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Abstract 
 
The requirements for tracking in augmented reality 
environments are stringent because of the need to 
register real and computer-generated virtual objects. 
Driven by the need to track real objects within these 
environments, we propose two algorithms to distribute 
markers on complex rigid objects.  The proposed 
algorithms employ an optimization technique with a 
spherical or cylindrical intermediary surface. The 
validity and effectiveness of the algorithms are tested 
heuristically by simulation.  
 
 
1. Introduction 
 

Placing real and computer-generated objects into 
register is a challenging problem in augmented reality 
(AR). Because virtual and real objects must be placed 
into register, i.e. spatial coincidence, the need for 
accurate tracking not only for the head of the user but 
also for other objects is predominant [1][2]. 

The research presented in this paper is a component 
in the development of a comprehensive framework for 
the Distributed Augmented Reality Collaborative 
Environment referred as DARE. Applied to medical 
visualization, DARE allows human anatomical 3D 
models to be overlaid on real patient models or human 
patient simulators, and the data to be shared across 
remote locations. At remotely dispersed locations users 
obtain an enhanced view of the real environment, by 
wearing see-through head-mounted displays (HMDs) to 
observe three-dimensional computer-generated objects 
superimposed on their real-world view [3]. The position 
and orientation of the real objects must be computed to 
render the computer-generated objects from the correct 
viewpoint at the correct depth. 

Thus, the requirements for tracking in DARE as in 
other AR environments are extremely stringent whether 
the specific application is a training tool, a diagnosis 
tool or an aid to guided surgery [4]. An approach to 
tracking real objects is marker-based, optical tracking 
technology where markers are distributed on the object's 
surface. However, in the case of complex objects, ad 
hoc methods for marker distribution may waste 
resources and/or restrict tracking performance.  

We propose two algorithms for marker mapping on 
complex rigid objects. The first algorithm, referred to as 
the quiescent algorithm, approximates a uniform 
distribution for a specified number of markers on the 
surface of the object. An iterative optimization process 
determines the number of markers.  

The second algorithm, referred to as the viewpoint 
algorithm, minimizes the number of markers while 
keeping the constraint that at least k markers are seen 
(detected) from different viewpoints. The number of 
markers required to determine an object's position and 
orientation from each viewpoint is dependent on the 
tracking system used. 
 
2. The quiescent algorithm 
 

In this section, we describe a three-step algorithm for 
placing sets of markers onto complex rigid objects. The 
name of the algorithm is derived from the second step. 
Quiescence refers to the minimum potential energy 
(resting) state of a set of points that can be achieved via 
optimization.  

The algorithm requires the availability of a three-
dimensional triangular mesh model of the object.  The 
problem of mapping from 2D surfaces onto complex 3D 
objects is encountered in texture mapping [5]. 
Conceptually, the texture mapping process is simple. A 
small area of the texture pattern maps onto the area of a 



 

geometric surface. However, in the case of a complex 
3D object, its surface equations can be difficult to 
approximate. To solve this problem, a two-part, texture-
based mapping technique is used. The technique uses 
intermediary three-dimensional regular surfaces. 

The first step determines whether to use a cylinder or 
a sphere as an intermediary surface.  The decision is 
based upon the application tracking requirements and 
the elongation of the object. If the object is elongated, 
the principle axis of symmetry is determined by 
eigenvector analysis and a cylinder is used as the 
intermediary surface. Otherwise, a sphere is used as the 
intermediary surface.  

The extent of elongation of a complex object can be 
quantified by an assessment of the eigenvalues of the 
dispersion matrix computed from the vertices of its 3D 
triangular mesh. For a complex object, the ratio between 
the largest and the smallest eigenvalue is considered. If 
this ratio is greater than or equal to 10, we choose a 
cylinder over a sphere for the mapping. 

Once the object elongation has been quantified, the 
main axis of symmetry is determined by the eigenvector 
corresponding to the strongest eigenvalue.  

Let p be the centroid of the triangular mesh that 
represents the complex object. We compute the 
Cartesian coordinates of the centroid in the global 
coordinate system. Let n be the total number of vertices 
(points) in the three-dimensional triangular mesh that 
approximates the complex object. Let pi be the position 
of the ith vertex in the mesh. Let  di = di - p, i∈[1,n]  the 
vectors between the centroid and each vertices in the 
mesh. The 3x3 symmetrical dispersion matrix is: 
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   ,where di

T is the transpose of di. 

To determine the eigenvectors of this matrix, we  
diagonalize it, given that A is real and symmetric. The 
diagonalized A can be written as: 

AVVD 1−=   
where Dij = λ[j], i=j is the matrix of eigenvalues and V is 
the matrix of eigenvectors. 

In the second step of the quiescent algorithm, we use 
an optimization procedure to uniformly distribute the 
markers on the cylinder or on the sphere. Using 
optimization, an initial number of markers are 
distributed on the intermediary surface. Then, the 
minimum number of markers that meet the tracking 
system detection requirements is computed in an 
iterative process [6]. Simulated annealing lends itself 
well to this approach because of the well-specified 
criteria for point movement to an optimal solution 
during iterations of the algorithm [7]. Furthermore, 
during optimization, simulated annealing includes 
methods for escaping some local minima. It is important 
to note, however, that other optimization methods can 

be used to solve this problem.  As such, it is not our 
intention to explore the advantages of using one 
optimization algorithm versus another. 

In the third step, the markers are mapped from the 
intermediary surface to the desired complex 3D object 
in an approach similar to two-way texture mapping. 
This can be done using the normal from the 
intermediary surface, the normal from the object’s 
surface, or the center or principal axis of the object. The 
algorithm we developed uses the center or principal axis 
of symmetry of the object in the mapping process. A 
description of the geometrical formulae for cylindrical 
and spherical intermediary surfaces is given in 
Appendix A and B, respectively. 

The inputs of the quiescent algorithm are: 
1. A 3D Model: the set of n points defined in 

Cartesian coordinates (Xi,Yi,Zi), where i∈[1,n], n 
being the number of vertices in the three 
dimensional triangular mesh approximating the 
complex object onto which the markers are mapped. 

2. A set of intermediary marker positions: the set of k 
points defined in Cartesian coordinates 
(XMi,YMi,ZMi), where i∈[1,k], k being the number of 
points that describe the initial positions of the 
marker centers on the intermediary surface after the 
annealing procedure from the second step.  

The output is a set of k points describing the final 
positions of the marker centers on the object's surface. 
Each point is defined by the Cartesian coordinates 
(XFi,YFi,ZFi), where i∈[1,k], k being the number of  
markers.  
 
3. The viewpoint algorithm 
 

Similar to the quiescent algorithm, the purpose of 
this algorithm is to distribute a finite number of markers 
on a complex 3D object. The improvements over the 
previous algorithm are twofold. First, this algorithm 
further minimizes the number of markers. Second, it 
guarantees that at least k markers are visible from each 
viewpoint, where k is the minimum number of markers 
that are necessary for a given tracking system. 

The viewpoint algorithm can be described in four 
steps:  
1. A triangular mesh is generated for the complex 3D 

object. Each triangle of the mesh is assigned a 
different number. 

2. The number and the positions of the viewpoints 
arround the complex object are selected. A higher 
number of viewpoints will give better results 
because this is equivalent to analyzing the object 
from more angles. Hence, more viewpoints will 
give better marker positions on the complex object. 
Moreover, the probability that at least k markers are 
visible will increase when the object changes 



 

position and orientation in the tracking frame of 
reference. To distribute the viewpoints around the 
object, we place them uniformly on the sphere that 
surrounds the object and has a radius two times the 
maximum distance between any two points in the 
triangular mesh. All the viewpoints are added to the 
ViewpointsList. 

3. For each triangle, the number of viewpoints from 
which it can be seen is computed. We create the 
TrianglesList. If two triangles have the same 
viewpoint count we sort them by the number 
assigned in step 1. We create a list having in each 
node the triangle number and the number of 
viewpoints from which this triangle can be seen. 

4. As long as the ViewpointsList is not empty: 
4.1 Select the triangle with the highest viewpoint 

count that is next in the TrianglesList and add 
a marker on its surface.  

4.2 If fewer than k markers from that viewpoint 
are seen, step 4.1 is repeated. 

4.3 Else the viewpoint is removed from the   
ViewpointsList and the TrianglesList is 
updated. 

The algorithm assures that from each viewpoint at 
least k markers are visible and minimizes the number of 
markers. 
 
4. Experimental Results 
 

To heuristically test the validity of the algorithms, 
software simulations were performed. Computer-
generated, random, three-dimensional triangular meshes 
representing the complex objects were used.  
 
4.1 The quiescent algorithm  
 

The markers on the intermediary surface after 
annealing are represented as small spheres on the 
transparent surface. The small spheres on the object 
represent the final positions of the markers on the 
surface of the complex object. 

The first set of simulations was performed with a 
sphere as an intermediary surface, shown as a 
transparent surface in Figure 1.  

The 3D scene contains: 
- a randomly generated 3D triangular mesh 

consisting of 10 triangles 
- 30 markers 
- a sphere of radius R as an intermediary surface, 

where R is greater then the maximum distance 
between any two points in the triangular mesh.  

 

 
 

Figure 1: Sphere as intermediary surface 
 

The second set of simulations was performed with a 
cylinder as an intermediary surface, shown as a 
transparent surface in Figure 2.  

The 3D scene contains: 
- a randomly generated 3D triangular mesh 

consisting of 10 triangles 
- 24 markers 
- a cylinder of radius R and height H as an 

intermediary surface, where 2R and H are 
greater then the maximum distance between any 
two points in the triangular mesh. 

The validity of the algorithm on complex objects was 
tested heuristically. We aligned the tracking system 
camera with the scene camera and rotated the object.  
We observed that at least 3 markers per viewpoint were 
seen and that there was a fairly uniform distribution of 
markers on the surface of the object. 
 

 
 

Figure 2: Cylinder as intermediary surface 
 
4.2 The viewpoint algorithm  
 

The uniformly distributed viewpoints on the surface 
of the sphere surrounding the 3D object are represented 
as small cubes in Figure 3. The small spheres on the 
object represent the final position of the markers. 



 

The 3D scene contains: 
- a randomly generated 3D triangular mesh 

consisting of 10 triangles 
- 30 viewpoints uniformly distributed on the 

bounding sphere that surrounds the complex 
object. 

- a sphere of radius R. R is greater than double the 
maximum distance between any two points in 
the triangular mesh.  

 

 
 

Figure 3: The viewpoint approach 
 

The current implementation places the markers at the 
center of mass (centroid) of the triangles. Most optical 
tracking systems require at least 3 markers visible from 
each viewpoint to correctly determine the position and 
orientation of the object. If only one triangle is seen 
from a viewpoint, the other markers are distributed on 
the vertices that form the triangle.  
 
5. Conclusions 
 

Two algorithms are proposed for marker distribution 
on complex rigid objects. The experiments demonstrate 
the success of the algorithms applied on randomly 
generated complex rigid objects.  

In addition to further verification, there are several 
issues that still need to be addressed. One issue is the 
type of markers: active versus passive. Another issue is 
accounting for the cones of emission for different type 
of active markers and investigating their impact on the 
marker distribution and orientation. 
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Appendix A 
Cylinder as intermediary surface  
 
1. We align the principal symmetry axis of the object 

with the cylinder axis, e.g. the OX axis. 
2. Let (XMarker,YMarker,ZMarker) be the Cartesian 

coordinates of a point in the markers intermediary 
position file (i.e. after the annealing algorithm has 
been applied on the cylinder). For each point, we 
find the equation of the section plane (SP) that is 
parallel to the OZY plane and passes through the 
point. This plane is unique. 

3. From the triangular mesh that represents the 3D 
complex object we isolate the set of triangles (TS) 
that are intersected by SP using a range factor (RF) 
based on the granularity of the triangular mesh. 

4. For each triangle we isolate its section segment by 
computing the intersection point between a line 
segment determined by two vertices of the triangle 
and the SP. 



 

Figure A1: Section segment 
 
Using the plane equation, we identify the coefficients. 
In this case SP is parallel with the OZY axis and passes 
through the point (XMarker,YMarker,ZMarker) hence we have: 
A=1, B=0, C=0 and D=  (-)XMarker. The SP equation is 
given by:  

0ker =− Marxx  (A1) 
The parametric equations of the line that passes through  
two points (x1,y1,z1), (x2,y2,z2) are: 

txxxx )( 121 −+=  

tyyyy )( 121 −+=  

tzzzz )( 121 −+=  
Substituting equation A1 into the first parametric 
equation for the line yields: 

txxxxMar )( 121ker −+=  

tyyyy )( 121 −+=  

tzzzz )( 121 −+=  , unknowns: t, y, z. 
The solution of this system is given by: 
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5. We repeat step 4 for each triangle in TS until we 
obtain all the section segments.  

6. We repeat step 2 for each point in the markers 
intermediary positions file. 

 
Appendix B 
Sphere as intermediary surface 
 
1. The centroid of the general shape is computed by 

applying the arithmetic mean on each dimension: 
nxxxx nc /)...( 21 +++=  

nyyyy nc /)...( 21 +++=  

nzzzz nc /)...( 21 +++=  
2. Let (XMarker,YMarker,ZMarker) be the Cartesian 

coordinates of a point in the markers intermediary 
position file (i.e. after the annealing algorithm has 
been applied on the sphere).  The parametric 
equations of the line that passes through the points 
(Xc,Yc,Zc), (XMarker,YMarker,ZMarker) are given by: 

txxxx cMarc )( ker −+=  

tyyyy cMarc )( ker −+=  

tzzzz cMarc )( ker −+=  
3. For each triangle, the intersection between the 

plane generated by the triangle and this line is 
computed. Having three points: (X1, Y1, Z1), (X2, 
Y2, Z2), (X3, Y3, Z3), the equation of the plane that 
passes through them is given by: Ax+By+Cz+D=0, 
where: 

)21(3)13(2)32(1 zzyzzyzzyA −+−+−=  

)21(3)13(2)32(1 xxzxxzxxzB −+−+−=  

)21(3)13(2)32(1 yyxyyxyyxC −+−+−=

)2112(3)1331(2)3223(1 zyzyxzyzyxzyzyxD −+−+−=  
From the plane equation and the parametric 
equation of the lines we can find the intersection 
point (XSol,YSol,ZSol). Then we check whether each 
point is inside the triangle. While this operation can 
be done in several ways, we check if the point is 
inside 2 angles of the triangle. 

4. Step 3 is repeated for each marker in the input file. 
 

SP 

(x1,y1,z1) 

(x2,y2,z2)


