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Abstract.  
 
Medical simulation and visualization of 3D lung 
deformations is an effective tool for guiding 
clinical technicians on clinical maneuvers. 
Technical advances in clinical imaging have led 
to the extraction of patient-specific 3D static 
lung models. However, in order to visualize a 
human subject’s lung deformation at different 
physical conditions, it is required to animate (or 
deform) the 3D lung models using a physically-
based method. In this paper we discuss an 
approach for estimating the subject-specific 
lung’s deformation operator that models the 
physically-based elastic interaction undergone in 
deforming a human’s 3D lung model. The 
transfer function is estimated from the nodal 
displacements of the 3D lung models obtained 
from the 4D Computed Tomography (CT) data 
of a normal human subject and an estimated 
amount of force applied. Accuracy of the 
estimated transfer functions is verified by re-
simulating the morphology. 
Keywords: Organ deformation, Lung 
morphology, Inverse problems. 
 
1. Introduction 
 

Medical simulation has facilitated the 
understanding of complex biological 
phenomenon through its inherent explanatory 

power. It is a critical component for planning 
clinical interventions and analyzing its effect on 
a human subject. The success of medical 
simulation is evidenced by the fact that over one 
third of all medical schools in the United States 
augment their teaching curricula using patient 
simulators. Medical simulators, such as the 
mannequin-based trainer VIRGIL, present 
combat medics and emergency providers with 
video-based descriptions of patient symptoms 
along with step-by-step instructions on clinical 
procedures that alleviate the patient’s condition. 
Recent advances in clinical imaging technology 
have led to an effective medical visualization by 
coupling medical simulations with patient-
specific anatomical models and their physically 
and physiologically realistic organ 
deformation.[1] 

The importance of modeling such organ 
movements and tracking can be seen in the case 
of radiation oncology. Radiation oncology 
procedures aim at exposing the lung tumor of a 
human patient to radiation that destroys the 
tumor [2, 3]. The effectiveness of the radiation 
oncology procedure can be significantly 
increased when the movement of the tumor and 
the overall lung can be predicted in real-time. 
The real-time simulation and visualization 
capability and the physical accuracy of the 
proposed deformation would facilitate the 
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development of a real-time clinical guidance 
system for radiation oncology 

Our focus is on modeling the lung’s 3D 
shape dynamics and visualizing it in real-time 
using Augmented Reality (AR). The technical 
challenges of designing and visualizing a 
medical simulation for lung morphology arise in 
no small part from its computational complexity. 
Specifically, in an AR environment the position 
and orientation of the patient are updated by the 
tracking sensor every 16 ms. Such update 
requires deforming and rendering 3D lung 
models at 30-60 times per second[4]. This 
subsequently limits the usage of high-resolution 
3D lung models for real-time deformation and 
visualization. A method to overcome this 
limitation was proposed in [5], in which the 3D 
lung dynamics caused by the air-flow into the 
lungs were modeled using Green’s Formulation 
(GF). The lung deformation was pre-computed 
for an upright orientation and simulated in real-
time for the upright position. However a generic 
deformation kernel was used to model 3D lung 
deformations.  

A key requirement to obtain subject-specific 
lung deformation is to estimate the elastic 
properties that control the deformation.[6] Of 
particular interest is the estimation of subject-
specific elastic properties that can then be used to 
animate 3D lung models according to different 
physical conditions. The variations in the 
ventilation rates and physical behavior of human 
breathing, which demonstrates various physical 
activities of the human subject, can thus be 
visualized as organ deformations. Clinical 
technicians can use such organ deformations to 
assess the patient’s condition and to plan the 
treatment procedure. Additionally, the prognostic 
estimations of the changes in the organ 
deformation caused by clinical maneuvers, such 
as Thorectomy, can also be performed.  

Recent advancements in imaging modalities 
such as ultrasound and magnetic resonance 
imaging have led to an image-based estimation 
of tissue elasticity, which is referred to as 
elastography.[7] Such methods have been 

extensively applied to analyze tumors and lesions 
in soft tissues. The common elastic parameter 
estimated is Young’s modulus (YM) which is the 
ratio between the stress and strain at any 
particular node or edge.[8] However, the 
ultrasound-based elastography is not currently 
used for extracting 3D lung’s elastic parameters, 
due to the lung’s air content. The magnetic 
resonance imaging based elastography is also not 
currently used for lungs, due to its non real-time 
imaging. Thus an inverse deformation analysis of 
3D lung dynamics may be an essential tool for 
obtaining the parameters required for accurate 
deformation. 

In this paper we thus focus on non-invasively 
estimating the deformation operator (also known 
as the deformation kernel and the transfer 
function)  of patient’s specific 3D lungs, which 
control the lung deformation. It is done by first 
associating a physically-based deformation 
method, discussed in [5], to a 4D CT dataset (a 
sequence of 3D CT datasets representing lung 
deformations during a single breath) of a patient 
in a supine posture and then solving for the 
deformation operator. Specifically, a breath-hold 
maneuver was used during the imaging process, 
which avoided any requirement for motion 
compensation. A 3D polygonal lung model is 
extracted from a 3D CT dataset and then used to 
simulate the deformations. It is to be noted that 
the term 3D model in the paper refers to 3D 
polygonal models. A single-compartment 
approach, as previously adopted in [9], [10], [1], 
and [11], is used for representing the 3D lung 
model, in which a 3D lung is considered as a 
single unit instead of a set of lobes. The 
deformation method uses a kernel (Green’s 
Function (GF)[12]) with surface-level boundary 
integrals as previously proposed for 3D lung 
deformations.[13] The inverse deformation (ID) 
analysis discussed in this paper involves solving 
for the kernel, for a known displacement, and 
applied force on each node. The estimated kernel 
allows simulating a 3D lung surface model 
according to the human subject’s lung tissue 
property. Additionally, we also modify the kernel 
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to simulate breathing variations caused by 
variations in the diaphragm movement. Future 
work would involve the inclusion of multi-
compartment lobular model and the movement of 
tracheal bifurcations. Such ID analysis for lung 
deformations has not been previously done to the 
best of our knowledge.  

The paper is further sub-divided as follows: 
Section 2 discusses related work in estimating 
tissue parameters. Section 3 discusses the 
proposed method of inverse deformation analysis 
and the subsequent results obtained from a 4D 
CT dataset. Section 4 concludes the paper with a 
discussion on the future work that needs to be 
done as an extension of inverse dynamics. 
 
 
2. Related work 
 

Inverse dynamics (ID) methods allow the 
estimation of elastic tissue parameters of a 3D 
object with its known deformation and applied 
force.[7] Significant amount of work has been 
done in these methods for applications ranging 
from simple animations [14]to complex 
engineering simulations [15]. The general 
approach for the ID methods is to associate a 
mathematical representation such as Green’s 
function, Finite Difference Method (FDM), 
Finite Element Method (FEM), or thin plate 
deformation [16] to the 3D model’s shape 
change.[12, 17] The ID methods can be more 
precisely classified based on whether the 
estimation is done using an iterative approach or 
in a single step. 

An iterative ID approach has been previously 
addressed for FEM,[18] and thin plate 
deformations.[16] An iterative inverse FEM 
analysis uses the following approach. The 
deformation of the 3D object is first simulated 
using an initial estimate for the YM values of 
every node. The simulated deformation is then 
compared with the actual deformation and the 
YM’s values are updated accordingly. The above 
steps are repeated until the difference between 
the simulated and the actual deformation is 

minimized. For computational simplicity, the 
value of YM for the tissue or the organ involved 
is assumed to be a homogenous.[19] The 
iterative methods currently used for this 
minimization step are (i) binary selection,[19] 
(ii) modified newton-raphson,[20] and (iii) 
levenberg-Markquadt method[21].  

An iterative inverse thin-plate deformation 
method is implemented as follows.[16] A 3D 
model is first associated with initial values of 
constants that represent the elastic property in a 
thin-plate deformation. The deformation was 
then simulated and compared with the actual 
observed deformation. The iterative error-
optimization is done using the proportional 
derivative control method. 

The non-iterative ID methods have been 
addressed for FEM, FDM and GF-based 
deformations. A non-iterative inverse FEM 
estimates the elastic properties of soft tissues by 
simplifying the FEM formulation using modal 
analysis.[14] In this approach the FEM solution 
is modeled by replacing the mass damping and 
stiffness matrices with their eigen vectors. The 
FEM formulation is simplified into the eigen 
vectors that together with a control vector 
defines the displacement. The inverse FEM 
analysis mainly concentrates on computing the 
control vector.[14] 

A non-iterative inverse FDM approach is 
proposed to estimate the elastic properties of in-
compressible volumetric 3D solids using 2D 
image data-sets.[22] The FDM representation of 
the 3D solid is first simplified using a Central 
difference method. The formulation is then 
inversed to obtain an estimation of YM. The 
method is, however, computationally expensive 
and the error-rate in the estimation increased 
significantly when the number of nodes was 
increased.[22] 

An inverse GF method was developed to 
estimate the deformation’s kernel (operator) for a 
known deformation.[23] In this method a test-
bed was developed which computes this kernel 
for a 3D object non-iteratively by applying a pre-
computed amount of force on a single node using 
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a robotic arm and scanning the 3D displacements 
of all the surface points. This pre-computation 
based method made it possible to achieve 3D 
deformations in a physically-accurate manner 
and at interactive rates.[23]  
Although iterative optimization forms a key tool 
in the estimation of elastic tissue parameters they 
are observed to have two limitations: (i) they 
may not correctly estimate heterogenous YM, 
and (ii) the accuracy in estimation may decrease 
with increase in 3D model complexity. The 
inaccuracy in estimating heterogenous YM is 
caused by the complex elastic interactions that 
occur in those conditions.[6] For instance, any 
change in the estimation of YM of a node during 
iterative optimization will alter the convergence 
of the estimation to the accurate value for 
neighboring nodes. Thus the convergence of 
estimation of the YM of every node remains a 

Cauchy solution [24], which also leads to an 
increase in the error rate of the elastic estimation 
for an increase in 3D model complexity.  
 
 
3. Proposed method 
 

In this paper we present a method to 
estimate the deformation kernel, which 
represents the inter-nodal elastic interaction. The 
estimated kernel can then be used for deforming 
lung models at any physical condition as 
previously shown in [25-28] . Additionally, the 
YM of every node can be estimated from the 
deformation kernel for diagnostic purposes.  

A schematic description of the components 
involved in the proposed method is shown in 
Fig.1. We take as input a sequence of

 
 

 
Fig.1. A schematic representation of the proposed method for inverse deformation 
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4D-CT datsets (sequence of 3D-CT 

datasets) and an approximate estimate of the 
airflow during the imaging process. We then 
extract 3D polygonal models from each of the 
3D-CT dataset of the 4D-CT, and compute the 
inter-nodal distance. Finally, we compute the 
transfer function that represents the airflow 
distribution, which is causing the lung 
deformation. This estimated transfer function can 
either be used for diagnostic purposes or be used 
for deforming the 3D lungs under different 
breathing conditions.  From a simulation and 

visualization perspective, we focus on the latter 
objective. 

This section is further sub-divided as 
follows: We first discuss the preliminary steps 
and computation methods in the inverse lung 
analysis in sub-sections 3.1 to 3.3. We then 
discuss the relation derived for estimating the 
transfer function as discussed in sub-section 3.4. 
This representation allows us to solve for the 
kernel row for a known applied force and 
deformation.  
 
 

 
 

    
                       (a)                                          (b) 

Fig.2 (a) A front view of human 3D lung model at the start of inhalation (blue) and at the end of 
inhalation (brown) (b) A side view of human 3D lung model at the start of inhalation (blue) and at the 
end of inhalation (brown) 
 
 

3.1 Preliminaries 
In this section we first discuss steps 

involved in the 3D model extraction from 4D-
CT datasets. It is followed by a discussion on 
computing the displacement of surface nodes 
of the 3D models extracted from each CT 
dataset. We then briefly discuss the method 
used for the computation of distance between 
nodes in a 3D model. Specifically, we discuss 
a piecewise Euclidean distance computation 
that allows faster computation of distances 
along the surface. Finally we briefly discuss 

the deformation operator used for modeling the 
lung deformations. 

The assumptions based on the theory 
of lung physiology that are employed for 
estimating the deformation kernel from the 4D-
CT data sets are as follows: First, the clinical 
data used as input are assumed to have a 
constant elastic kernel given that the variations 
in the diaphragm mechanics during the 
deformation are not considered. Second, the 
patho-physical tissue behavior is not 
considered in this paper; this allows us to set 
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the force applied on each surface node as the 
vertical pressure gradient. 
 
3.1.1 3D data extraction.  

The medical datasets are collected as 
follows: Four CT scans of a normal patient 
lying in the supine position. Each scan was 
taken at a different time point during 
respiration with the lung volume held at 
approximately 5%, 40%, 75%, and 100% of 
the vital capacity as judged by use of a 
pneumotachometer and high frequency balloon 
valve which prohibited air flow at the mouth 
when lung volume reached the desired level on 
the expiratory limb.[29] The surfaces for the 
right and left lungs were extracted from each 
scan and converted into 3D polygon models 
using the segmentation functions of the 
Analyze software (developed at the Mayo 
Clinic).[30] A sequence of four pairs of left 
and right 3D models were generated from these 
four scans.  
  
3.2 Nodal displacements computation.  

A sequence of four 3D lung models 
obtained from a normal human lung at 5%, 
40%, 75%, and 100% tidal volume at supine 
position were considered for analysis. Fig.2a 
and Fig.2b show an illustration of 3D lung 
models at 5% and at 100% tidal volume. The 
surface nodes of these 3D models need to be 

first put in correspondence in order to compute 
the displacement of nodes. This is done by 
projecting a ray from a node of the 3D model 
at 5% tidal volume and performing a ray-
triangle intersection analysis of that ray with 
the lungs at a higher tidal volume. After 
intersection with triangle of higher tidal 
volume, the point of the higher tidal volume  
becomes the corresponding vertex for the 
vertex at 5% tidal volume The specific 
direction for each ray is computed using a 
depth-first searching approach with the 
constraint that it must allow the displacement’s 
magnitude of every node to be linear with 
increase in volume as previously observed in 
[31].   
  
3.3 Piece-wise Euclidean distance 
computation.  

In our work we use a piece-wise 
Euclidean distance computation instead of a 
Euclidean distance computation for better 
estimation of the elastic properties. The piece-
wise Euclidean distance between two nodes is 
computed as follows: For any high-resolution 
lung model a low-resolution 3D lung model is 
first created using a commercial software 
(Geomagic Studio) in such a way that the local 
curvature details are maintained (this 
verification is done using Geomagic Studio).  

 
Fig 3. The geodesic path (path 1) between given two nodes A and B of the high-resolution model 

computed using the low resolution model given as the grid.  
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 Table.1 Discription of parameters used for the introduction of deformation operator 

Parameter Description 
K(J,I) Deformation kernel, which represents the inter-nodal interaction 

between nodes J and I during a physically-based deformation. 
F(I) Force applied on each node I. 
PI, QI Structural constants associated with each node I. 
CI Functional constant associated with each node I. 
a(J) Alveolar expandability at the region of node I. 
E(J,I) Difference between the alveolar expandability of node J and I. 
d(J,I) Euclidean distance between two nodes J and I. 
d’(J,I) Weighted distance between two nodes J and I. 
Z(J,I) Function proportional to d(J,I). 
Z’(J,I) Function proportional to d’(J,I). 
AI,BI Weighted constants used by d’(J,I) to be represented in terms of d(J,I) 

and e(J,I) 
 
For computational purposes the low-resolution 
model is created with 1% of the number of 
nodes in the high-resolution model. The 
distance between any two nodes in the low-
resolution model is computed using the 
distance vector method. In this method, a table 
with the number of rows and columns equal to 
the total number of nodes is first created and 
populated using an iterative approach. The 
creation and population of this table (an 
iterative procedure) has been extensively 
discussed in graph theory,[32] and network 
routing applications. In the case of 3D lung 
models, the number of iterations to create and 
populate the distance vector table was 
observed to be approximately 3. After the 
creation and population of the table (at 
equilibrium state) each table element (x,y) 
maintains  the two components: (i) the shortest 
distance between x and y along the grid and (ii) 
an immediate neighbor of x on the shortest 
path from x to y. Finally, every node in the 
high-resolution model is associated with a set 
of nodes in the low-resolution model in such a 
way that the low-resolution nodes surround the 
high-resolution node. Now in order to compute 
the distance between any two nodes (A,B) in 
the high-resolution model, we first find the 
shortest path between any associated nodes of 
A and B. We then add the Euclidean distance 

between A and B to their respective associated 
nodes with the shortest path. Fig 3 shows a 
schematic representation of the path between A 
and B. 
 
3.4 Deformation Operator. The general 
formula of the GF as an operator in discrete 
space is given as 

! 

D(I) = K(J,I) " f (J)
J

# ,                 (1) 

where D(I) is the displacement of the node I, 
f(J) is the force applied on node J, and K(J,I) is 
the GF operator (deformation kernel), which 
represents the elastic interaction between nodes 
taking into account both the inter-nodal 
distance and elastic properties. The elements of 
the kernel row represent the normalized 
weights of the force transferred from one node 
to another. The elastic interaction in the tissues 
can be better understood as follows: If we 
consider the node I as the only node on which 
an external force is applied then there exists a 
displacement for every other node that is 
affected by the force applied on I through 
intermediate nodes. This is caused by the 
transfer of force from one node to another by 
their elastic interaction. This transfer of forces 
from node I to other nodes is represented as the 
deformation kernel’s row elements, whose 
row-wise summation is normalized. 
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Additionally, the elements of the transfer 
function also represent the YM of the inter-
nodal links. The complexity in computing the 
displacement using the deformation kernel is 

)( 2
NO  where N is the total number of nodes 

in the given 3D lung model.  
The general form of the kernel row is 

described in two different representations. The 
first one is given as 

),(sin),(cos),( IJzQIJzPIJK II +=         (2) 
where ),( IJz  is a function that returns a value 
in the range of zero to !2 . PI and QI are 
arbitrary constants that take values between 
zero to 1.[12] The above equation represents 
the kernel as a continuous trigonometric 
function discretized by the values of ),( IJz . 
A further mathematical simplification of 
equation (2) can be given as 

),('cos),( IJzCIJK
I

= ,       (3) 
where CI is an arbitrary constant and ),(' IJz is a 
function that returns a value in the range of 0 
to 2/! . Equation (3) represents a row of the 
kernel matrix as a cosine function. The 
constants PI and QI can be now be written in 
terms of CI as 

III
CP !cos=  and III CQ !sin= ,           (4) 

Where 
I
!  is a variable parameter that is used 

later to simulate breathing variations. The 
second general form of the kernel row is 
described as a proportionality function of the 
piecewise Euclidean distance (d(J,I)) between I 
and J. It can thus be written as 

! 

K(J,I) =
D
I

4"d(J,I)
,        (5) 

where D is a proportionality constant, which 
depends on the deformation mechanics of the 
lungs. Equation (5) has been used for modeling 
unique cases pertaining to the mechanics. 
These unique cases discussed by Stakgold 
present the different values of the 
proportionality constant.[12] In the case of 
lungs, the proportionality constant D remains 
unknown.  
We now merge the two definitions of the 
kernel in order to solve for z’(J,I). Since both C 
and D of equation (3) and (5) act as 

proportionality constant, the values of 

cos(z’(J,I))  and 

! 

1

4"d(J,I)
 can be equated.  

z’(J,I) can now be written as.  

! 

z'(J,I) = cos
"1
(

1

4#d(J,I)
)

$ 

% 
& 

' 

( 
) .            (6) 

It can be seen that for higher values of the 
Euclidean distance between J and I, the value 
of K(J,I) tends to zero. Additionally, the values 
of z’(J,I) and d’(J,I) are proportional. 
However, in the case of lungs we consider a 
heterogenous elastic representation in order to 
account for the regional variations in the 
alveolar expansion. Thus equation (6) is 
modified as  

! 

z'(J,I) = cos
"1
(

1

4#d'(J,I)
)

$ 

% 
& 

' 

( 
) ,                  (7) 

where d’(J,I) is a function that takes into 
account both the distance and the local elastic 
properties. It can be seen that for higher values 
of d’(J,I) the value of K(J,I) tends to zero. An 
initial representation for d’(J,I) is given as a 
linear combination of the distance and the 
elastic interaction.  

! 

d'(J,I) = A
I
d(J,I) + B

J
e(J,I) ,            (8) 

where AI and BI are arbitrary constants. These 
constants are also referred to as structural 
constants in this paper, since they both 
compute the function d’. The function e(J,I), 
which represents the elastic interaction 
between nodes J and I, is given as a difference 
in the alveolar expansion of the region 
surrounding nodes J and I. Such a 
representation is based on the fact that the air 
flows to the region of least resistance, which in 
our case is the region of higher alveolar 
expandability. The regional alveolar 
expandability is thus an indirect indicator of 
the YM. The regional alveolar expandability 
has been previously discussed in [33], [34], 
and [35]. The function e is thus defined as 

)()(),( IaJaIJe != ,                 (9) 
where a(J) is a function representing an 
estimated alveolar expandability in the region 
surrounding node J. Equation (9) represents the 
following fact: the higher the difference 
between the alveolar expandability, the lower 
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is the transfer of force. The definition of 
function e in terms of the alveolar expansion is 
an essential factor in estimating the kernel for 
the 3D lungs. It can be seen that the inverse 
lung deformation problem thus mathematically 
relates to computing the values of AI, BI, and CI 
for each node I. Once the CI for each node is 
computed, the deformation kernel can be 
varied by changing the 

I
!  in order to simulate 

breathing variations.  
A method to estimate the values of AI 

and BI using simultaneous equation based 
representation of equation (7) coupled with 
approximated kernels, is now discussed. For 
the 3D lung model extracted from the patient-
data, two different estimates of the deformation 
kernel are first computed. Each deformation 
kernel is estimated, using only the structural 
parameters (piecewise Euclidean distance, and 
regional alveolar expandability). An outline of 
this method is given in Appendix.A. The 
second kernel is computed with the following 

modification: the distance between any two 
nodes to be twice as that of the distance used in 
the estimation of first kernel. Now using 
equation (5) we form two simultaneous 
equations for each node I, with the unknown 
being AI and BI. The values for the structural 
constants for each node are thus solved. The 
values of AI and BI are plotted with respect to 
the Z-axis values of the nodes in the 3D left 
and right lung models as shown in Fig. 4a, 4b, 
4c and 4d respectively. The range of values 
taken by both AI and BI are approximately the 
same, which leads us to infer that both the 
inter-nodal distance and local alveolar 
expandability play an equal role in determining 
the deformation kernel.  
The values for the structural constants for each 
node are thus solved. The value of CI can be 
computed by merging the deformation kernel’s 
expansion given in equation (6) with equation 
(1). The value of CI can now be written as

           
   (a)      (b) 

  
  (c)      (d) 

Fig.4. The values of constants A and B are plotted against the Z values of the vertexes for the left 
lung ((a) and (b)) and right lung ((c) and (d)).  
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! 

CI =
D[I]

f [J]" cos(z'(J,I))
J= 0

N

#
.        (10) 

The values of CI for left and right lung models 
are plotted in Fig 5a and 5b respectively. Fig 
6a and 6b shows the 3D lungs at the start of the 
inhalation and at the end of the inhalation. The 
deformed shape shown in Fig.6b is computed 
using the deformation kernel estimated from 
the 4D HRCT model. The total number of 
nodes on each model is approximately 40000. 
Once the deformation kernel is estimated, it 

can be varied for simulating variations in the 
breathing. Fig.7a and 7b shows two different 
lung deformations simulated by varying the 
values of 

I
!  for each node. In each of the 

images, the deformation lung is shown in red 
color. For reference, each of the images also 
includes the undeformed lung in white color. 
The inclusion of the undeformed lung allows 
us to show regional changes in the lung shape. 
Such variations may represent the variations in 
breathing caused by variations in the 
diaphragm.

 

  
   (a)      (b) 

Fig.5. The values of the CI are plotted against the Z-axis values of (a) the 3D left lung nodes, and 
(b) the 3D right lung models.

 

   
(a)     (b) 

Fig.6. The 3D lungs (a) at the start of the inhalation and (b) at the end of the inhalation. 
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                             (a)      (b) 

Fig.7 The 3D deformed lung at the end of inhalation (red color) is shown at two different breathing 
patterns simulated by varying the values of 

I
!  for (a) and (b). The undeformed lung is shown in 

white color in both the images.  
 
4. Discussion 
A method for inverse lung deformation 
analysis is discussed in this paper. This method 
allows obtaining the deformation kernel from 
4D-CT images of a human subject data. Such 
an estimation of kernel allows simulating the 
3D lung dynamics of the human subject under 
different breathing conditions. The inverse 
problem discussed in this paper solves for 
these three constants using the deformation 
kernel. The displacements of the 3D lung 
nodes were re-constructed from the estimated 
transfer function with less than 1% RMS error.  
The research work discussed in this paper 
provides extensive scope for analysis in future. 
These future works would involve (a) 
validating the 3D lung dynamics simulated at 
different breathing conditions using invasive 
methods, (b) modeling the dynamics of a 
multi-compartmental 3D lung model, (c) 
accounting for the variations in deformation 
induced by variations in the diaphragm and rib-
cage mechanics, (d) re-constructing the 3D 
lung dynamic for individual lobes of the 3D 
lung model, and (e) validating and analyzing 
the lung dynamics in the presence of a tumor 
inside lungs. 
   
Appendix A 
In this section we briefly explain the method to 
obtain an estimated deformation kernel for 
lungs using the inter-nodal distance and 
alveolar expandability. Every node I of the 3D 
lung model is first associated with a constant SI 

that represents the regional alveolar 
expandability at that structural location. 
Additionally, every node I of the 3D lung 
model is also associated with a value of the 
force applied on it, which is based on the 
gravity and is thus based on the orientation of 
the lung model. We now introduce an initial 
estimate of the transfer function Te, which is 
first initialized to 0 and computed as follows. 

! 

Te[ j" i] = (
Si

(Sl #
1

Dist(l, j)

$ 

% 
& 

' 

( 
) )

l= 0

cliqueof ( j )

*
) *

1

Dist( j,i)

  (A.1) 
An equilibrium force elastostatic force F 
applied on each node is estimated using the 
estimated transfer function and by the 
following iterative relation  
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The final estimate of the transfer function 
(deformation kernel) T, is computed by the 
following relation 

][
][

][
][ ijT

jf

jF
ijT e !"##

$

%
&&
'

(
=!    (A.3) 

This deformation kernel is considered as only 
an estimate since it takes into account the 
structural properties of a given 3D lung model.  
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