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ABSTRACT

Image quality assessment in medical imaging requires realistic textured backgrounds that can be statistically
characterized for the computation of model observers' performance. We present a modeling framework for the
synthesis of texture as well as a statistical analysis of both sample and synthesized textures. The model employs a two-
component image-decomposition consisting of a slowly, spatially varying mean-background and a residual texture
image. Each component is synthesized independently. The technique is demonstrated using radiological breast tissue.
For statistical characterization, we compute the two-point probability density functions for the real and synthesized
breast tissue textures in order to provide a complete characterization and comparison of their second-order statistics.
Similar computations for other textures yield further insight into the statistical properties of these types of random
fields.

Keywords: textured backgrounds; random fields; medical backgrounds; texture synthesis; first and second order
statistics.

1. INTRODUCTION

Medical and biomedical imaging research aims at developing better imaging systems, more accurate reconstructions,
and methods of image processing and analysis that utilize the most important information present in an image for
accurate and timely diagnosis ofdisease. Realistic numerical models ofhuman tissue and medical imaging systems
are key components to achieving this goal. This paper specifically addresses an approach to the modeling of
biological tissue, where the technique is demonstrated for radiological breast tissue, also referred to as mammographic
tissue.

The method for synthesis decomposes an image into a slowly, spatially varying mean-background and a residual
texture image.'3 We shall refer to the slowly, spatially varying mean-background as the mean background. The
texture image can be successfully synthesized using a multi-scale multi-orientation framework based on the steerable
pyramid transform. While we proposed in an earlier paper to model the mean background as a stochastic process
known as the lumpy background,36 we have encouraging results showing that those slowly, spatially varying
backgrounds may also be synthesized with the framework used to synthesize the finer underlying texture.

A useful synthesis framework for medical imaging research is one that can yield images with known statistical
properties. As a first step to characterize the statistical properties oftextured backgrounds, we propose to estimate the
first and second order statistics as the one-point and the two-point probability density functions that characterize
completely their first and second-order statistics.

2. A COMPLEX BACKGROUND AS A TWO COMPONENT MODEL

Radiologic breast tissue samples appear as ifthey are formed as the superimposition of a slowly, spatially varying
background and a fmer texture image. Thus we propose to decompose them in these two components. A typical
decomposition is shown in Fig. 1. The slowly, spatially varying background referred as the mean background is
obtained by filtering the original mammogramm image with a Gaussian kernel with a standard deviation of six pixels.
The residual texture image is the difference between the image and the mean background.

It can be noted from Fig. 1 that the mean background resembles lumpy backgrounds.56 In the literature on image
quality assessment for medical imaging, lumpy backgrounds are considered to be useful models of anatomical
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variations because: I. They account for background variability and 2. In one type of lumpy backgrounds the
probability density is known to be multivariate Gaussian while in the other the covariance matrix is known to be
Gaussian. Knowledge of the covariance matrix has made possible the computation of various predictive models of
image quality assessment for the detection of lesions in such backgrounds.4 Knowledge of the full probability density
functions allows computation of the ideal observer.

(b)

Fig.!. Mammography breast image decomposition: (a) The original sample. (b) The
slowly, spatially varying mean-background. (c) The residual texture image.

3. A FRAMEWORKFOR TEXTURE SYNTHESIS

Fig.2. Illustration of one level of the steerable pyramid transform used in the texture synthesis
algorithm. The input image in the upper left corner would be either the texture sample or the white noise
image. A synthesis is obtained by reconibination of the decomposed noise image through the right hand
side of the pyramid.

The algorithm for texture synthesis we propose is based on a multiple scale decomposition of a sample texture image
and the same decomposition of a realization of a uniformly distributed white noise image. The algorithm is composed
of four essential components: the pyramid transform, the image decomposition, the histogram matching procedure, and
the texture synthesis. The algorithm was implemented in IDL language and is best described by considering the four
individual components:

The Pyramid Transform: The proposed algorithm for the synthesis of the residual texture is based on a four-layer
steerable pyramid transform. One layer of the pyramid is depicted in Fig. 2. Layers are connectedby a factor-of-two
downsampling also known as decimation of the image.78 Within each layer, the image is filtered by a set of bandpass
filters and followed by a set of orientation filters that form a quadrature mirror filter bank.71° A four(scales) by four
(orientations: 0 degree, 45 degree, 90 degree and 135 degree) 17x17 size filters were adopted.

(a)
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Image Decoinposilion: The texture Image is processed through the left-hand side of the pyramid transform shown in
Fig. 2. It is represented in Fig. 2 as an input to the pyramid in the upper left corner. In parallel, a realization of
uniformly distributed white noise, referred thereafter as white noise, is also processed by the same pyramid transform,
that is, it is also fed independently to the pyramid transform in the upper left corner. The role of the white noise image
is to provide a starting point for the synthesis.

Histogram matching at multiple scales: After decomposition of a texture sample and a realization image of white
noise, the histograms of the subband images (i.e. output images of the filters on the left hand side of the pyramid) of
the texture image and of the noise image are matched.TM12 1-listogram matching is an image processing technique,
specifically a point operation, which modifies a candidate image so that its histograni matches that of a model
image. 13-14

Texture S'inthesis: The histogram-matched noise subband-images obtained at multiple scales are then recombined
according to the right-hand side of the pyramid transform shown in Fig. 2. The synthesis operation is a blurring
between scales. Moreover, the greylevels of the undecimated image must be multiplied by a factor of four at each
stage of the synthesis to account for the loss in brightness the image did undergo upon decimation by a level of two.
This process repeated at multiple scales yields a synthetic image. If another realization of white noise is processed
instead, the synthesis yields another realization of the synthesized image.

4. SYNTHESIS OF MAMMOGRAPHIC BREAST TISSUE SAMPLES

The framework described was applied to the synthesis of both the residual texture component and the mean
background. Two synthesis realizations of the residue image are shown in the two rightmost images in Fig. 3. Each
synthesis corresponds to a new realization of white noise as a starting point. On the left, a realization of the noise is
shown which is followed to the right by the residual texture.

Fig. 4. Models of the mean background. (a) sample mean-background extracted from a mammogram; (b) a model
using a lumpy background; (c) a model using the steerable pyramid transform to synthesize the background.

In an earlier paper, we proposed to model the mean background as the lumpy background, a wide-sense stationary
random process established for image quality assessment in medical imaging.3 In later investigations backgrounds
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(a) (U)
Fig. 3. Syntheses of a residual mammographic texture image: (a) a typical sample of a uniformly distributed
white noise image used as a starting point for one synthesis; (b) original mammographic residual texture; (c)
synthesis I; (d) synthesis 2.

5. SYNTHESIS OF THE MEAN BACKGROUND
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synthesised with the steerable pyramid transform more closely matched the sample than those generated by the lumpy
background process. The new synthesized backgrounds are shown in Fig. 4.

6. A PROPOSED MATHEMATICAL PHANTOM

The synthesis of an ensemble of images M1(x,y) according to the described mathematical phantom can be established
using an adaptive linear combination of realizations from the two model components: a realization of the mean
background component denoted as L1(x,y) and a realization of the synthesized texture component denoted as T(x,y).
The resulting synthesized image will then be given by

M1(x,y) = 1 L1(x,y) + (1-p) T1(x,y) , (1)

where ranges from 0 to 1 . Such a combination will allow us to span a wide range of tissue types with relative
amounts of mean and textured backgrounds. We hypothesize that by such a combination, various tissue types as
described by Wolfe for example can be synthesized.'5 On a more theoretical basis, one can also study a wide range of
combinations of such backgrounds by varying 3 and the texture samples associated with each component. Such a
framework may naturally fmd application to a wide range of complex backgrounds.

7. FIRST AND SECOND-ORDER STATISTICS

While the original mammogram image and the mean background are non-stationary random processes, the extracted
residual texture-image appears stationary. In fact, while we do not know whether it is stationary, we shall assume such
property based on perceptual estimation. Furthermore, it is important to note that the proposed synthesis framework,
that matches first-order statistics of subband images, would yield artifacts while synthesizing a non-stationary random
process as a consequence of inhomogeneities in the texture." Therefore, the success in synthesizing a given texture
sample yields insight into the stationarity property ofthe sample texture.

By construction, a sample and its synthesis have equal first-order statistics. The next level of description of a random
field is its second-order statistics. Second-order statistics are fully described by the two-point probability density
function (2P-PDF). For a stationary random process, one component ofthe 2P-PDF can be estimated by the co-
occurrence of two greylevels for any two pixels separated by a fixed vector d in the sample image. Computations of
components ofthe 2P-PDF as d varies are shown in Fig. 5 and6 for the mammographic texture and a granite texture.
For the original residual texture sample, Fig 5shows that its 2P-PDF is extremely similar to that of a synthesis of that
sample. Quantification ofthe similarity between two PDFs can be estimated by the root mean-square distance
between the two functions and is given in Table 1 for various textures.

It is critical to note that this distance measure is only meaningful between functions describing textures whose first-
order statistics have been matched. Therefore, we chose to match the first-order statistics of all textures to that of the
residue image. The 2P-PDFs were then computed and the measure of distance computed. Fig. 6 shows the 2P-PDFs
for a granite-texture sample and the same texture after the first-order statistics have been matched to that of the
residual texture image. We note that first-order statistics play a key role in the shape of the second order statistics. It
is a question of investigation weather or not the measure of distance between two 2P-PDFs heavily depends on the
first-order statistics. Future work will further explore properties of2P-PDFs and investigate models ofdetection in
textured backgrounds using such statistics.

8. CONCLUSION

We presented a framework for texture synthesis and application to mammographic breast tissue samples. A key
component to the successful synthesis of such complex backgrounds was to decompose the radiologic tissue sample
into a slowly, varying mean-background and a finer scale texture. Each component was successfully synthesized
independently. Finally, we presented a complete analysis of the second order statistics of the residual texture image
that prompted us with stimulating future work on texture characterization.
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Fig. 5. The two-point probability density functions for (a) the residue texture image; and (b) a synthesis
of the residual image. Each function within an image corresponds to a different value of the vector d.
From left to right, d equal (-5,5); (-3,5); (3,5); (5,5). From top to bottom d equal (-5,5);(-5;3);(-5,-3);(-
5,5).
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Fig. 6. The two-point probability density functions for (a) a granite texture image before matching of
the first-order statistics to that of the residue image; and (b) after matching of the first-order statistics to
that of the residue image. The values of d are the same as described in FigS.
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Textures Distance

Mammo-syni to residue 0.618
Mammo-syn2 to residue 0.62 1
Mammo-syn3 to residue 0.623
Mammo-s'" I to Mammo-syn2 0.538

Granite 1 to residue 2.370
Granite2 to residue 3.386
Granite3 to residue 2.487
Grass to residue 2.438

Table!. Values ofthe RMS distance between two 2P-PDFs.
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