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Abstract. A current challenge in augmented reality applications is the
ability to superimpose synthetic objects on real objects within the envi-
ronment. This challenge is heightened when the real objects are in mo-
tion and/or are non-rigid. Yet even more challenging is the case when the
moving real objects involved are deformable. In this article, we present a
robust method for calibrating marker-based augmented reality applica-
tions to allow real-time, optical superimposition of synthetic objects on
dynamic rigid and simple-deformable real objects. Moreover, we illustrate
this general method with the VRDA Tool, a medical education applica-
tion related to the visualization of internal human knee joint anatomy
on a real human knee.

1 Introduction

In a large range of fields, the ability to enhance reality with synthetic informa-
tion is an exciting alternative to traditional methods of acquiring information.
Applications where computer-generated objects are employed to augment user
perception of the real environment are referred to as augmented reality (AR)
applications.

A current challenge in AR applications is the ability to superimpose synthetic
objects on real objects within the environment. To overcome this challenge,
objects in the environment must be accurately tracked and the relationships
between real and synthetic objects must be precisely determined. When dealing
with medical AR applications, the real and synthetic objects in the environment
are often human anatomical structures.

Accurately tracking human motion is a difficult task. However, there have
been attempts to understand and quantify human motion. Spoor and Veldpaus
published a method for calculating rigid body motion from the spatial coor-
dinates of markers that has been adapted to tracking skeletal motion [13]. In



addition, techniques have been devised that address the problems associated
with accurately tracking anatomical motion [1][6][12]. In fact, much is known
about the motion of anatomical structures, but they still pose a significant chal-
lenge to inclusion within AR systems. Aside from the fact that markers cannot
be directly positioned on bones in daily settings, anatomical structures are not
rigid. Moreover, attempting to track anatomical structures at interactive speed
while maintaining registration of synthetic objects is especially challenging.

Thus, as a contribution to the body of virtual environment research, we exam-
ine the problem of tracking simple-deformable bodies within an AR application
and present a general method for calibrating marker-based AR systems, which
may result in accurate dynamic superimposition of synthetic objects on real
objects at interactive speeds. In the following paragraphs, we present a marker-
based calibration method for AR applications. In conjunction with a dynamic
superimposition method found in [2], the method is applied to the Virtual Re-
ality Dynamic Anatomy (VRDA) Tool, a visualization system developed for the
study of complex anatomical joint motions [14].

2 Calibration Process

In the calibration process, the AR system is prepared for accurate superim-
position. This includes computing the local coordinate system, or local frame
of reference, for each real object in the environment, determining the transfor-
mations between real objects and their respective synthetic counterparts, and
characterizing the stereoscopic display device. We treat the tracker coordinate
system as the global frame of reference, or frame for short. In addition, we define
simple-deformable objects as objects that are slightly changing in shape com-
pared to an equivalent rigid object, which we show can be quantified by the
change in the eigenvalues of the dispersion matrix associated with a cluster of
markers.

2.1 Computing Local Frames for Real Objects

To determine the location and orientation of a real object, we choose to adopt
a marker-based method because it offers a more accurate way to determine the
position and orientation of real objects. Each real object is defined by a set of
markers placed on its surface. Whatever type of marker-based tracking system is
selected, we assume the system can provide the three-dimensional (3D) location
of each marker in its frame of reference. However, this information is not sufficient
to link real and synthetic objects; each marker location must be computed in a
local frame defined for each real object.

For a rigid object, we compute the fixed marker locations in the local frame.
Similarly, in the case of a simple-deformable object, we first make the assumption
that the markers do not move significantly during the calibration phase. The
relative motion of each marker in its local frame will be assessed in a later step
and accounted for. In both scenarios, we can establish a local coordinate frame



using eigenvalues and eigenvectors obtained from the locations of the markers on
the object [1][6]. For rigid objects, the eigenvalues of a matrix characterizing the
marker distribution are invariant, even though its eigenvectors vary according to
the position and orientation of the object in the global frame or any other frame.
This extends to simple-deformable objects under the previous assumption.

Thus, we take advantage of this invariance property to build a local marker
frame, defined with the eigenvectors of a matrix that characterizes the marker
set. A matrix that meets this criterion is the dispersion matrix, which is a form
of the spatial covariance matrix over the marker distribution. We denote the
coordinates of the centroid of the marker distribution y, the total number of
markers n, and the coordinates of the it marker in the global frame y;. We also
define y; = y; — y,4 € [1;n]. Thus, the 3 x 3 symmetrical dispersion matrix, K,
is given by

n
T
K=Y yy . (1)
=1

We define the local frame as the eigenvectors of K, which will allow direct
computation of the required transformation for the local frame to the global
frame as now detailed. To determine the eigenvectors, we first diagonalize K,
given that K is real and symmetric. The diagonalized K can be written as

diag (kl,kQ,k3) = V_IKV (2)

where k1, ka2, and k3 are the eigenvalues of K and V is the matrix of eigenvectors.
Provided that V has an inverse, the relationship described in (2) is a similarity
transform. An important property of similarity transforms is that eigenvalues are
preserved, meaning K and its diagonalized version can be related to one another
using an eigenvector basis. In this case, V is the eigenvector basis between K
and its diagonalized version. The frame where K is diagonal is unique. We then
sort the eigenvalues such that ky > k2 > k3 > 0 and recompute K using (2). V
is the orthonormal matrix that transforms the frame where K is diagonal to the
frame where K was first computed, meaning that V is the transformation from
the local frame to the global frame. In addition, the inverse of V is equal to its
transpose because V is an orthonormal matrix. Thus, we can express the local
coordinates, z;,7 € [1;n], of the markers in a frame whose origin is the centroid,
1y, of the marker set and whose axes are given by the eigenvectors of the matrix
K, with the relationship expressed as

z; =VTyl i€elizn] . (3)

The process previously described is valid when the tracking system detects all
the markers on an object simultaneously. However, all the object markers may
not be visible simultaneously, a situation that occurs when tracking systems are
subject to occlusion.

We now present an extension of the method to compute the local coordinates
of all markers, whether simultaneously visible or not. First, a local frame is built
from the coordinates of the visible markers. At least three markers must be first



detected. Then, the transformation from the local frame to the global frame, V,
is determined. Once V is computed with a limited number of visible markers,
we determine the coordinates of all the visible markers in the local frame, which
we refer to as a partial local frame.

Next, the real object is slowly rotated. This allows previously undetected
makers to be detected with at least three markers that were previously detected.
We call these previously undetected markers, new markers, and the markers that
were detected previously, old markers. When the new markers are detected, the
rotation matrix, R,,_,, and translation vector, T;,_,, from a partial local frame
to the global frame are calculated. A scaling transformation is unnecessary at
this stage because we are using normalized coordinate systems.

The technique used for finding the rotation matrix and translation vector is
Singular-Value Decomposition (SVD) [4]. We chose this method because it is a
robust optimization method that always gives a solution, and, moreover, it is
the best solution by projection on the solution space. The computation of the
rotation matrix and translation vector, as well as a modification to the SVD
method to account for hidden markers and simple-deformable objects, can be
found in [2]. The inputs to the SVD are the computed marker coordinates x;
in the local frame and the measured marker coordinates y; in the global frame.
After the rotation matrix R,,_, and the translation vector T;,_,, are determined
from the optimization procedure, we compute the local coordinates of the new
markers in the current local frame as

Ty = R’r'o_oT (y; - T’r'o_o) . (4)

Finally, with all the new and old markers expressed in the current local co-
ordinate system, we again compute the dispersion matrix and eigenvalues (see
equations 1-3) to find an estimate of the new local frame and then compute the
new local coordinates of the markers. We repeat this process as the real object
is rotated until all the markers have been visible. This technique allows us to
build a local frame for any kind of marker set and quickly calculate the local
coordinates of the markers.

2.2 Determining Transformations Between Synthetic and Real
Objects

After computing the local frames of real objects, we then associate the synthetic
representation of an object to its corresponding real object. To link a real object
and its synthetic representation, the transformation matrix from the synthetic
object frame to the real object frame is computed. Because the definition of a
synthetic object frame can be arbitrary, extra data must be provided to build the
transformation matrix. To supply the additional information needed, landmarks
are defined. These landmarks are corresponding points of significance on the real
and synthetic objects. By utilizing landmarks and decomposing the transforma-
tion matrix to a rotation, scaling, and translation component, we can specify a
relationship between the real and synthetic worlds as y = RSz + T'.



We shall describe how we first solve for the scaling, S, due to the possibility
of system noise and/or measurement errors distorting the size of the objects, and
apply it to the entire synthetic object. Then, the rotation, R, and translation,
T, are computed using a modified SVD method, with the real and synthetic
landmark coordinates as input. The solution of R and T is detailed in [2].

Solving for S consists of computing the mean scaling, Sy, cqn, for all the land-
marks and deciding if uniform scaling by S;;cqn is appropriate. The mean scaling
is determined by calculating the ratio of the distance between two landmarks in
the real object frame and the distance between two landmarks in the synthetic
object frame for all two- landmark combinations. The ratios are summed for
each corresponding pair of landmarks and averaged as

n— n d(yi,y;
Zz‘:ll Z]‘:z’+1 (d((z ij)))
Smean = on 2 )i 76.7 (5)
2

where, y; is the i*® landmark in the real object frame, z; is the corresponding
it landmark in the synthetic object frame, and n is the total number of land-
marks. It is important to note that the equation for finding the mean scaling is
independent of any rotation and translation transformation of the landmarks.
We also compute the standard deviation of the mean scaling, Ssq. If the value
of Ssq is under a particular threshold level, the variations in scale are small
enough to conclude that the scaling is uniform in three dimensions. The calcu-
lation of the threshold level is explained in [3]. If uniform scaling is sufficient,
then S = Spcan - I, where I is the identity matrix. If uniform scaling is insuf-
ficient, then scale parameters must be computed for the x, y, and z directions,
respectively.

2.3 Characterizing the Display Device

The goal in characterizing the stereoscopic display device is to determine the
correct viewpoint locations for each eye, the field of view of the optics, as well as
account for optical distortions in order to correctly display synthetic objects. The
stereo display device for AR applications is typically a Head-Mounted Display
(HMD), of which there are three types: optical see-through, video see-through,
and projective [9][7]. The display configuration is fixed and markers are placed
upon the HMD to compute the changing location and orientation of the head of
the user.

The choice of the local frame for the head of the user is not arbitrary. We set
the head frame origin, Oy, at the middle of the line segment between the eyes
of the user. The x-axis of the head frame, X}, is along the segment, with +x
oriented toward the right eye of the user. The y-axis, Y}, is oriented along the
line segment perpendicular to X}, , with +y oriented in the direction of the view
of the user. Finally, the z- axis, Z, is obtained from X} and Y with a cross
product: Zp = Xp, x Yj.



To create a stereoscopic view, we must also define a transformation to the
points from which the scene is rendered, referred to as the eyepoints. The choice
of eyepoint location is important in minimizing depth perception errors [10].
The location of the eyepoints can be calculated as a translation from Op of
half of the inter-pupilary distance (IPD) along the X axis in the +x and -x
directions (right and left eye, respectively). Thus, the transformations from the
head frame to the left and right eyepoints are a translation of —IPD/2 and
IPD/2, respectively. In addition to transformation matrices, we also define a
perspective transform for each eye based upon the display device field of view
[8].

Display devices with large fields of view are subject to optical distortion. This
distortion is a warping of the image that can be calculated and then corrected
optically, electronically, or within the rendering software. Optical correction and
electronic correction may not be feasible for a given display device. Thus, we
quantify the optical distortion within a system using either a theoretical model
or a metrology approach and correct for it within the rendering process [8].

3 An Application: Dynamic Superimposition of a Knee
Joint on a Patient Leg

When combined with the dynamic superimposition method found in [2], the
calibration method described is well suited for implementation in complex AR
systems. The Virtual Reality Dynamic Anatomy (VRDA) Tool is a system that
allows medical practitioners to visualize anatomical structures superimposed on
their real counterparts. To realize this effect, the medical practitioner wears a
HMD to view a computer graphics model of the knee superimposed on the real
leg of a model patient. In the following paragraphs, we demonstrate how the
method is integrated within the VRDA Tool.

We treat the leg as two separate objects; the first object is associated with
the thigh and the second object is associated with the shank. Each part of the leg
is tracked independently. To find the best location of the markers, we considered
the shape of the leg and chose the marker locations where they would probably
move the least [6]. We defined the landmarks in places where there is less flesh,
allowing the landmarks to be closer to the bones to reduce scaling or location
errors. The landmark locations are shown in Fig 1. To avoid collisions between
the synthetic objects, we refer to a precomputed look-up table that encodes the
correct location of the femur relative to the tibia [5]. The entry to the table is the
transformation between the two synthetic objects. The table returns the real-
time location of the objects, allowing smooth, realistic motion without collisions.

We also evaluated the scaling threshold to determine if uniform or non-
uniform scaling between real objects and synthetic objects is appropriate. To
determine the relative motion of the markers on the leg, we made 1000 mea-
surements of the global 3D location of the markers over a 10 second interval of
standard motion for the leg. We found that the maximum standard deviation of



the motion of markers is less than 15 mm. The tracking system is accurate to
within 0.1 mm.

For the eyepoints, we chose the center of rotation of the eye because rendering
is applied in near field visualization [11]. The field of view of the HMD is 26.11
degrees and the display resolution is 640 x 480 pixels. We also applied a coating
to the LCD displays to minimize the pixelization of our synthetic objects.

The 3D models that represent the knee joint anatomy are high-resolution
models from Viewpoint Corporation. The tracking system we employ is a NDI
OPTOTRAK 3020, which uses active, infrared LEDs as markers. The choice of
this system is based upon its resolution, robustness against common perturba-
tions, and speed. The display device is a prototype see-through head mounted
display. We perform both computations and stereoscopic rendering a SGI Onyx2.
The complete implementation of this method allows superimposition at interactive-
speed. We are currently able to achieve stereo frame rates of up to 26.6 Hz.
Furthermore, because of the choice of the SVD method and the enhancement of
noise attenuation, the superimposition process is robust and accurate.
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Fig. 1. Landmark locations Fig. 2. The dynamic superimposition

4 Future Work

Future work with the VRDA tool will demonstrate deformable structures such as
ligaments and muscles with respect to the bones as well. However, such demon-
stration is not required in quantifying the methods presented here. Furthermore,
methods of non-uniform scaling of synthetic objects will be implemented in fu-
ture developments. This is especially important in working with generic models
that must be registered with specific real objects. Applications of augmented
reality methods presented here will further be extended to perform full body
motion capture.
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