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ABSTRACT

Two studies of the effect of background inhomogeneity on observer performance in radionuclide
emission imaging are presented. In the first, the task is detection of a Gaussian blob, and the imaging
aperture is a pinhole of Gaussian profile. In the second, a simple discrimination task called the Rayleigh
task is considered, and the aperture has a rectangular profile. In both cases performance of a suboptimal
linear observer is calculated; in the first study the observer is one derived in a classic paper by Harold
Hotelling, while in the second study the observer is a simple non-prewhitening matched filter. In both
studies an important variable is the aperture size, and a key question is whether a small aperture or com-
pact point spread function is advantageous. The main result is that a large aperture may perform very
well or even optimally with a spatially uniform background but fail badly when the background is non-
uniform. Thus predictions of image quality based on stylized tasks with uniform background must be
viewed with caution.

1. INTRODUCTION

Image quality, though extremely important in all areas of medical imaging, is very difficult to assess
or even define. Ultimately, image quality must be defined in terms of clinical efficacy; the best image
is the one that leads to the best outcome for the patient. This definition is, however, of little operational
value in the design and optimization of imaging systems, since studies of clinical efficacy are very tedi-
ous and imprecise. It would be virtually impossible to determine whether some small variation of an
imaging system had any effect on patient care.

A less ambitious approach is to try to determine the performance of some model observer on a well
specified model task. For example, there is a considerable literature on the ideal Bayesian observer, def-
ined as one who has full knowledge of all relevant statistical properties of the images and of the task at
-hand, and who uses that information in such a way as to minimize a suitably defined risk.!-2 For
srmple detection and discrimination tasks in which the signals are exactly specified (the so-called signal-
known-exactly or SKE tasks), the performance of the ideal observer is readily calculable and can indeed
be used as a basis for system assessment and optimization, It is implicitly assumed in this approach that .
a system optimized for a model observer and a model task will also be optimal for a range of real clini-
cal tasks. It is therefore of considerable practical importance to verify the validity of this assumption.

An interesting model problem for this discussion was proposed by Wagner, Brown and Metz3 in

1981. They considered the so-called Rayleigh task where the observer must decide whether a scene con-
tains one Gaussian blob or twe. The blobs were superimposed on a weak, uniform background, and the
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ideal observer was found to be a simple linear filter (though not exactly a matched filter). The imaging
systems studied, though somewhat idealized, were intended to be representative of imaging sytems used
in nuclear medicine. Specifically, they considered a simple pinhole, a uniformly redundant array (URA)
coded aperture, and a large open aperture without any internal structure. We shall dub the latter aper-
ture the great gaping aperture or GGA.

‘The findings of this study were rather surprising. Wagner &t al. found that both the URA and the
GGA were far superior to the pinhole aperture for the task studied. Furthermore, the GGA was supe-
rior to the URA except where the Gaussian blobs were almost point sources. The conclusion seemed 10
be that high spatial resolution (or a compact point spread function) was not advantageous for this task.

Since this conclusion did not accord with clinical experience in nuclear medicine, an extensive series
of studies was undertaken to determine where the problem lay. In the previous paper in this volume,
Myers et al4 jooked at a number of variations on the theme set by Wagner et al. They studied the
effects of object orientation and background strength and also the decision strategy of the observer,
allowing both a prewhitening matched filter and a simple non-prewhitening matched filter in addition to
the Bavesian cbserver. Still the conclusion remained--spatial resolution was of little value.

A common feature of all the studies reported by both Wagner et al. and Myers et al. was that both
the signal and the background were always nonrandom and exactly known to the observer. In this paper
we consider tasks where the signal is still known exactly but the background is allowed to vary ran-
domly. Our goal is to study whether the background variability imposes further restrictions on the
design of imaging systems. If so, the implications for choice of task in image assessment must be care-
fully weighed.

2. TASKS

Two separate studies are reported in this paper. in the first, the task is detection of a known signal
in a random background. In particular, we consider a pinhole gamma-ray camera viewing a random
radioactive field in which the spatial autocorrelation function is a Gaussian, Though this statistical des-
cription of the background is still simplified, it represents a step towards real radiological objects. The
signal to be detected is a weak, nonrandom blob with a Gaussian profile, and the aperture is also
assumed lo have a Gaussian profile. The second study considers the Rayleigh task as in the work of
Wagner et al. and Myers et al. Here the aperture is a sharp-edged square pinhole of variable size. In
both studies, performance of the task is limited by both the inhomogeneities of the background and by
Poisson noise.

a

Because of the background nonuniformity, the probability density function of the noise in these stu-
dies is not simple, and the ideal observer cannot be implemented by a simple linear filter. Since it is not
clear whether human observers can perform nonlinear operations5., and we do not know how to deter-
mine the form of the optimum nonlinear operations in any case, we shall consider only linear observers
in this paper. For study I we consider the Hotelling observer.9- Though this observer is generally in-
ferior to the Bayesian, its performance is easier to calculate, and it has been found to corretate well with
the performance of human observers in detection problems where both the signal and the background

have considerable variabiiity.9

For study II we use a simple non-prewhitening matched filter, which is simply a template for the
expected difference signal. This observer is inferior to the Hotelling observer, but it has been widely
used in other studies of image quality, including the paper of Myers et al. with which we wish to make
contact. Since this approach is well known,lo we shall not describe it in detail here. The Hotelling
approach, on the other hand, is less familiar, so it is briefly reviewed in the next section.
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3. THE HOTELLING OBSERVER

Ultimately, the task of a radiographic system is pattern recognition--the clinician must recognize the
characteristic patterns of disease--so it is natural to turn to the literature on pattern recognition” for
guidance in assessing imaging systems. Pattern recognition is usually divided into three steps: segmenta-
tion, feature extraction and classification. Segmentation, which refers to preprocessing operations neces-
sary to isolate a region of interest in the image, will not be discussed further here. Feature extraction
involves calculation of a set of L numbers ("features”) from the image data. These numbers are usually
arranged in an Lx] column vector called a feature vector. Equivalently, this vector may be regarded as
a point in an L-dimensional feature space. Finally, classification is the process of dividing this feature
space into K regions corresponding to the K classes into which we would like to classif y the object.

There are several things we need to know about this processs How do we choose the features in the
first place, how do we partition the space, and how well does our classifier perform? Answers to all of
these questions may be found in a classic paper by Harold Hotelling.6 Translated into more modern ter-
minology,11 Hotelling’s approach was based on two "scatter matrices" S, and §,. The intraclass scatter
matrix S, is simply the average covariance matrix of the features, averaged over the K object classes and
over all sources of variability in the data. The interclass scatter matrix S, measures how far the class
means for the features deviate from the grand mean,

Since there are L features, both S, and S, are LxL matrices, but it may help in visualizing these
matrices to consider the special case L = 1 and K = 2, so that there i just one feature and both matrices
reduce to scalars. In that case, S, is the squared difference in the mean value of the feature under the
two classes, while S, is its average variance. It would then be natural to define the separability of the
two classes as 5,/5,. A similar definition holds in the general case, but there we must use the matrix
5,715, rather than S,/S,. Furthermore, it is very desirable to have a scalar measure of class separability,
and one way to form a scalar invariant from a matrix is to take its trace (sum of iis diagonal elements).
The Hotelling trace is therefore defined as

J=1tr[8,718 1. (H

Hotelling also showed that an optimum set of features (i.e. ones that maximize J) could be formed from
an arbitrary data set by using feature-extraction operaiors derived from an eigenanalysis of §,”1S, .
Using these feature oBerators, we have been able to show that J fixes an upper bound on the probability
of error in diagnosis.” Finally, in several relatively realistic problems in nuclear medicine, the perfor-
mance of the Hotelling classifier was found to correlate well with that of humans, %12

In summary, then, the Hotelling trace appears to be a useful metric for tmage quality for several
reasons:
L. It is a scalar, invariant to rotations and translations in the feature space;
2. It is intuitively appealing, increasing with increased interclass spread (5,) or decreasing class
variability (S,);
3. Tt is calculable even when the ideal observer is not;
4. It has been found to correlate well with human performance;
5. It is related to an upper bound on probability of error in classification.

4. METHODS: STUDY I

The problem of interest in this paper is pinhole imaging of a spatially inhomogeneous distribution of
radioactivity. For study I image quality is assessed on the basis of a simple detection task. A number
of mathematical simplifications make the problem analytically tractable without losing essential features.
We assume that:

1. The object is planar and infinite in lateral extent;
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2. The aperture is infinitely thin and located equidistantly between the object and detector:;

3. The pinhole transmittance is described by a Gaussian function of width ap as projected to the
detector plane;

4, The object background is described by a constant term plus a random term, the latter taken as
a stationary random process with a Gaussian autocorrelation function of width oy,;

5. The signal to be detected is a Gaussian blob of width oy and known amplitude and location.

In spite of all the Gaussians that appear in this problem, the noise is not "Gaussian", since the pro-
bability density function (pdf) of the noise is not Gaussian. If there were no cbject variability, the
noise probability law would be Poisson, which might be reasonably approximated by a Gaussian, but in
general the noise pdf is rather difficult to calculate. This fact prohibits the use of the ideal observer
for this problem. For the Hotelling observer, on the other hand, the pdf is not needed. Rather, we
need only calculate the first- and second-order moments of the detected image, from which we find §,
and S,. Full details of this calculation will be presented elsewhere; here we simply sketch the proce-
dure, give the results and discuss their significance,

Basically, the procedure is to image one realization of the lumpy background, with or without the
signal, through the pinhole in a deterministic fashion, and then fo recognize that this deterministic
function 1s the mean of a Poisson random process.13 The moments of the Poisson random process are,
of course, readily calculated, but then the result must be averaged over all realizations of the back-
ground random process, The key assumption that makes this problem tractable is that the background
is stationary, which means that the covariance matrices that go into S, are diagonalized by a discrete
Fourier transform. The matrix inverse may then be expressed as an integral over the Fourier domain,
and we obtain:

s IS(e)P(p) |2
1=1 Lodz” [Z7on?B + [P(p) [%Sp(PN] ° @)

where S(p) is the Fourier transform of the signal to be detected, P(p) is the Fourier transform of the
aperture transmission, B is the mean background level, and Sp{p) is the power spectral density of the
background fluctuations in the object. The integral in Eq. {2) must be performed numerically.

The integrand in Eq. (2) may be regarded as a generalization of the frequency-dependent noise-
equivalent quanta (NEQ), a concept introduced by Shawl413 and used extensively by Wagner and
others for detection proeblems. Our generalized NEQ is given by

_ |P(p) |2
NEQ(p) = [211—05}2]3 + !P(p) IZSb(P)] ' (3)

The usual expression for NEQ is recovered from this form by setting Sy, to zero and recognizing that
2170sz is the Poisson noise power spectral density for a uniform background.

5. METHODS: STUDY I

Study II is based on the Rayleigh task in which the null hypothesis H, is that the scene contains a
single Gaussian blob of width o5 and amplitude A, while the alternative hypothesis H, is that it con-
tains two blobs, each of amplitude A/2, with separation 2d. Under either hypothesis, the signal is sup-
erimposed on a random background as in study L

The observer in this study is the non-prewhitening filter, or simply a template for the expected

difference signal. This filter takes no account of the statistics of either the Poisson process or the
background fluctuations. We denote the output of this filter by X and define its signal-to-noise ratio as
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[SNRn;;w\,r]2 = var(A) . (4)

The expectations in this equation must, of course, include both the Poisson and background random-
ness. The variance of A in the denominator may be assumed to be independent of the hypothesis if the
signals are weak. It is straightforward to relate both the numerator and the denominator of this equa-
tion to the scatter matrices used in the Hotelling approach, and we find

_ tr[S,
[SNRapw!® = 455,71 - ®

Once again, because of the assumed stationary statistics in our problem, the actual evaluation of this
general matrix expression reduces to integrals in the frequency domain:

‘ 2
(¢ 1
[ &% |S(P(P) |2J
o0
©)

[SNRppw 12 =

I d2p |S(p)P(p) |2 { 270, ®B + |P(p) |2Sp(0) }|.
CO

6. RESULTS AND DISCUSSION

Representative results for study I, obtained by numerical integration of Eq. (2), are given in Fig, 1,
where we plot J as a function of pinhole diameter ¢, for various values of the power spectral density
of the background in the object at zero spatial frequency. The upper curve in Fig. 1 corresponds to a
uniform background, in which case the Hotelling and ideal observers are identical. Note that in this
case the only limitation is counting statistics, so the pinhole should be as large as possible to collect as
many photons as possible; spatial reselution per se is unimportant. On the other hand, as soon as the
background is significantly noauniform, there 18 a clear optimum size for the pinhole. Not surpris-
ingly, the optimum situation is for the pinhole to be about the same size as the signal.

Similar results for study I, obtained by numerical integration of Eq. (6), are shown in Fig, 2. In
this case the optimum aperture size is comparable to the size of the signal even without background in-
homogeneity. The large apertures, however, are much more strongly influenced by background inho-
mogeneity than are the smaller ones. (Note that the scale is logarithmic.) Thus a large aperture may
perform satisfactorily, though less than optimally, for a uniform background, but fail badly for a non-
uniform background. In this respect, the two studies yield similar results; the large apertures simply do
not encode sufficient information to allow reliable discrimination between signal and inhomogeneous
background,

It is interesting to compare Fig. 2 to the results obtained by Myers et al4 for the high-contrast
Rayleigh task, where the SNR increased monotonically with aperture size. We see that this dependence-
does not hold for the low-contrast Rayleigh problem considered in this paper; further investigation is
needed to account for this difference.

7. CONCLUSIONS

The present problem is interesting in that relatively little numerical computation is needed. The
scatter matrices S; and S, can be derived analytically, and S, can be analytically inverted in the Fourier
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domain. Numerical computation is needed only to perform the final trace operation in I, which can be
expressed as an integral in the Fourier domain. In addition, the SNR for the non-prewhitening filter
can also be expressed in terms of the scatter matrices. The problem is thus a useful way to gain insight
into the use of the Hotelling formalism and its relation to the non-prewhitening filter.

The results show that the choice of task is very important in assessing and optimizing imaging sys-
tems. If the task is detection of a known signal on a uniform background, the pinhole size should be
as large as possible. Similarly, both Wagner et al. and Myers et al. found that the high-contrast Ray-
leigh task was best performed by a very large square aperture. Obviously, these conclusions are not in
accord with clinical experience, where some degree of spatial resolution is needed to perform realistic
clinical tasks. In that respect, the stationary nonuniform background is more realistic and leads to the
intuitively appealing conclusion that the aperture should be matched o the signals 0 be detected or
discriminated. If the aperture is substantially smaller than the signal, photon collection suffers unne-
cessarily, while if it is much larger, the spatial resolution is inadequate to allow reliable discrimination

between signal and background.

In the extreme case where background noise dominates over Poisson noise, the collection ef ficiency
per se of the aperture is unimportant, and the deterministic point spread function completely deter-
mines the ability of any observer to distinguish signal and background. In this limit, therefore, two
systems designed for the same point spread function will have the same performance on any
(background-limited) task.

To summarize, this work has graphically demonstrated the hazards of too narrowly specifying the
task in model calculations of the performance of imaging systems. Systems that work well, or even
optimally, on stylized tasks where the signal and background are both known exactly may fail badly
with slightly more realistic tasks that include background variablity. Thus the conclusions of the earlier
paper by Wagner et al., while correct for the simple problem considered there, should not be extrapo-
lated to more complicated imaging situations.
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Fig. 2 Plot similar to Fig. 1 but for study II

Hotelling trace) for study I as a function of the
ratio of the aperture width to the signal width.
The parameter Sf{0) is the power spectral den-
sity of the object background at zero spatial
frequency. The signal width is 10 unifs and
the width of the autocorrelation function of the
background 1is 42 units. (Al widths are
expressed as standard deviations.)
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The abscissa is the ratio of the aperture width
L to the separation of the two sources, and the
ordinate is the SNR for a non-prewhitening
matched filter, Parameters as in Fig. 1.



