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Abstract

Tracking is a necessity for interactive virtual environ-
ments. Marker-based tracking solutions involve the place-
ment of fiducials in a rigid configuration on the object(s)
to be tracked, called a tracking probe. The realization that
tracking performance is linked to probe performance neces-
sitates investigation into the design of tracking probes for
proponents of marker-based tracking. A challenge involved
with probe design is predicting the accuracy of a tracking
probe. We present a method for predicting the accuracy of a
tracking probe based upon a first-order propagation of the
errors associated with the markers on the probe. Results
for two sample tracking probes show excellent agreement
between measured and predicted errors.

1 Introduction

A significant challenge in virtual environments is track-
ing objects accurately and precisely within the environment.
The need for accurate and precise tracking is accentuated
when considering augmented reality (AR) environments,
which require registration of real and virtual objects. While
there are many tracking techniques that are currently used
within virtual environments, marker-based tracking solu-
tions can be used to provide fast, accurate tracking. In this
approach, features upon the tracked object(s) are identified
by the tracker. These features, or markers, may be intrinsic
to the object tracked or may be fiducials placed upon the
object. The collection of markers is what we refer to as a
tracking probe. When experiencing marker-based tracking,
one observes that the accuracy of a pose estimate from a
given tracking probe is dependent upon the probe topology
as well as the performance of the overall tracking system.

The tracking probe topology includes the number of mark-
ers utilized and the location of the markers with respect
to the probe origin. In seeking to overcome environmen-
tal constraints (e.g. line of sight issues, probe size) tracking
probes designs do not always meet desired performance lev-
els.

It would be beneficial for practitioners to be able to pre-
dict the accuracy of a given probe topology beforehand,
and to adjust the marker locations and number of mark-
ers utilized accordingly. The research presented provides
a starting point for designing marker-based tracking probes
by providing a method to predict the performance of pose
estimation for a given tracking probe. This method is based
upon applying an error term to each marker location and
propagating this error through the resulting estimation of
pose within a first-order approximation. All results will be
expressed in terms of visual space (i.e., distances instead of
pixels). The research presented does not include systems
that provide only orientation data because such systems of-
ten do not require more than one marker. Moreover, we
will currently examine discrete changes, or ”snapshots”, of
a tracking probe given that accuracy in stationary pose es-
timation, through discrete changes in position and orienta-
tion, is a necessary condition for dynamic accuracy.

2 Previous Research in Pose Error Determi-
nation

There is a significant body of work that exists on quan-
tifying the different types of errors present within tracking
systems and their effects on pose determination. We limit
the scope of our survey of this area to research whose aim
is determining errors in pose determination related to the
topology of marker distributions.
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Along this line, Woltring et al examined the effects of
marker errors on pose estimation and provided a maximum
error statistic to predict the pose error of a given tracking
probe topology [12]. The error statistic derived used first-
order errors within its error computation. This approach
dealt strictly with the case when the markers were sym-
metrically distributed with respect to the probe origin. In
addition, the probe origin was coincident with the marker
centroid (e.g. a tetrahedron or a cube).

In an extension of the work in [12], Morris & Donath
quantified the cumulative effects of multiple error sources,
including the effects of algorithmic errors and dynamic tar-
get array deformation errors [6]. Based upon the work pre-
sented in [12], a modified maximum error statistic was pre-
sented for determining the pose error for a given tracking
probe topology. The research was valid for marker distribu-
tions that lay on a sphere and had the center of the sphere as
the probe origin (e.g. a square, pyramid, tetrahedron, etc.) .

In a context related to virtual environments, Vogt et al
implemented a method for designing tracking probes us-
ing a Monte Carlo simulation technique [11]. The design
methodology minimized the jitter error associated with the
tracking probe, using the probe radius, marker heights, and
number of markers as input variables. Because Tsai’s cal-
ibration technique [10] was utilized to determine the pose
of the tracking probe, the method required probe topologies
with at least seven, simultaneously detected markers.

The approach presented in this work expands upon the
previously mentioned efforts by presenting a theoretical
framework for determining pose error that is valid for any
probe topology with at least three, non-collinear markers.
Moreover, the error sources for the location of each marker
are considered as an ensemble, and the error on each marker
considered is thus a combination of jitter, tracker bias, probe
deformations, and the probe topology. Combined with pre-
vious work regarding methods for marker placement [2] [3],
this research represents a starting point for a general frame-
work for designing marker based tracking probes.

3 Modeling the Impact of Noise on Pose Esti-
mation

The data obtained from a tracking system are noisy by
nature. Furthermore, tracking probes are subject to slight
errors in manufacturing and pose errors due to asymmetry.
We use a first-order error propagation model to determine
how the noise affects, or propagates to, the error in pose.
This means taking each marker location, adding a differ-
ential error vector based upon the system properties, and
determining the resulting mathematical relationships based
upon first order approximations. A method based upon er-
ror propagation is utilized because it facilitates quantifica-
tion of the effects of individual markers on the pose estima-

tion process. Results will be presented in Section 4.1 that
show that a first-order error propagation model is appropri-
ate, provided that the errors in marker position are at least
an order of magnitude smaller than the scale of the tracking
probe.

3.1 Propagating Marker Error

Given a set of K markers on a tracking probe, we denote
their positions within a local coordinate frame as xk and
their positions within a global coordinate frame (coincident
with the tracker) as yk. We can then express the relationship
between xk and yk as

yk = Rxk + T , (1)

where R is a 3x3 rotation matrix, T is a 3x1 translation vec-
tor, and yk and xk are 3x1 column vectors. R and T can
be determined using the pose determination method pro-
posed by Argotti et al [1], which is built upon methods pre-
sented in [8] and [4]. These pose estimation algorithms are
based upon minimization of the least squares error and are
reviewed briefly in Appendix A.1.

We first determine the local marker coordinate error,
∆xk, and global marker coordinate error, ∆yk and propa-
gate these errors to the local and global marker coordinates
as

xk → xk + ∆xk (2)

yk → yk + ∆yk .

We then define the errors applied to each marker with re-
spect to the centroid of the errors in the local and global
coordinates, ∆x̃k and ∆ỹk, as

∆x̃k = ∆xk − 1
K

K∑
k=1

∆xk (3)

∆ỹk = ∆yk − 1
K

K∑
k=1

∆yk .

Provided that the ”ideal” local and global marker locations
with respect to the centroids, x̃k and ỹk, are computed as

x̃k = xk − 1
K

K∑
k=1

xk (4)

ỹk = yk − 1
K

K∑
k=1

yk ,

we then propagate the errors to the local and global coordi-
nates with respect to the marker centroids, as

x̃k → x̃k + ∆x̃k (5)

ỹk → ỹk + ∆ỹk .

2
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Normally, errors are implicit within a pose estimation al-
gorithm. That is, the xk and yk used as input to the error
minimization (see Appendix A.1) are noisy. However, in
propagating errors through the pose estimation, we define
the error for each marker location explicitly, rather than im-
plicitly, within the pose estimation procedure. Thus, the
”ideal” xk and yk must be obtained a priori along with
∆xk and ∆yk. xk and ∆xk can be obtained from the man-
ufacturer’s data (if using a commercially available track-
ing probe) or from the tracking probe design process. yk

can be obtained by applying a transformation to the ideal
xk which approximates the probe pose with respect to the
tracker where the probe is most likely to be used. ∆yk can
be obtained by first measuring the RMS error in position
of a single stationary marker, σtracker with respect to the
tracker, then applying gaussian noise with σ = σtracker to
each yk.

3.2 Expressing Pose Error

We now determine how the errors in marker location
propagate to errors in pose estimation. An error in pose
can be represented as a differential transform from the true
pose. Given a true rotation and translation, R and T , and
differential rotation and translation ∆R and ∆T , we can
express the overall pose, with error included as

Rerr ≈ ∆RR (6)

Terr ≈ T + ∆T ,

where an equation of the form a ≈ b is taken to mean that
a and b are approximately equal to a first order approxima-
tion.

From Appendix A.1, we know that R = V DUT , with
U and V resulting from the SVD of H . Therefore, to de-
termine ∆R and ∆T , we must determine how the marker
errors affect the matrix H , which in turn is affected by U
and V . Therefore, we propagate the error to R through the
matrices V and U by

V → V + ∆V (7)

U → U + ∆U .

The differential errors applied to U and V can be defined
as a transformed version of the original U and V matrices.
To represent the transformations, we define two matrices A
and B such that

∆V ≈ AV (8)

∆U ≈ BU .

The procedure for determining A and B is given in Ap-
pendix A.2, where it can be noted that matrices A and B are
anti-symmetric (A = −AT ). Given V , U , and D, which are

all determined from the marker data and the errors associ-
ated with each marker, Rerr can be expressed as

Rerr ≈ ∆RR (9)

≈ (V + ∆V )D(U + ∆U)T

≈ V DUT + V DUT BT + AV DUT + AV DUT BT

≈ V DUT − V DUT B + AV DUT − AV DUT B

≈ (I + A)V DUT (I − B)
≈ (I + A)R(I − B) .

Taking into account the fact that a matrix exponential can
be approximated by a Taylor series expansion as

eA ∼= 1 + A +
1
2
A2 +

1
6
A3 + . . . , (10)

a first order approximation of Rerr is ,

Rerr ≈ eARe−B (11)

≈ eARe−BI

≈ eARe−BRT R

≈ eARe−BRT︸ ︷︷ ︸
∆R

R .

Thus, we can compute the amount of rotational error, ∆R,
introduced into a pose calculation by noise in the marker
data as

∆R = eARe−BRT . (12)

A matrix exponential is used in Eq. 12 because using the
approximate expressions of (I + A) or (I − B) may yield
an invalid rotation matrix, that is det(∆R) �= ±1.

If we define the centroids of the ”ideal” local and global
coordinates, x and y, as

x =
1
K

K∑
k=1

xk (13)

y =
1
K

K∑
k=1

yk ,

and the centroids of the local and global coordinates with
error, xc and yc, as

xc =
1
K

K∑
k=1

(xk + ∆xk) (14)

yc =
1
K

K∑
k=1

(yk + ∆yk) ,

we can compute the translational error, ∆T , introduced into
a pose calculation as

∆T = Terr − T (15)

= yc − ∆RRxc − y + Rx

3
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4 Simulation Results and Experimental Veri-
fication

4.1 Simulations

To test the method, we began by examining the perfor-
mance of a simulated tracking probe in MATLAB. Noise
in the probe data was simulated by adding Gaussian dis-
tributed noise, with a σ which was chosen according the
probe characteristics.

The metric used for determining the pose error of a
tracking probe was the average error for each marker on
the probe. Given Rerr and Terr as the predicted rotation
and translation with propagated error, yk as the kth ”true”
marker location in the tracker coordinate frame, and xk as
the kth ”true” marker location in the probe frame, the aver-
age error, E may be expressed as

E =
1
K

K∑
k=1

‖yk − Rerrxk − Terr‖ . (16)

The error was averaged over 1000 pose determinations in
each case.

We then investigated the relationship between the pose
error predicted for a tracking probe and the value of σ used
for our noise propagation. The probe topology remained
fixed, while σ was reduced incrementally by factors of ten.
The tracking probe simulated had six markers, whose posi-
tions were defined in millimeters, while σ was reduced from
a starting value of 1 mm. The resulting plot of pose error vs
σ is shown in Figure 1. As expected, the error in pose in-
creases as σ increases. Moreover, we compared the pose er-
ror computed by first order approximation to the pose error
computed using the Horn’s method of determining orienta-
tion using unit quaternions [5] and found that both methods
provide similar results. Details of this comparison will be
published at a later date.

In addition, we verify the relationship between pose error
and the size of the tracking probe. Using a tracking probe
with five markers, we simulated markers whose positions
were initially defined in centimeters. We then uniformly
scaled the size of the probe incrementally by factors of ten,
while keeping the errors applied to the markers constant at
σ = 0.1mm. The plot of probe size vs. pose error in mil-
limeters is shown in Figure 2. As the size of the tracking
probe is increased, we see that the pose error decreases, as
expected.

The simulation results demonstrate that the first-order
approximation method for predicting pose error behaves in
a manner consistent to what is expected. Next, the pose
error prediction was applied to actual tracking probes.
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Figure 2. Pose Error vs. Probe Size

4.2 Experimental Verification

Based upon the simulations in Section 4.1, we applied
the method for predicting pose error to two tracking probes
in use within our laboratory. Probe 1 was a digitizing probe
manufactured by Northern Digital Inc., shown in Figure 3
for use with the OPTOTRAK tracking system. Probe 2 was
a head tracking probe designed in our laboratory for use
with the OPTOTRAK system and fabricated via rapid pro-
totyping. Probe 2 is shown in Figure 4.

For Probe 1, ∆x = 254µm, given by the manufacturer,
and ∆y = 0.15mm, measured as the rms error in position
of a single marker. The pose error predicted by the combi-
nation of Equations 12 and 16 was 0.105 mm. The actual
pose error for Probe 1 was 0.1176 mm.

For Probe 2, ∆x = 0.25mm, determined from the rapid
prototyping data, and ∆y = 0.15mm, again measured as

4
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Figure 3. Probe 1: A six-marker digitizing
probe

the rms error in position of a single marker. The pose error
predicted for the tracking probe was 0.288 mm. The actual
pose error for Probe 2 was 0.297 mm.

Figure 4. Probe 2: A custom designed track-
ing probe

5 Ongoing Work and Conclusions

While marker-based tracking has traditionally implied
the use of optical tracking methods, the method presented
generally applies to any tracking system that uses multiple,
distinct markers to determine the pose of the tracked ob-
jects. The process presented for estimating pose error is
applicable to general tracking probe topologies and robust.

There are additional aspects to be considered for further im-
provement within the pose error estimation. For instance,
the current model does not account for algorithmic error
within the pose determination, which, while small, may be
significant as the probe size decreases. Also, depending
upon the tracker, errors may be dependent upon where the
probe is located within the tracking volume. These two fac-
tors may contribute to the slight discrepancy seen between
the predicted pose error and the measured pose errors.

Furthermore, the pose error prediction should include
mechanisms for dynamic error estimation. As tracking
probes are typically not static, the velocities and acceler-
ations of the tracked objects should be accounted for within
the error prediction. This may be facilitated by introducing
motion estimation within our method. The possibility of
expressing a relationship between individual marker errors
and their effects on the probe pose is enticing. Thus, our
future efforts will include an expansion to provide detailed
quantification of the dependence of pose on the number of
markers used as well as a graphical analysis of perturba-
tions within the A and B matrices (which characterize the
relationship). Similarly, an examination of the dependence
of rotational errors about each axis as a function of marker
error will be beneficial as well.

The research is presented as part of a larger framework
for conformal tracking in virtual environments. Conformal
tracking refers to the idea of tracking probes being con-
structed according to the shape of the objects of interest
(i.e., conforming). Although the idea placing markers nat-
urally on an object to track is not new, applying specific,
quantitative design techniques to the process is. The pro-
posed framework is general and will allow us to expand our
quantification marker-based tracking performance from one
based solely upon marker errors, to quantification with re-
spect to marker placement, the number of markers, and the
size of the marker distribution.
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A Appendix

A.1 Summary of Least Squares 3D Pose Estima-
tion

Given K markers, local marker coordinates, xk, and
global (tracker) marker coordinates, yk, for k = 1, . . . , K,
we can express the following relationship

e(R, T ) =
K∑

k=1

‖ yk − Rxk − T ‖2
. (17)

The R and T which minimize the error in Eq. 17 can be
determined using the following method. If we define the
centroids in the local and global coordinate frames, x and
y, respectively, as

x =
1
K

K∑
k=1

xk (18)

y =
1
K

K∑
k=1

yk ,

we can express the coordinates in each frame with respect
to the centroids as

x̃k = xk − x (19)

ỹk = yk − y .

We can then define a matrix, H , given by

H =
K∑

k=1

x̃kỹk
T . (20)

The singular value decompositon (SVD) of H is expressed
as

H = UΓV T . (21)

The matrices U , Γ, and V are orthogonal (by definition of
the SVD). From U and V , we can compute R as

R = V DUT , (22)

where

D =


 1 0 0

0 1 0
0 0 det(V UT )


 (23)

and T = y −Rx. The R and T produced minimize Eq. 17.

A.2 Determination of the A and B matrices

To determine the A and B matrices, we start by deter-
mining how the marker errors affect the matrix H . The SVD
of H is defined as

H = UΓV T . (24)

Γ is the matrix of singular values, which are the square roots
of the eigenvalues of H, µm. Because the columns of U and
V are the eigenvectors of HHT and HT H , respectively [9],
we can express the columns of U and V with the eigenvec-
tor equations

HT Hvm = µmvm (25)

HHT um = µmum .

Moreover, the columns of U and V are orthogonal, meaning

vm
T vn = um

T un = δmn (26)

and meaning that U and V are unitary. Propagating the er-
rors to H,

H → H + ∆H (27)

where

∆H ≈
K∑

k=1

(∆x̃kỹk
T + x̃k∆ỹk

T ) . (28)

6
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To analyze the error propagation to H, we define a matrix
Q as

Q = HT H . (29)

Then, with first order error propagation,

Q → Q + ∆Q (30)

with
∆Q ≈ ∆HT H + HT ∆H (31)

which is a first order expansion of Q. Now, consider the
eigenvector equations from Eq. 25. We propagate the error
as

(Q+∆Q)(vm +∆vm) = (µm +∆µm)(vm +∆vm) (32)

(QT +∆QT )(um +∆um) = (µm +∆µm)(um +∆um) ,
(33)

which must be satisfied with the constraints

(vm + ∆vm)T (vn + ∆vn) = δmn (34)

(um + ∆um)T (un + ∆un) = δmn

because orthogonality must still hold, even with errors in the
H matrix. Using the error-free eigenvector equations (Eqs.
25 and 26), and applying the previous constraints, Eqs. 32
and 33 can be expanded in the following manner:

Qvm + ∆Qvm + Q∆vm + ∆Q∆vm = (35)

µmvm + ∆µmvm + µm∆vm + ∆µm∆vm

QT um + ∆QT um + QT ∆um + ∆QT ∆um = (36)

µmum + ∆µmum + µm∆um + ∆µm∆um .

Because

Qvm = µmvm (37)

QT um = µmum

∆Q∆vm ≈ ∆QT ∆um ≈ 0 and

∆µm∆vm ≈ ∆µm∆um ≈ 0 ,

we can simplify Eq. 35 to

µmvm + ∆Qvm + Q∆vm ≈ (38)

µmvm + ∆µmvm + µm∆vm

⇒ ∆Qvm + Q∆vm ≈ ∆µmvm + µm∆vm

and, likewise, we can simplify Eq. 36 to

µmum + ∆QT um + QT ∆um ≈ (39)

µmum + ∆µmum + µm∆um

⇒ ∆QT um + QT ∆um ≈ ∆µmum + µm∆um

with the orthogonality constraints (derived by first order ex-
pansion of Eq. 26)

vT
m∆vn + vT

n ∆vm ≈ 0 (40)

uT
m∆un + uT

n∆um ≈ 0 .

We solve this system for ∆µm and ∆vm (the first or-
der error of the eigenvalue and its associated eigenvector) in
terms of ∆Q (the first order error in the matrix describing
the relation between the two coordinate systems). In order
to do this, we define the matrices A and B by the equations

∆vm = Avm , m = 1, . . . , M (41)

∆um = Bum , m = 1, . . . , M

These equations define A and B uniquely since the singular
vectors form basis R

M . By substituting into Eqs. 38 and
39 with the previous equation, the system can be written in
terms of these new matrices as

∆Qvm + QAvm ≈ ∆µmvm + µmAvm (42)

∆QT um + QT Bum ≈ ∆µmum + µmBum (43)

and the orthogonality constraints become

vT
mAvn + vT

n Avm ≈ 0 (44)

uT
mBun + uT

nBum ≈ 0

By rearranging Eqs. 42 and 43, we have

(µm − Q)Avm ≈ (∆Q − ∆µm)vm (45)

(µm − QT )Bum ≈ (∆QT − ∆µm)um (46)

We now take Eq. 45 and multiply through by vn
T ,

vn
T ∆Qvm − vn

T ∆µmvm ≈ vn
T µmAvm − vn

T QAvm

(47)
Since

Qvn = µnvn ⇒ (Qvn)T = (µnvn)T ⇒ vn
T QT = µnvn

T ,
(48)

we can express Eq. 47 as

vn
T ∆Qvm −∆µmvn

T vm ≈ µmvn
T Avm −µnvn

T Avm .
(49)

Furthermore, because vn
T vm = δmn,

vn
T ∆Qvm − ∆µmδmn ≈ (µm − µn)vn

T Avm . (50)

When m = n, we get

∆µm ≈ vn
T ∆Qvm . (51)

When m �= n, we get

vn
T Avm ≈ vn

T ∆Qvm

µm − µn
, (52)
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which fully specifies A. Note that since ∆QT = ∆Q
(meaning Q is symmetric) , we have

vm
T ∆Qvn = vm

T ∆QT vn = (vn
T ∆Qvm)T . (53)

Moreover, because vm
T ∆Qvn is a scalar,

(vn
T ∆Qvm)T = vn

T ∆Qvm . (54)

As a result, the orthogonality constraints on A are satisfied.
Now, we want to get everything in terms of ∆H . We

start with the SVD of H

H = UΓV T . (55)

This implies that

HV = UΓ (56)

UT H = ΓV

leading to

Hvm = um
√

µm =
√

µmum (57)

HT um = vm
√

µm =
√

µmvm .

We can now develop two scenarios. The first is when
m = n. We start with the relation from Eq. 51, expanding
with the relationships from Eqs. 31 and 57:

∆µm ≈ vn
T ∆Qvm ≈ vm

T ∆Qvm ,m = n (58)

≈ vm
T (∆HT H + HT ∆H)vm

≈ vm
T ∆HT Hvm + vm

T HT ∆Hvm

≈ vm
T ∆HT√µmum +

√
µmum

T ∆Hvm

≈ √
µm(vm

T ∆HT um + um
T ∆Hvm)

≈ 2
√

µmum
T ∆Hvm .

The second scenario is when m �= n. Staring with the re-
lation from Eq. 52, expanding with the relationships from
Eqs. 31 and 57:

vn
T Avm ≈ vn

T ∆Qvm

µm − µn
(59)

≈ vn
T (∆HT H + HT ∆H)vm

µm − µn

≈ vn
T ∆HT Hvm + vn

T HT ∆Hvm

µm − µn

≈ vn
T ∆HT√µmum +

√
µnun

T ∆Hvm

µm − µn

≈
√

µnun
T ∆Hvm +

√
µmum

T ∆Hvn

µm − µn

By replacing H with HT and interchanging vk with uk in
Eq. 59, we get the following equation for B:

vn
T Bvm ≈

√
µmun

T ∆Hvm +
√

µnum
T ∆Hvn

µm − µn
(60)

We can determine A and B from Eqs. 59 and 60
element-by-element. The matrices are also anti-symmetric,
meaning A = −AT .
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