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ABSTRACT

Many investigators have pointed out the need for performance measures that describe how
well the images produced by a medical imaging system aid the end user in performing a
particular diagnostic task. To this end we have investigated a variety of imaging tasks to
determine the applicability of Bayesian and related strategies for predicting human
performance. We have compared Bayesian and human classification performance for tasks
involving a number of sources of decision-variable spread, including quantum fluctuations
contained in the data set, inherent biological variability within each patient class, and
deterministic artifacts due to limited data sets.

1. INTRODUCTION

Although the radiologist may be the expected end user of a clinical image, it is often desirable
to have a model observer in order to expedite the system design and optimization phases. One
particular model, the ideal Bayesian observer of statistical decision theory,? is of particular
interest because it predicts the best possible performance on a given visual task. It can
therefore serve as a benchmark for observer performance - indicating when information needed
to perform a given task is readily extracted by the human observer, as well as when either the
hardware should be redesigned to better match the human’s capabilities, or the human
observer should be augmented or even replaced by a machine reader. We have therefore
investigated a variety of imaging tasks to determine the applicability of Bayesian and related
strategies for predicting human performance.

In all the investigations that we will describe, the task is the classification of an image into
one of two possible categories: signal-present (abnormal) or signal-absent (normal). The
human observer is modelled as a decision maker that calculates a scalar decision variable and
classifies the image based on whether that decision variable is above or below some threshold
for calling the images positive or negative. This approach presupposes the existence of two
classes of objects, one for the signal-absent and one for the signal-present images, where both
generate a spread of decision variable outcomes as shown in Figure 1. Image quality is
determined by the degree of separation of these two populations.

180 / SPIE Vol. 2166 Image Perception (1994) 0-8194-1461-1/94/$6.00



Several factors contribute to the spread of the decision variables shown in Figure 1 and thus
influence diagnostic performance. Even for a single object in each class, the decision variable
would be randomly distributed for a set of images because of the random quantum or thermal
noise contained in the data set. Inherent biological variability within each patient class serves
to spread the distributions further. For images reconstructed from limited data, the decision
variables are further spread by deterministic artifacts. And finally, limits to the contrast
visible to the human because of internal noise as well as limits to the spatial area of
integration of the human observer cause the distributions to be spread still more.*® Each of
these factors can be influenced through choices available to the imaging system designer. In
the sections below, we shall describe investigations into a number of these sources of decision-
variable spread, and offer observations regarding the relationship between human and
machine observer performance and the implications for system design.

One source of decision-variability spread that is missing from Figure 1 is the contribution from
inter- and intra-observer variability. While a system designer can make choices affecting the
contributions of each of the formerly mentioned factors on observer performance, observer
variability (from such sources as template jitter or threshold variations) is not generally in the
control of medical imaging system designers. Attempts are made to minimize observer
variability in clinical practice through adequate observer training. Nevertheless, it is present
there and in each of the observer studies we shall describe below. We shall not address inter-
and intra-observer variability further here. A number of other investigators have attempted
to measure the contribution of observer variability to human performance.*®
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Figure 1. Sources of spread in observers’ decision variables.
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2. TASKS LIMITED BY PHOTON NOISE

In this section we review some investigations of human performance for tasks represented by
the most narrow distributions shown in Figure 1. For tasks in which the signal and
background are known and the observer is limited primarily by uncorrelated quantum or
thermal fluctuations in the data, the optimal strategy is to perform a linear template-matching
operation on the image to calculate the decision variable. For such SKE/BKE (signal-known-
exactly/background-known-exactly) tasks in white noise, the ideal observer of Bayesian decision
theory has been found to be a good predictor of human performance. Human efficiency relative
to the7i;ieal observer has been found to be 30-50% for a range of detection and discrimination
tasks.”

When the image noise is correlated, the ideal strategy is to first perform a prewhitening
operation on the data before cross-correlating it with the expected difference signal. A number
of investigators have measured human performance in images degraded by colored noise.
When the noise is high-pass, such as when it is characterized by a ramp-shaped noise power
spectrum as in the case of a computed tomography (CT) imaging system, human efficiency
relative to the ideal observer falls to about 20%.° High-pass noise characterized by noise
power spectra of the form f°, where n =1,2,3,4, has been shown to cause decreasing human
detection performance relative to the ideal observer as n increases."' This inability to perform
the prewhitening operation has been shown to be consistent with the requirement that human
observers process visual information through frequency-selective channels.?

The studies we have referred to so far have all considered artifact-free imaging systems with
no object variability. The signals and backgrounds were exactly specified. For compact signals
(signals with limited spatial extent), human performance can be predicted by an observer that
positions a template over the location of the expected signal and performs a linear filtering
operation. This model has been shown to be reasonable until the signal extent is so large that
some limitation in the integration area of the human is reached.®* However, signals that are
large in spatial extent without needing a large integration area for detection can still be
detected quite effectively by the human observer. An example is the detection of a known grid
of bright lattice points in a noisy background, which can be effectively detected by the human,
possibly by a series of local template matching operations.

3. TASKS LIMITED BY OBJECT VARIABILITY

We now consider tasks represented by the distributions in Figure 1 labelled "quantum noise
and object variability." When the task is the detection of 1 of M orthogonal signals of limited
spatial extent, human performance has been shown to be again roughly 50% efficient compared
to the ideal observer performing the same task.* That is, the performance penalty
experienced by the human observer is no greater than the performance penalty paid by the
ideal observer for the same object variability. Nolte and Jaarsma'® showed that the very
complicated (and highly nonlinear) form of the ideal observer’s test statistic in this case could
be almost matched in performance by an observer that simply performs a sequence of linear
filtering operations, one for each of the M signals, and chooses in favor of whichever signal
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alternative gives the maximum filter output. It is therefore possible that the human performs
this non-linear task through the simple mechanics of applying a sequence of templates to the
image, one for each signal alternative.

Relatively few studies of more complex forms of object variability have been performed. Revesz
et al.'® investigated lesion detectability on chest radiographs and found good agreement
between human performance and a measure of background conspicuity. Swensson and Judy®
investigated the effect of variable-brightness background levels and areas on the detectibiltiy
of disk signals for both white and CT noise. They found little dependence on the type of image
noise or the mean brightness of the background.

A more recent study of signal detection with object variability in a Bayesian framework has
been performed by Rolland et al.>®> When the object variability is such that the signal is a
known Gaussian object on a statistically defined background, Rolland has shown that the
detection performance of human observers is modelled quite well by an approximation to the
ideal observer called the Hotelling observer. The Hotelling observer does the best job possible
for an observer that is constrained to performing only linear operations on the image. For this
particular task, which we shall refer to as the "lumpy background" task, the Hotelling
template was found to be similar to a difference of Gaussians or the center-surround template
that a number of investigators have found to be of use in machine vision. The good agreement
between human and Hotelling performance suggests that the human is doing a linear
operation on the image with a fairly compact template for this task as well. Yao extended the
work of Rolland to show that the Hotelling model could predict human detection performance
for images that had non-white noise in addition to background uncertainty, provided the
Hotelling observer was constrained to process data through frequency-selective channels.?*%

Burgess has also investigated human performance for objects with statistically defined
backgrounds of the same nature as those of Rolland and Yao.>* He has proposed that human
performance can be modelled by operating on the image first with a filter that models the
frequency response of the eye, followed by a non-prewhitening matched filter for the signal.
Further experiments are required to determine which of these observer models is most
predictive of human performance. The choice of task is crucial -- when attempting to show the
capability of one model for human performance over another, the task should be chosen such
that the models give sufficiently different predictions to allow one or the other to be ruled out
on the basis of human performance data. We expect the discussion of Hotelling vs. non-
prewhitening-matched-filter with eye response to be resolved sometime in the future with
experiments chosen carefully to exploit differences in the models. A crucial difference between
the two models here is the fact that the Hotelling template is adaptive as exposure level
changes, while the Burgess model is not adaptive. As exposure time increases, the quantum
fluctuations in the image decrease, increasing the relative weight of the object-variability or
conspicuity limitation to the task performance. The Hotelling observer’s performance
continues to increase with exposure time, indicating the adaptive nature of the Hotelling
template. The Burgess candidate model would eventually be expected to saturate. Rolland
has shown that human performance can be predicted quite well by the Hotelling model for this
case. It will be interesting to see how well the Burgess model will do in an experiment where
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exposure time is the variable. Experiments that investigate the adaptability of the human
observer as a function of other characteristics of the random background, such as correlation
length, could also be envisioned.

For non-local signals with uncertainty, human performance drops significantly. We have seen
this to be true in a number of investigations: 1) the detection of a "jittery" grid - analogous to
the SKE/BKE experiment mentioned in the previous section in which a grid of bright lattice
points is to be detected, but where now the locations of the bright points are jittered, or
individually randomized, about their means;'® 2) the detection of random dot patterns as the
number of dots grows large;?**?” 3) the detection of mirror symmetry in random patterns,? and
4) the detection of diffuse liver disease.” We believe these results are driven by the complexity
of the calculation required to derive the ideal decision variable - the human doesn’t have the
ability to use all the numbers the ideal observer can, perhaps because of memory or time
limitations. For tasks in which the human is shown to be markedly inefficient relative to the
ideal observer, machine observers should be considered as adjuncts to the human to aid in the
extraction of the information needed to perform the task well.

4. TASKS LIMITED BY ARTIFACTS

In the preceding sections we considered tasks performed on images generated by imaging
systems that acquired complete (or very close to complete) data sets. Qualitatively, such
imaging systems have a fairly localized point spread function (PSF); the image of a point
source is point-like although it may be blurred. In addition to containing blur, imaging
systems may have PSFs that depart from an ideal delta-function shape either by having long
low-amplitude tails (the case for an imaging system with a large scatter component) or by
having a non-compact shape that extends anisotropically over a long range (such as a
tomographic imaging system with a limited number of views). In the latter case, we say the
system has artifacts. As an example, the image in Figure 2 is the reconstruction of a disk
object for a noise-free data set from a simulated 2D CT acquiring only 8 views over 180
degrees. The streak artifacts are deterministic, but object dependent.

Few studies have been done to compare human performance to Bayesian performance for even
SKE/BKE tasks in images formed by systems with long-tailed PSFs. Rolland et al.* have
found that human performance is inefficient for detecting disks imaged by an imaging system
with a long-tailed PSF. However, human performance can be improved dramatically through
post-processing. The long tails of the PSF cause the signal to have a large-area, low-contrast
contribution to the image that the human is unable to efficiently detect. When an imaging
system has this kind of PSF, post-processing may be necessary to aid the human in extracting
all the informaion in the image needed to perform the task.

Just as for long-tailed PSFs, few investigations have been performed comparing human to ideal
observer performance on images containing artifacts. Given an image like Figure 2 of a disk
object at a known location on a known background, an ideal observer that knew the disk
location and background would correct for artifacts as part of a procedure for detecting a disk
in that particular location. The performance of the Bayesian observer is calculated using
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methods applicable to the SKE/BKE tasks described in Section 2. We would expect human
performance to degrade for such tasks using images with artifacts because they again cause
signal information to become spread out and have low contrast, similar to the effect found by
Rolland in her studies with long-tailed PSFs. Further investigation is required to determine
if this expectation is true.

Limited data sets become even more problematic when the task is also complicated by object
variability. When a disk to be detected has a random location, the artifacts in the image will
vary depending on the location of the disk. Even worse, object variability in the form of a
random background results in an image that has non-local contributions from all of the non-
signal components in the object. One might guess from the non-local signal-uncertain tasks
described in Section 3 that the human would be very adversely affected in this situation.

A couple of strategies exist for avoiding artifact limited imaging situations in which the human
observer is grossly inefficient at the task required of them. One strategy is hardware design -
- seeking an imaging system design that gives a data set that will result in optimal
performance of the observer. A second option is to use machines to do post-processing of the
images -- machine algorithms can either aid the human observer by generating a post-
processed image with an overall PSF that is local, or machines can be trained to perform the
task in lieu of the human.

Figure 2. Demonstration of streak artifacts Figure 3. Image reconstructed from data set used
in reconstruction of disk object from noise- to generate Figure2, but with different
free 8-view data set. reconstruction algorithm parameters.
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As an example of a hardware design that optimizes observer performance, we return to the
study of disk detection in the presence of a lumpy background we first discussed in Section 3.
In addition to the finding that human performance tracked the performance of the Hotelling
observer, it was also determined that human and Hotelling observer performance could be
maximized through a judicious choice of aperture size.®' It was found that as the "lumpiness"
of the background increased, the full-width-at-half-max of the system PSF that gave maximum
detectability decreased. Other investigators have found a similar result - while a system with
poor resolution might allow decent task performance for a well-specified signal and
background, object variability increases the need for system resolution.?*%

Now consider the second option of post-processing. We have investigated this option for the
task of classifying CT images reconstructed from a limited number of views. Numerous
algorithms are available for post-processing such images; each gives different artifact
characteristics. For example, Figure 3 is a reconstruction from the same data that produced
Figure 2. Both reconstructions were calculated using an algorithm known as MEMSYS3*%®
but with different settings of certain algorithm parameters. To determine the best settings
for an algorithms’ variables, and to compare across families of algorithms, it is crucial that the
task be specified and the abilities of the intended observer be considered. We have
investigated a number of reconstruction algorithms, but will concentrate our attention on the
results obtained using the MEMSYS3 algorithm here.*

We have investigated human and machine performance for two discrimination tasks on images
reconstructed from a limited number of tomographic views. The first task was the detection
of low-contrast disks at known locations in scenes also containing many randomly located high-
contrast disks.?” The second task was the discrimination of exactly specified single and binary
objects (the "Rayleigh" task) in an image of many such objects placed randomly to generate
artifacts in the reconstructions.®® To calculate the ideal observer’s decision variable, the full
probability distribution on the data given to the observer under each hypothesis must be
known. Thus, for a nonlinear reconstruction algorithm such as MEMSYS3, the Bayesian
decision variable can be difficult to calculate and so we have used approximations here.
Nevertheless, as Figures 4 and 5 show, the human is remarkably well modelled by a machine
observer that performs simple linear operations on the images. These figures represent
families of reconstructions derived from MEMSYSS3 as a function of the parameter alpha that
determines how well the reconstructions are forced to match the acquired data as opposed to
maximizing the entropy of the reconstruction.

Given our earlier observations of the poor performance of human observers for non-local tasks
with object variability, one might have expected the human to not fare well compared to the
ideal observer. One consideration here is that, even though the data sets consist of only 8
views, the MEMSYS3 algorithm tends to result in reconstructions that do not have strong
streak-like artifacts regardless of the value of alpha. (Figure 2 contains strong streak artifacts
because the algorithm was interrupted before it converged; Figure 3 is a reconstruction
obtained by allowing the algorithm to run to completion.) Thus the MEMSYS3 reconstruction
of a disk is pretty much a disk even with the kind of object variability we have built into the
task -- this makes the use of a simple linear template possibly quite effective.
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A more troubling question is whether the true ideal observer’s performance curve would be
much higher than the machine approximations shown in Figures 4 and 5. The fact that the
human does as well as the machine for the detection task at low values of alpha suggests that
the machine observer is not truly ideal. After all, even in the simplest tasks described in
Section 2 the human typically does no better than 50% efficiency relative to the ideal observer.
This outstanding question needs further investigation. Barrett et al. have derived the full
probability distribution needed to determine the ideal-observer decision variable for the
nonlinear EM algorithm.* A similar calculation needs to be done to determine the actual ideal-
observer strategy on images generated using MEMSYS3.

When considering artifacts, their impact on task performance, and the concomitant
implications for system design, a few more points should be made. First, even though it is
often possible to post-process images to reduce artifacts, it should be noted that there is always
an attendant noise penalty. Also, while an observer might be able to learn that certain objects
generate artifacts of a known general structure, artifacts can lessen clinicians’ confidence by
putting the burden on them to know what is an artifact and what is biology. And finally, an
imaging system is rarely used for a single task. While certain detection or discrimination
tasks might be performed reasonably well in the presence of artifacts, those same artifacts can
also make performance of estimation tasks on the same image iinaccurate As always, the
system design should be for a range of tasks, where all these factors are considered. Barrett
et al. have derived figures of merit for both classification and estimation tasks, and have
shown how a simple type of object variability - random location - relates the design of a system
for a classification task intimately with the design of a system that is optimized for
estimation.*
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Figure 4. Observer performance for detecting low-contrast disks in tomographic

reconstructions from limited, noisy data.
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Figure 5. Observer performance for the Rayleigh discrimination task using tomographic
reconstructions from limited, noisy data.

5. SUMMARY

Progressively more complicated tasks have been investigated to determine how well machine
observers or theoretical models can be used to predict human performance. These
investigations have resulted in a better understanding of how to balance the design trade-off
between resolution and noise in the presence of a lumpy background, for example, and what
choice of post-processing options best serves the observer for the specified task. For tasks in
which the optimal strategy can be approximated by one or more linear operations using
compact filters, the human has been shown to be fairly efficient. This is true with the caveat
that there appear to be limits to the contrast sensitivity and integration area of the human
observer. Both these limitations can often be handled by changing the system magnification,
in the first case, or by post-processing that alters local or global contrast, in the second case.
For more complicated tasks that require either much more number crunching or a large
amount of memory, the human often falls off severely in performance compared to better
theoretical or machine models. In such cases, the human might be augmented by a machine
helper. Or, the system designer might revisit the design to enable the human to more readily
extract information required to perform the given task.
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