 5 nodes, one acting as a server and the other 4

as clients.

5.1. Two nodes setup: network latency analysis

 Running the distributed visualization with and without

the synchronization algorithm, we can assess the

effectiveness of the algorithm. Fig.5 provides a plot of the

103Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

drift angle () for various action velocities before

synchronization. The actions in this case are random

rotations of a virtual object around its coordinate axis

with the angular velocity of: 10, 50 and 100 degrees per

second. The plot shows that as the action velocities

increase, the drift also increases as expected and the

magnitude of the drift reaches after 24 actions over 140

degrees for high action velocities. Overall, the drift

increases in time as more and more actions are applied on

the object. The sudden drops in the drift are caused by the

compensating factor of the random rotations (e.g.

clockwise followed by counterclockwise rotations of the

object around the same axis). The drifts created will

compensate each other to some extent.

0

20

40

60

80

100

120

140

160

180

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

Action number

D
ri

ft
 (
d
e
g
re

e
s
)

Action velocity = 10 degrees/second

Action velocity = 50 degrees/second

Action velocity = 100 degrees/second

Fig. 5 The angular drift () without
synchronization for different angular velocities

 The synchronization module activation causes a

significant decrease in the drift as shown in Fig.6.

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

Action number

D
ri
ft
 (
d
e
g
re

e
s
)

Action velocity = 10 degress/second

Action velocity = 50 degrees/second

Action velocity = 100 degrees/second

Fig. 6 The angular drift () with synchronization
for different angular velocities

 As the action velocity is increased, the drift oscillation

amplitude also increases, however the drift value is

maintained at an average of 2.4 degrees in the worst case,

when the action velocity is 100 degrees per second.

Moreover the average drift value has almost a constant

value during the simulation.

 Increasing the action velocity to 100 degrees per

second on a network having 1.5 ms latency would be

equivalent, in terms of drift magnitude, to running the

simulation on a network having 15 ms latency using

action velocities of 10 degrees per second. This proves

that the synchronization algorithm is effective at

maintaining the dynamic shared state of a distributed VR

or MR application over nodes separated by network

latencies of 15 ms.

 The adaptive approach for triggering the network delay

measurements, described in Section 3.3, has a positive

impact on the scalability of the applications deployed on a

stable network infrastructure. On the other hand, if the

latency of the network infrastructure varies, the frequency

of measurements triggered by each client node increases.

If the number of participants also increases, the server

might become ping flooded. Strategies in the category of

ping flood protection might be employed in this case,

which will limit the number of participants in the mixed

reality collaborative simulation.

5.2. Five nodes setup: scalability analysis

 To test the scalability of the algorithm, a five nodes

setup was tested. This setup allowed 5 remote participants

to be part of the distributed interactive simulation. One of

the nodes runs the server process and the participant on

this node is able to change the position and orientation of

the virtual objects in the scene. In the current

implementation, the other 4 participants do not interact

with the scene. They are only able to visualize the virtual

scene. During the simulation we monitor the orientation

of one virtual object while the participant on the server

node applies rotations on it with different speeds. The

other four nodes run client processes and they are able to

visualize the same virtual scene. Every new event

generated from the server node triggers an orientation

update on the virtual object on each node. At the same

time, the current orientation is recorded in a file on each

node.

 From the hardware point of view, the nodes are

heterogeneous. The network cards on all nodes support

100Mbps connections. Below is a table containing a brief

specification of each node’s hardware components.

Table. 1 Hardware systems attributes

Node

no.

Arch CPU

(GHz)

RAM

(MB)

Video card

(GeForce)

1 Desktop 1.5 AMD 1024 4 Ti4600

2 Desktop 1 P3 1024 2 Mx

3 Desktop 1.7 P4 512 4 Mx 440

4 Desktop 1.7 AMD 1024 4 Ti4600

5 Laptop 2 P4 1024 4 Go440

 In the first stage, the simulation was run without

synchronization and at different action velocities. Fig.7

presents a plot of the angular drifts for different speeds for

each client node. The legend for Node 2 applies to Node

3, 4 and 5. Node 1 is acting as a server and was used as a

reference for the drift computation.

104Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

0

10

20

30

40

50

60

70

80

90

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s
)

Action velocity = 10 degrees/second

Action velocity = 50 degrees/second

Action velocity = 100 degrees/second

Node 2

0

20

40

60

80

100

120

140

160

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s

)

Node 3

0

20

40

60

80

100

120

140

160

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s
)

Node 4 Node 5

0

10

20

30

40

50

60

70

80

90

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s

)

Fig. 7 The angular drift () without
synchronization for different angular velocities

on different nodes

 As in the first set of experiments, the results show that

the drift increases as the action velocity increases. The

drift variation over different nodes is caused by the

hardware heterogeneity of the nodes.

 The second stage of the simulation was executed with

the synchronization module active and at different action

velocities. As the action velocity increases, it negatively

affects the drift correction, however in all cases the

average drift angle at 100 degree/second action velocity

does not exceed 3.5 degrees, and over all the nodes the

drift average is 2.9 degrees.

 Fig.8 illustrates the drift variations over different nodes

with the synchronization module active. The legend for

Node 2 applies to Node 3, 4 and 5. Node 1 is acting as a

server and was used as a reference for the drift

computation.

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s

)

Action velocity = 10 degrees/second

Action velocity = 50 degrees/second

Action velocity = 100 degrees/second

Node 2

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s

)

Node 3

0

1

2

3

4

5

6

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s

)

Node 4

0

0.5

1

1.5

2

2.5

3

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Action number

D
ri

ft
 (

d
e

g
re

e
s
)

Node 5

Fig. 8 The angular drift () with synchronization
for different angular velocities on different nodes

 The current client-server architecture on which the

algorithm was deployed seems to introduce the

disadvantage of a centralized approach. Scale is clearly

limited by the capacity of the server, and centralized

systems are often thought of as having a low degree of

scalability. However, in our approach the majority of the

computation is distributed among participating nodes.

Each node renders its own scene and computes its own

drift value. The only burden on the server node, which

increases with the number of nodes, is the reply to each

delay measurement message sent by a client node.

 We can define a metric analyzing the relationship

between the number of nodes in the system and the drift

values. Provided that the algorithm is activated, let ψi be

the average drift value over all the nodes, when i+1 nodes

are in the system and the action velocity is set to 100

degrees per second, for example. In the case of a two

nodes setup results show that the average drift is ψ1 = 2.4

degrees while in the case of 5 nodes setup the average

drift is ψ4 = 2.9 degrees. An algorithm with low degree of

scalability would have at least a linear increase in drift,

i.e. ψn = n ψ1 , while a high degree of scalability would

mean ψn ≈ ψ1 . Using this metric in the 5 nodes setup, a

low degree of scalability would translate to ψ4 = 4*ψ1 =

9.6 degrees. The experimental results show that ψ4 ≈ ψ1.

The algorithm scales well with the number of participants

6. Conclusion and future work

 We have presented an adaptive synchronization

algorithm that addresses the impact of network latency on

shared scenes in distributed mixed and virtual reality

applications. The fundamental property of our design is

that the algorithm takes into account the network latency.

Moreover, by taking into account the measurement

history of the end-to-end network delays between the

nodes and the server, the network jitter is taken into

consideration. The decentralized computation approach

for the drift values, carried out independently at each

node, improves the system’s scalability and its real-time

behavior.

 The proposed algorithm works under the assumption

that the system is driven by events generated by a human

actor or a sensor with low update frequency. As the

widespread use of high speed optical networks and optical

routing becomes increasingly common, the approach

presented will be widely applicable. Future work will

involve testing the current algorithm when high frequency

update sensors are connected to the system (e.g. tracking

systems and haptic devices).

 If the network latency is high, disconcerting jumps in

the object position and orientation will occur at some

nodes. We are investigating the possibility of eliminating

these jumps using interpolation.

105Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

7. Acknowledgements

 We wish to thank our sponsors NSF/ITR: IIS-00-820-

16, the Link Foundation, and the US Army Simulation,

Training, and Instrumentation Command (STRICOM) for

their invaluable support for this research. We also thank

Eric Clarkson for stimulating discussions about

quaternions, and Charles Hughes for helpful comments

about the paper.

8. References

[1] Billinghurst, M., Kato, H., Kiyokawa, K., Belcher, D., and

Popyrev, I. "Experiments with Face to Face Collaborative AR

Interfaces", Virtual Reality Journal, 4(2), 2002.

[2] Davis, L, Rolland, J., Hamza-Lup, F., Ha, Y., Norfleet, J.,

Pettitt, B., and Imielinska, C., "Enabling a Continuum of

Virtual Environment Experiences", IEEE Computer Graphics &

Applications, 23(2) , 2003, pp.10-12.

[3] Neumann, U., You, S., Hu, J., Jiang, B., and Lee, J.W.,

"Augmented Virtual Environments (AVE): Dynamic Fusion of

Imagery and 3D Models", IEEE Virtual Reality 2003, Los

Angeles, 2003, pp. 61-67.

[4] Mills, D., "Internet Time Synchronization: The Network

Time Protocol." in Global States and Time, in Distributed

Systems, IEEE Computer Society Press, 1994.

[5] Elson, J., Girod, L., and Estrin, D., "Fine-Grained Network

Time Synchronization using Reference Broadcasts", Fifth

Symposium on Operating Systems Design and Imp. (OSDI),

2002.

[6] Macedonia, M., Zyda, M., Pratt, D., Barham, P., and

Zeswitz, S., "NPSNET: A Network Software Architecture for

Large-Scale Virtual Environments", PRESENCE, 3(4), 1994,

pp.265-287.

[7] Schmalstieg, D., and Hesina, G., "Distributed Applications

for Collaborative Augmented Reality", Proceedings of IEEE

Virtual Reality 2002, Orlando, Florida, March 24-28, 2002, pp.

59-66.

[8] Pettifer, S., Cook, J., Marsh, J., and West, A., ”DEVA3:

Architecture for a Large-Scale Distributed Virtual Reality

System”, ACM Virtual Reality Software and Technology, 2000,

pp.33-40.

[9] Greenhalgh, C., Purbrick, J., and Snowdon, D., ”Inside

MASSIVE3: Flexible Support for Data Consistency and World

Structuring”, ACM Collaborative Virtual Environments, 2000,

pp. 119-127

[10] Swindells, C., Dill, J., and Booth, K., ”System Lag Tests

for Augmented and Virtual Environments”, Proceedings of the

13th annual ACM symposium on User Interface Software and

Technology, 2000, pp. 161-170.

[11] Eberts & Eberts, "Intelligent interfaces: theory, research,

and design", Hancock and Chignell (eds.), North Holland,

Elsevier Science Publishers, 1989, pp. 69-127.

[12] Hamza-Lup, F., Davis, L., Rolland, J., and Hughes, C.,

"Where Digital meets Physical – Distributed Augmented Reality

Environments", ACM Crossroads (online), 9.3, 2003.

[13] Milgram, P., Kishino, F., "A Taxonomy of Mixed Reality

Visual Displays", IECE Trans. Information and Systems

(Special Issue on Networked Reality), E77-D (12), 1994, pp.

1321-1329.

[14] Hua, H., Ha, Y., and Rolland, J.P., "Design of an ultra-light

and compact projection lens", Applied Optics 42(1), 2003,

pp.97-107.

106Proceedings of the 2004 Virtual Reality (VR’04)
1087-8270/04 $ 20.00 IEEE

	footer1:

