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This paper presents three-photon absorption (3PA) measurement results for nine direct-gap semiconductors, including
full 3PA spectra for ZnSe, ZnS, and GaAs. These results, along with our theory of 3PA using an eight-band Kane model
(four bands with double spin degeneracy), help to explain the significant disagreements between experiments and the-
ory in the literature to date. 3PA in the eight-band model exhibits quantum interference between the various possible
pathways that is not observed in previous two-band theories. We present measurements of degenerate 3PA coefficients
in InSb, GaAs, CdTe, CdSe, ZnTe, CdS, ZnSe, ZnO, and ZnS. We examine bandgap, E g , scaling using -band tunneling
and perturbation theories that show agreement with the predicted E−7

g dependence; however, for those semiconductors
for which we measured full 3PA spectra, we observe significant discrepancies with both two-band theories. On the other
hand, our eight-band model shows excellent agreement with the spectral data. We then use our eight-band theory to
predict the 3PA spectra for 15 different semiconductors in their zinc-blende form. These results allow prediction and
interpretation of the 3PA coefficients for various narrow to wide bandgap semiconductors. © 2020 Optical Society of

America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.396056

1. INTRODUCTION

In the past decades, three-photon absorption (3PA) has shown
both fundamental research importance and technological
implications in many nonlinear optical (NLO) applications
[1–8]. In organic optoelectronics, 3PA can be used as an exci-
tation to observe efficient stimulated emission and frequency
upconversion fluorescence emission [2–4]. 3PA can contrib-
ute to high-harmonic generation in semiconductor materials
[9,10] or may compete with two-photon lasing in direct gap
semiconductors [11,12]. Additionally, 3PA in semiconductor
quantum dots and nanocrystals has attracted major inter-
est for applications in biolabeling and imaging agents due
to the possibility of using longer excitation wavelengths to
achieve deeper penetration depths for super-resolution imaging

[1,13–15]. Similarly, 3PA allows the possibility of using light
sources in the telecommunication range for optoelectronic appli-
cations in wide-bandgap materials such as ZnO [5,13,16,17].
Also, 3PA in semiconductors can be a limiting factor in all-optical
switching applications below half the bandgap [8,18]. Thus,
accurate modeling and experimental verification of 3PA in semi-
conductors is of great importance for design and characterization
of various NLO devices.

While theory and experiment for two-photon absorption
(2PA) in direct-gap semiconductors are in excellent agreement
[19–27], previous comparisons for 3PA have yielded mixed results
[16,20,28–31]. Two convenient scaling rule theories, assuming
only two parabolic bands, were developed by Brandi and de Araujo
using Keldysh’s tunneling approach in 1983 [28,31], and by
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Wherrett using perturbation theory in 1984 [20]. These theories,
after reformulating the effective mass, give identical results for
2PA. They also yield similar results for 3PA, differing only in the
spectral response and an overall multiplicative constant. Both the-
ories predict that the 3PA coefficient, α3, scales with the bandgap
energy, E g , as E−7

g [20,28,31]. They find a spectral dependence
of (3~ω/E g − 1)X/(3~ω/E g)

9, where tunneling theory yields
X = 5/2 and perturbation theory gives X = 1/2. Arbitrary con-
stant scaling factors have been applied to fit measurement results to
theory, as was done for 2PA [19,21]. For example, Brandi and de
Araujo scaled the calculated 2PA coefficient by an arbitrary factor
of six to match data for CdS [31].

Here, we employ a Kane eight-band model (four bands with
double spin degeneracy) [32] to predict the 3PA spectra of 15
direct-gap semiconductors and present Z-scan measurements of
the full 3PA spectra of ZnS, and GaAs. In addition, we compare
our previous measurement of the 3PA spectrum of ZnSe [29,30]
to the eight-band calculations. Quantum interference between the
various pathways available for valence to conduction transitions
leads to a more richly featured 3PA spectrum compared to that
obtained from simple two-band models. In particular, 3PA spectra
show a local peak at photon energies just above E g /3 followed by
a relatively flat spectral response through the turn-on of 2PA at
E g /2. A second local maximum may appear between E g /3 and
E g /2 depending on the spin-orbit splitting. The data and theory
for these three materials are in excellent agreement for the shape of
the spectra; however, as mentioned, an overall scaling factor of two
to four is needed to match the overall magnitude.

We also performed measurements of 3PA in CdS, ZnO, ZnTe,
CdTe, CdSe, and InSb at selected wavelengths. We show these data
along with a few selected literature measurements to demonstrate
the E−7

g scaling [6,16,33–36]. However, to plot this bandgap
scaling, a constant spectral shape must be assumed. This assump-
tion leads to discrepancies for different spectral measurements of
a single material because spectral data closely follow the spectra

predicted by the eight-band theory. These spectra change from
material to material, e.g., the spin-orbit splitting differs for each
material. The eight-band theory calculates the 3PA spectra by
separately predicting the contributions of all transitions where the
heavy-hole (HH), light-hole (LH), and split-off (SO) bands are
the initial states. The agreement between our measured spectra
and theory for three semiconductors allows us to accurately estab-
lish references for predicting and interpreting 3PA spectra for 12
additional zinc-blende semiconductors. Reasonable estimates for
materials with different structures could also be made. The role
of spin-orbit coupling is crucial in understanding the quantum
interference and helps to understand the spectral shape of the 3PA.

2. EXPERIMENTAL PROCEDURES

We measured 3PA coefficients using several different pulsed laser
systems by employing one of two methods: direct transmittance
measurements [21,37] (labeled T in Table 1) and open-aperture
Z-scans [38,39] (labeled Z in Table 1) with linearly polarized light.
Our Z-scan data in Table 1 was taken with a tunable femtosecond
source (Clark MXR 2010 pumped TOPAS-C optical parametric
generator/amplifier-OPG/A). Details of the experimental setup
are given in [29,30], and an example of data fitting is shown in
Fig. 1. The literature data for As2Se1.5S1.5 glass was taken using the
same laser system and analyzed in the same way as the femtosecond
data in this work [40]. 3PA coefficients for ZnO, ZnSe, and CdS
at 1064 nm were found by measuring transmission (T) versus
irradiance (I ) using 30 ps FWHM pulses from a passively mode-
locked Quantel Nd:YAG laser. The transmission, T, was measured
as a function of input irradiance. These values were used to plot
1/T2 versus I 2 which theoretically yields straight lines for constant
irradiance in time and space with a slope determining the 3PA
coefficient. However, integrals over the Gaussian temporal and
spatial coordinates give a slight downward curvature to these lines.
The theoretical fits to these curves at low irradiance yield α3 [41].

Table 1. 3PA Coefficients [Experimental Data, αexp
3 , and Values from Eq. (2), Wherrett] with Relevant

Material Parameters
a

Material E g [eV] Ep [eV] n λ [µm] α
exp
3 Wherrett τ p Method

ZnS
b

[5] 3.54 20.4 2.3 0.8 0.0017 0.00130 ∼100 fs Z

ZnO
b

[5] 3.27 28.2 1.95 0.9 0.0054 0.00506 ∼100 fs Z
ZnO 3.27 28.2 1.94 1.06 0.022 0.0112 30 ps T
ZnSe 2.67 24.2 2.48 1.06 0.015 0.0097 30 ps T
CdS 2.42 21 2.34 1.06 0.015 0.0090 30 ps T
CdS 2.42 21 2.34 1.2 0.011 0.022 150 fs Z
ZnTe 2.28 19.0 2.8 1.2 0.02 0.0196 150 fs Z
CdSe 1.90 20.0 2.5 1.5 0.24 0.085 150 fs Z
CdSe [35] 1.90 20.0 2.5 1.54 0.13 0.103 ∼100 fs T
As 2 Se 1.5 S1.5

c
[40] 1.74 21 2.7 1.55 0.055 0.086 150 fs Z

Al 0.18Ga 0.82 As [34] 1.65 21 3.34 1.55 0.05 0.045 ∼1 ps T
CdTe 1.44 20.7 2.7 1.75 1.2 0.19 150 fs Z

GaAs
b

[6] 1.42 28.9 3.4 2.3 0.35 0.82 100 fs Z
InAs [33] 0.354 21.5 3.42 9.54 1,000 11,000 ∼120 ps Z
InSb [36] 0.174 23.3 3.95 10.6 200,000 18,400 45 ps T
InSb (at 80 K) 0.228 21 3.95 12 25,000 46,000 10 ps Z

aMaterials in italics are taken from the references listed. All α3 values are in cm3/GW2. τp is the pulse width FWHM. The experimental method is either direct
transmittance (T) or open-aperture Z-scan (Z). The band parameters used are listed in Table 2.

bFrom the spectra given, the single datum is taken from the region of the graph where the dispersion shown was low.
cThe bandgap of As2Se1.5S1.5 (1.74 eV) is determined from the linear transmittance spectrum [40].
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Fig. 1. (a) Z-scans at several peak irradiances in ZnSe at 1050 nm (29 GW/cm2 pink, 41 GW/cm2 blue, 60 GW/cm2 red, and 72 GW/cm2 black)
along with fits (solid lines) using the values for α3 shown in (b). (b) α3 values obtained from the data in (a). The error bars (blue) are absolute, while the
errors (red) relative to the lowest irradiance Z-scan are considerably smaller. The average α3 = (7.8± 3)× 10−3 cm3/GW2 while considering there is no
free-carrier absorption.

At high irradiance, effects of FCA increase the losses as discussed
below. Measurements on InSb at 12 µm were taken using pulses
created via difference frequency generation (DFG) of picosecond
pulses from a hybrid modelocked Ekspla PL 2143 laser system.

Measurement accuracy of 3PA coefficients decreases with
increasing pulse width due to the additional buildup of 3PA-
excited carriers. The subsequent free-carrier absorption (FCA)
can dominate 3PA for picosecond and nanosecond pulses, and the
accompanying free-carrier refraction makes it difficult to collect
all the transmitted energy [42,43]. For pulses less than ∼100 ps,
recombination can be ignored so that pulse propagation is simply
modeled by considering only 3PA and FCA [41]. In this model, the
change in irradiance induced by 3PA and FCA is formulated as

dI
dz
=−α3 I 3

− σFCA NI and
dN
dt
=
α3 I 3

3~ω
, (1)

where α3 is the 3PA coefficient, σFCA is the FCA cross section,
and N is the density of carriers excited via 3PA. These equations
are solved numerically for both α3 and σFCA to fit the picosecond
Z-scan measurements [44]. In all the measurements reported here,
we found FCA to be negligible except for the picosecond Z-scan
measurements of GaAs and InSb (80 K). Our T measurements also
usedσFCA = 0.

Data from other references are included in Table 1, distin-
guished by italicized material names. Material parameters used in
the theory discussed in the next section are also given along with
the theoretical α3 calculated by Wherrett’s model. The Keldysh
model gives similar results but with somewhat larger discrepancies
as explained in Section 3. Broad spectral data taken for ZnS, ZnSe,
and GaAs are shown in Section 4. Values for these spectra are not
listed in the table but are included in Fig. 2.

3. BANDGAP SCALING OF THREE-PHOTON
ABSORPTION

While the eight-band model exhibits the same bandgap scaling as
the two-band models, the spectral shape is considerably different
making direct comparisons of this scaling problematic. Therefore,
we look at using Wherrett’s model [20] to demonstrate bandgap
scaling. As it turns out, its spectral dependence yields a better fit to
the data than that of Brandi and de Araujo. However, as we show
below, neither model adequately describes the 3PA spectra. Using
a two-parabolic band model, Wherrett’s theory gives the 3PA

coefficient as

α3(ω)=
K3 E 3/2

p

n3 E 7
g

F3

(
~ω
EG

)
where F3(x )=

(3x − 1)1/2

(3x )9
, (2)

where n is the refractive index, and Ep is the Kane energy. The
Kane energy is a measure of the coupling strength between valence
and conduction bands and is about 21 eV for many semiconduc-
tors [20,21,32]. Both E g and Ep have units of eV in Eq. (2), and
the constant K3

∼= 25.1 eV11/2cm3/GW2 is obtained from the
two-band theory of Wherrett as estimated by Woodall [20,32,41].

Wherrett’s perturbative approach assumes dominance of
so-called allowed-allowed-allowed transitions, for which each
transition is symmetry-allowed at the Brillouin zone center [20].
On the other hand, the tunneling theory of Brandi and de Araujo
gives equivalent results to perturbation theory considering only
allowed-forbidden-forbidden transitions [31]. In this case, the for-
bidden steps are intraband “self” transitions. These two approaches
give identical 2PA coefficients because both theories only permit
allowed-forbidden combinations in a two-band model. This
agreement no longer holds for 3PA because the triply-allowed

Fig. 2. Scaled 3PA (αscaled
3 ) data from literature in Table 1 (stars),

picosecond measurements (1’s) [41] and 1 for InSb at 80 K, and fem-
tosecond data (circles) compared to Wherrett’s theory (solid line). Values
taken from Table 1, and femtosecond spectra for ZnSe and ZnS (every
other datum graphed), and GaAs (all fs data graphed) see Figs. 3–5.
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transition pathway is ignored by Brandi and De Araujo, and the
allowed-forbidden-forbidden paths are ignored by Wherrett.

Although the data in Table 1 cover many different semicon-
ductors and wavelengths, we can rescale the 3PA coefficients onto
a single universal plot by taking advantage of the theory’s explicit
bandgap dependence; the remaining spectral dispersion is identi-
cal for each material in Wherret’s model and can be divided out.
Labeling the experimentally measured 3PA coefficients as αexp

3 , we
can isolate the bandgap dependence of Eq. (2) by scaling as

αscaled
3 (E g )≡ α

exp
3 .

n3

E 3/2
p F (x )

. (3)

The result should be close to the theoretical value of K3 × E−7
g .

Thus, if we plot the experimentally scaled αscaled
3 versus E g we

expect a simple inverse-seventh power dependence.
The 3PA coefficients from Table 1 are scaled according to

Eq. (3) and plotted versus bandgap energy in Fig. 2. We find good
overall agreement in the scaling but with notable exceptions. For
example, the literature datum for InAs is considerably smaller than
predicted. This error may arise because long-wave infrared exper-
iments are much more difficult than those at shorter wavelengths,
and the 120 ps pulses used cause further complications from FCA
[33]. Also, the value for CdTe is six times larger than theory. Data
points at multiple wavelengths are available for GaAs, ZnSe, and
ZnS, and their vertical spread demonstrate the inadequacy of
Wherrett’s spectral function. If Eq. (2) provided an accurate depic-
tion of the frequency scaling, then dividing them out as per Eq. (3)
would ensure that all data for a given material lie at the same point.
These observations led us to investigate the theory of 3PA using
the more sophisticated Kane eight-band model for zinc-blende
semiconductors and to measure the full 3PA spectrum of ZnSe,
ZnS, and GaAs [29,30]. The theory, developed using third-order
perturbation theory, is detailed in Appendix A.

It is important to note that both two-band models ignore
forbidden interband transitions between hole states that are
accounted for in the present work; interactions between HH, LH,
and SO bands are a crucial component of the 3PA dispersion.
Furthermore, including all possible pathways leads to interference
effects in the perturbation expansion, so that 3PA cannot even be
well-modeled by summing scaled versions of the Wherrett and
tunneling theories. Additionally, the eight-band model used here
does not include the possibility of polarization anisotropy. The

inclusion of higher bands is needed for that [26,27]. However,
the magnitude of any possible anisotropy should be less than our
experimental errors and is ignored in this paper.

4. SPECTRAL DEPENDENCE OF THREE-PHOTON
ABSORPTION

A detailed theoretical approach including all possible transitions
for the eight-band model was developed and shown to agree with
the measured spectral data for ZnSe [29,30]. Appendix A gives
details on that calculation. A comparison of the theoretically pre-
dicted 3PA spectrum for polycrystalline ZnSe (modified from
[29,30]) is shown in Fig. 3(a) as a function of the three-photon
energy sum. The theory is scaled by a factor of 1.9 to better fit the
data. The results of similar experiments using femtosecond pulses
on polycrystalline ZnS are shown in Fig. 3(b), where the theory
curve is scaled by 2.3. The scaling factor is found via minimizing
the sum of square of residuals. We also note that for 2PA the effect
of higher conduction bands introduces considerable nonparabol-
icity into the conduction band, such that 2PA maintains its value
at higher photon energies due to the enhanced density-of-states.
A similar enhancement in the 3PA which appears to be in accord
with the experimental/theory comparison in Fig. 3 should be
anticipated. This would also change the overall scaling factor.

These data agree with all the salient features of the new theoreti-
cal 3PA spectra. The SO band contribution in ZnS is not resolved
because it lies within the 3PA peak, while it is clearly apparent near
1.2 µm in the model for ZnSe. This behavior is expected because
the SO energy for ZnS,1= 0.06, is small compared to1= 0.42
for ZnSe [45].

Having obtained agreement for the wide-gap semiconductors
ZnS and ZnSe, we chose to study the 3PA spectrum of the com-
monly used narrower bandgap semiconductor GaAs. Published
data for the 3PA spectrum includes only four wavelengths, making
it difficult to convincingly support any theory [6]. We measured
the GaAs ([111] orientation) 3PA spectrum with both picosec-
ond and femtosecond systems. Picosecond measurements of
GaAs were made with an Ekspla OPG/A system pumped by
a hybrid modelocked Ekspla PL 2143 laser generating pulse
widths of approximately 15 ps (FWHM) in the spectral range of
420–2300 nm with linear polarization. FCA contributes signifi-
cantly to the nonlinear absorption at this pulse width, so Z-scans
were performed at several different pulse energies to fit the 3PA and

Fig. 3. Measured data (circles) for 3PA in (a) ZnSe (taken from [29,30]) and (b) ZnS obtained from Z-scans, compared to calculated spectra from the
eight-band model (black dotted line). Scaling the calculated spectra by factors of 1.9 and 2.3, respectively (solid black curves), provides the best agreement
with experimental data. Band parameters used for theoretical calculation are provided in Table 2.
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Fig. 4. (a) Measured data for 3PA in GaAs obtained from Z-scans compared to the calculated spectrum from the eight-band model (black dotted line).
Scaling the calculated spectrum by a factor of 4.2 (solid black curve), provides the best agreement with experimental data. Band parameters used for the
theoretical calculation are provided in Table 2. Red circles are experimental data taken with ∼150 ps pulses. Blue circles are data for the ∼15 ps pulses.
(b) The FCA cross section from the two-parameter fit for 3PA and the FCA.

FCA coefficients using Eq. (1). The 3PA coefficients obtained are
shown in Fig. 4(a) (blue), while the FCA cross sections are shown in
Fig. 4(b). The FCA values are in qualitative agreement with those
reported in [46].

For femtosecond measurements, we narrowed the laser pulse
spectrum with band-pass filters at each wavelength to better resolve
the 3PA edge and peak. Again, performing Z-scans, we obtained
the data (red) shown in Fig. 4(a). Taking data at several pulse ener-
gies did not reveal any FCA, as expected for subpicosecond pulse
widths. In the end, we find relatively good agreement between
picosecond and femtosecond 3PA measurements. The error bars
in both graphs indicate relative errors between measurements, and
the overall absolute errors are greater by a factor of 2.

5. PREDICTED THREE-PHOTON ABSORPTION
SPECTRA AND SPIN-ORBIT COUPLING

The Kane eight-band model, detailed in Appendix A, is used to
predict the 3PA spectra of zinc-blende semiconductors. The only
parameters needed are the bandgap, Kane energy, and SO energy,
which are compiled in Table 2 for various zinc-blende direct-gap
semiconductors. We include a separate column for the ratio1/E g

because it turns out to be an important factor in the 3PA spectral
shape. This ratio spans from the order of unity in narrow-gap
materials to 10−2

−10−3 in wide-gap materials.
Figure 5 gives our predictions of the 3PA spectra for several

zinc-blende semiconductors. We explicitly show the contributions
from transitions that start in each of the three valence bands: HH,
LH, and SO. These bands serve as the initial state “v” in the sum-
over-states in Eq. (A20). Note that the contribution to the 3PA
coefficient from a given initial valence band depends on the behav-
ior of every other band due to the interference of 3PA pathways
which pass through each band. However, for brevity we refer to
these as the HH, LH, and SO contributions.

The graphs of Fig. 5, in order of increasing 1/E g , show some
general trends. We notice that the HH (red curves) and LH (blue
curves) contributions to 3PA are nearly identical when 1/E g is
very small, exemplified by AlN, ZnO, and GaN. 3PA coefficients
from both bands exhibit a fast increase near a sum photon energy
equal to the bandgap followed by a slow decrease back toward zero
as the photon energy increases. The sharp shoulder can be attrib-
uted to the dominance of allowed-allowed-allowed transitions,

Table 2. Band-Structure Parameters for
Semiconductors in Their Zinc-Blende Form at 300 K
(Except ZnO, at 4.2 K) Used for Modeling of 3PA

a

Material E g [eV] 1 [eV] Ep [eV] 1/E g Reference

1/E g > 1 InSb 0.174 0.81 23.3 4.65 [32,47]
InAs 0.354 0.39 21.5 1.10 [47]
GaSb 0.726 0.80 22.0 1.10 [48,49]

InP 1.344 0.11 20.4 0.08 [50,51]
GaAs 1.42 0.34 28.9 0.24 [47,52]
CdTe 1.44 0.91 20.7 0.63 [45]
CdSe 1.90 0.42 20.0 0.22 [21,45]
ZnTe 2.28 0.92 19.0 0.40 [21,45]

CdS
b

2.42 0.07 21.0 0.029 [53,54]
ZnSe 2.67 0.42 24.2 0.16 [21,55]

GaN 3.24 0.017 25.0 0.005 [47]
ZnO

c
3.44 0.0087 21.0 0.002 [56]

1/E g � 1 ZnS 3.54 0.06 20.4 0.017 [21,55]
AlP 3.56 0.07 17.7 0.02 [47]
AlN 4.90 0.02 27.1 0.001 [45,47]

aThe first three rows indicate materials where the SO band energy is relatively
large (1/E g > 1) and the last five rows indicate materials where the SO band
energy is relatively small (1/E g � 1) as discussed in detail below.

bTable 2 is sorted based on the values of E g. However, note that CdS belongs
to the1/E g � 1 section.

cEight-band model parameters for ZnO are given for T= 4.2 K (liquid
helium temperature).

and interference effects are not readily apparent. In contrast, the
SO (green) contribution has the same shoulder, but it is followed
by a clear dip from destructive interference. As the photon energy
increases, the SO contribution for1/E g ≥ 0.3 starts to dominate
so that the overall 3PA dispersion stays relatively flat through the
2PA edge.

As1/E g increases, the LH and HH contributions develop dif-
ferent spectral shapes. The HH contribution maintains the shape
it had with small spin-orbit coupling, while the LH contribution
develops clear markers of destructive interference. The shape of the
SO contribution also adjusts slightly as the additional influence
from other quantum pathways reduces the net destructive interfer-
ence. As seen in CdTe, GaSb, InAs, and InSb, there is no longer an
SO contribution occurring below the 2PA edge when1/E g > 0.5.
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Fig. 5. Theoretical contributions of starting in the HH (red), LH (blue), and SO bands (green) to the total (black) 3PA in several zinc-blende semicon-
ductors using the eight-band model (see the appendices). These are ordered from small to large1/E g to show the continuous evolution of the 3PA spectral
shape, and the 3PA energy sum starts just below the onset of 3PA and goes to where 2PA turns on. No scaling is applied. Band parameters are summarized in
Table 2.

In Fig. 6, we fix all band structure parameters except 1 and
show the dependence of the normalized α3 on1/E g to investigate
the effects of spin-orbit coupling. As1/E g decreases, the SO con-
tribution becomes increasingly important in determining the peak

3PA coefficient and overall spectral shape. However, it is important
to note that even where the SO contribution is small, the effect of
spin-orbit coupling is still important in determining the shapes of
the HH and LH contributions. The effect of spin-orbit interaction



Research Article Vol. 7, No. 8 / August 2020 / Optica 894

Fig. 6. Dependence of α3,norm on the normalized three-photon energy
sum and 1/E g . α3,norm is normalized to the value of 3PA when 1= 0.
The range of 1/E g is limited to 1/E g < 0.3 to better represent the
effects of the SO band on the 3PA spectra.

on 3PA is described more thoroughly in Appendix B. There, we
also give more mathematical detail on the band structure features
that give the HH, LH, and SO contributions their spectral shape.

6. CONCLUSIONS

Prior to this work, the theoretical 3PA bandgap and spectral scaling
had not been satisfactorily confirmed by experiment, and con-
flicting results existed in the literature. We measured 3PA in nine
semiconductors, confirming the expected bandgap scaling of E−7

g
as predicted by simple two-band theories as well as our eight-band
theory. Equation (2) (2-band theory of Wherrett [20]) gives the
correct scaling and predictions within factors of a few for most of
these materials but does not give the correct spectra. On the other
hand, the eight-band analysis presented here accurately models
3PA spectra of ZnSe, ZnS, and GaAs as confirmed by our mea-
surements. The agreement between our measured and calculated
spectra shows the value of modeling with more sophisticated band
structure; we are then able to predict with confidence the 3PA
dispersions of 15 zinc-blende semiconductors for which little data
exist. While this theory only strictly applies to zinc-blende crystals,
we expect it to give reasonable predictions for materials with other
symmetry such as As2Se1.5S1.5 glass.

Our analysis, based on an eight-band model, separately yields
the contributions to the 3PA spectra where the initial state is in the
HH, LH, and SO bands. It is important to account for quantum
interference between different pathways to predict the spectral
dependence of 3PA, and the crucial importance of spin-orbit
coupling in determining the spectral shape becomes apparent.
The predictions made here can be extremely useful in the case
of low-dimensional systems such as quantum wells, quantum
dots, nanocrystals, and two-dimensional semiconductors where
spin-orbit coupling and intersubband transitions are present and
may significantly alter the 3PA process via quantum interference
between different bands [57–61].

APPENDIX A: THEORETICAL APPROACH FOR
CALCULATING 3PA USING THE KANE
EIGHT-BAND MODEL

In this appendix, we provide detail about the theoretical treatment
of 3PA in zinc-blende semiconductors. The first subsection focuses
on the Kane eight-band model for electronic states, and the second
part combines the band structure with third-order perturbation
theory to calculate 3PA coefficients. Note that we refer to the
model as comprising eight bands, while it is sometimes described
in the literature as a four-band model. The reason for this becomes
apparent in the second part of the appendix; although a given
pair of bands may be energy degenerate, they each have their own
optical selection rules and therefore must be treated as separate
entities.

A. Kane band structure

We use the band structure model developed by Kane [32] because
it includes band symmetry intermixing that is ignored in simplified
two-band models. We rederive the model here for reference follow-
ing the original work and the excellent summary in [62]. We start
with the Schrödinger equation in the following form:

H09n(r)= En9(r), (A1)

where H0 = p2/(2m0)+ V (r) is the usual Hamiltonian operator.
9n and En are the wavefunction and energy, respectively, of an
electron in an eigenstate labeled by n. The symbol p is the momen-
tum operator, m0 is the electron mass, and V (r) is the one-electron
potential. Substituting the Bloch form,

9nk(r)= exp(ik · r)unk(r), (A2)

into Eq. (A1) gives the Hamiltonian

H0unk(r)+
(
~
m

)
k · punk(r)= E ′nunk(r), (A3)

where we have defined

E ′n = En −
~2k2

2m0
. (A4)

At the zone center (k= 0), Eq. (A3) reduces to a bare
Schrödinger equation for each unit cell function, un0. We choose a
finite set of orthonormal un0 and assume that they form a complete
set, then expand the unk of Eq. (A3) in this basis as

unk =
∑

m

cmn(k)um0(r). (A5)

Note that we could have chosen a basis defined anywhere
throughout the Brillouin zone, but the zone center is the most
convenient reference because it is the point of highest symmetry.
Obviously, the accuracy of the expansion in Eq. (A5) depends on
the dimensionality of the basis. The bands mix as the wave vector
increases due to interaction from the k · p term, which is the origin
of the term k · p theory. By premultiplying uk0(r) and integrating
over the crystal volume, we can form a matrix equation for the
expansion coefficients, c kn. This matrix equation can be solved
perturbatively or diagonalized exactly. Here, we diagonalize the
matrix exactly and ignore perturbative contributions from bands
outside the basis.
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We include spin by taking the total unit cell function to be the
tensor product of spatial and spin degrees of freedom, then the
spin-orbit interaction term

HSO =
~

4m2
0c 2
(∇V × p) · σ , (A6)

is added to Eq. (A1). In Eq. (A6), σ is the vector of Pauli spin
matrices that acts on the spin components, and c is the speed of
light. Substituting the Bloch form [Eq. (A2)] into the updated
Hamiltonian simplifies to[

H0 +

(
~
m

)
k · p+

(
~

4m2c 2

)
(∇V × p) · σ

]
|unk(r); s〉

= E ′n |unk(r); s〉 , (A7)

after neglecting k-dependent spin-orbit terms. In Eq. (A7), we
separated the spatial and spin degrees of freedom with a semicolon,
but henceforth we will represent the spin by an arrow after the
spatial component’s label.

In the zinc-blende structures studied here, the states closest to
the Fermi energy are a doubly spin degenerate s -like conduction
band and p-like valence bands that are six-fold degenerate (includ-
ing spin) before spin-orbit interaction. While the eight basis
functions |i S ↑〉, |i S ↓〉, |X ↑〉, |X ↓〉, |Y ↑〉, |Y ↓〉, |Z ↑〉, and
|Z ↓〉 are a perfectly acceptable choice, we find the most conven-
ient Hamiltonian matrix by selecting valence basis functions from
the spherical harmonics Y10 = |Z〉 and Y1±1 =∓(X ± iY )/

√
2.

Thus, the full ordered basis is taken to be

|i S ↓〉,

∣∣∣∣ (X − iY )
√

2
↑

〉
, |Z ↓〉,

∣∣∣∣ (X + iY )
√

2
↑

〉
,

|i S ↑〉,

∣∣∣∣− (X + iY )
√

2
↓

〉
, |Z ↑〉,

∣∣∣∣ (X − iY )
√

2
↓

〉
. (A8)

Fixing k= kẑ, the Hamiltonian matrix is in block diagonal
form

[
H 0
0 H

]
where H =


Es 0 k P 0
0 Ep −

1
3

√
21
3 0

k P
√

21
3 E p 0

0 0 0 Ep +
1
3

 . (A9)

Es and Ep are the zone center energies defined by H0u j0 =

E j u j0. These are chosen to be Es = E g and Ep =−1/3 so that
the last row and column go to zero. This choice reduces the prob-
lem to the diagonalization of two identical 3× 3 matrices. P is the
Kane parameter defined by

P =−i(~/m)〈S|pz|Z〉 =−i(~/m)〈S|p y |Y 〉

=−i(~/m)〈S|px |X 〉, (A10)

and1 is the spin-orbit interaction energy

1=
3~i

4m2c 2

〈
X |
∂V
∂x

p y −
∂V
∂ y

px |Y
〉

(A11)

All equivalent matrix elements can be generated from Eq. (A11)
by applying all symmetry operations of the crystal’s point group, as
was done for P in Eq. (A10).

Diagonalizing Eq. (A9) at the zone center gives eigenstates
of the total angular momentum J = L + S (orbital plus spin)
and its z component J z. The s-like (L = 0) conduction band is a
doubly degenerate state with L = 0 and S =±1/2. The p-like
(L = 1) valence bands include heavy holes with quantum numbers
(J , J z)= (3/2,±3/2), light holes with (3/2,±1/2), and split-
off holes with (1/2,±1/2). Spin-orbit coupling serves to split the
J = 1/2 states from J = 3/2 states by energy1, hence the name
split-off holes.

For arbitrary k, we simply rotate to primed coordinates where
k= kẑ′. The Hamiltonian in the new coordinates has the exact
same form as Eq. (A7), but with basis functions transformed
according to their representation. Because the valence bands
belong to 04 which transform as the components of a vector, the
transformation takes the form of the usual vector rotation matrix X ′

Y ′

Z ′

=
 cos θ cos φ cos θ sin φ −sin θ
−sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

 X
Y
Z

 . (A12)

The spin components transform as the two-dimensional
irreducible representation of SU(2),[

↑
′

↓
′

]
=

[
e−φ/2 cos(θ/2) eφ/2 sin(θ/2)
e−φ/2 sin(θ/2) eφ/2 cos(θ/2)

] [
↑

↓

]
, (A13)

but this rotation is not necessary to compute because the optical
selection rule remains unchanged by rotation. Because the con-
duction bands belong to the identity (spherical) representation
01, S ′ = S is invariant under rotation. The angles θ and φ are the
usual polar angles of the k vector relative to the crystal axes labeled
x , y and z. The characteristic equation yields four double roots
corresponding to the eigenvalues of Eq. (A9):

E ′ = 0

E ′(E ′ − EG)(E ′ +1)− k2 P 2(E ′ + 21/3)= 0, (A14)

where Ek = E ′k + (~2/2m0)k2 is the energy of a state with a
wavevector k. The electronic wave functions are found to be

uiα = ai [i S ↓]′ + bi

[
(X − iY ) ↑/

√
2
]′
+ c i [Z ↓]′

uiβ = ai [i S ↑]′ + bi

[
−(X + iY ) ↓/

√
2
]′
+ c i [Z ↑]′

uHHα =

[
(X + iY ) ↑/

√
2
]′

uHHβ =

[
(X − iY ) ↓ /

√
2
]′
, (A15)

whereα andβ denote the two degenerate spin states, and the index
i refers to the conduction, LH, and SO bands. The real coefficients
a , b, and c are obtained from

ai = kP(E ′i + 21/3)/N

bi = (
√

21/3)(E ′i − EG)/N

c i = (E ′i − EG)(E ′i + 21/3)/N (A16)

where N is a normalizing factor such that a2
i + b2

i + c 2
i = 1.
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B. 3PA Coefficients

Here, we use the results of the previous subsection to compute 3PA
coefficients in third-order perturbation theory. We begin with the
electron-radiation interaction Hamiltonian in SI units [63,64]

Hp =
e

iωm0

(
I

2ε0n0c

)1/2

â · p̂, (A17)

where I is the irradiance of the incident beam, and n0 is the mate-
rial’s index of refraction. In the determination of the interaction
Hamiltonian, the matrix elements e/(m0c )A · P are needed,
which are obtained from the k · p theory discussed earlier. Here,
A is the magnetic vector potential, and â is a unit vector parallel to
the direction of the incident electric field. We can then express the
total 3PA transition rate per unit volume using Fermi’s golden rule
derived from third-order perturbation theory:

W3 =
2π

V~
∑
c ,v

∑
k

∣∣∣∣∣∣
∑
i, j

〈c |Hp | j 〉′〈 j |Hp |i〉′〈I |Hp |v〉
′

(E jv(k)− 2~ω)(E iv(k)− ~ω)

∣∣∣∣∣∣
2

× δ
[
E cv(k)− 3~ω

]
, (A18)

with Emn := Em − En . The index v corresponds to a valence band
(initial state), c is a conduction band (final state), and i and j are
intermediate states chosen from any of the eight bands detailed
in the previous subsection. The kets |l〉 (and bras 〈l |) are short-
hand for the k-dependent unit cell functions, ulk, as calculated by
Eqs. (A15) and (A16); the plane wave portion of the Bloch state
[Eq. (A2)] has already been used to enforce the crystal momen-
tum selection rule leaving a single sum over wave vector k. Primes
on the interaction matrix elements indicate that basis functions
are rotated according to the transformation in Eq. (A12). Note
that quantum interference occurs due to the intermediate state
sum within the absolute value brackets for a given c , v, and k.
Because each term in this sum can have arbitrary sign and mag-
nitude, the net contribution to 3PA can only be determined by
adding up the effect of all possible paths. We also note that, because
application of the Pauli exclusion principle does not affect the
outcome of Eq. (A18), we can ignore it in our intermediate state
sum calculations [65,66].

The transition rate per unit volume is used to calculate the 3PA
coefficient by relating electron transition rate to photon flux with
[20,67]:

α3(ω)=
3~ωW3

I 3
. (A19)

Combining Eqs. (A17)–(A19) yields the final expression for
3PA coefficients for z-polarized light:

α3 = 3ω
(2π)5

(n0c )3

(
e P
~ω

)6 ∑
c ,v

∫ π

0∣∣∣∣∣∣
∑
i, j

Mz
cj(kr , θ)M

z
ji(kr , θ)M

z
iv(kr , θ)

(E iv(kr )− ~ω)(E jv(kr )− 2~ω)

∣∣∣∣∣∣
2 k2

r sin θdθ∣∣∣ ∂Ecv(k)
∂k

∣∣∣
k=kr

,

(A20)

where

Mz
ij(kr , θ)= 3

~
m0 P
〈ui (kr , θ) |pz| u j (kr , θ)〉

′, (A21)

are the normalized momentum matrix elements [55]. Note that
the k sum in Eq. (A18) has been converted to a volume integral by
(1/V )

∑
k→

∫
(2π)3d3k and evaluated in spherical coordinates.

The remaining δ-function integration results in an integral over
constant energy surfaces defined by

E cv(kr )− 3~ω= 0, (A22)

with kr denoting the k value for which the transition is resonant.
The z direction was chosen so that matrix elements are inde-

pendent of azimuthal angle. Inspection of the third column of the
rotation matrix Eq. (A12) shows that the Z component of rotated
basis functions only depends on angle θ . Because the only nonzero
matrix element for z-polarized light is of the form 〈i S|pz|Z〉, the
matrix elements only depend on θ,while theφ integral evaluates to
2π . We chose z polarization for convenience, but analysis for light
polarized in any direction would yield the same result due to the
spherical symmetry of the Kane band structure.

APPENDIX B: SPIN-ORBIT COUPLING AND
QUANTUM INTEREFRENCE IN 3PA SPECTRA

This appendix aims to provide insight into the shapes and param-
eter dependence of the curves in Fig. 5. Given the large number of
possible 3PA pathways, it is not immediately obvious which terms
dominate at a given three-photon energy sum. While it is possible
to write each term individually and compare the magnitudes at a
given point in k space, it is just as illuminating to give a semiqual-
itative reason for the dispersions shown. We begin by carefully
examining the case with no spin-orbit coupling and demonstrate
how the complexity in the spectrum increases with this coupling.

The conceptually simplest description exists for materials with
weak spin-orbit coupling: AlN, ZnO, and GaN. We study these
by assuming1= 0 so that only k · p coupling terms between |S〉′

and |Z〉′ remain in the Hamiltonian matrix (Eq. A9). We are free to
rearrange the order of the basis to group functions of the same spin
into a single block. Without loss of generality, we diagonalize the
spin up block to find

uC = ac (k)|iS〉′ + bB (k)|Z〉′

uSO = az(k)|iS〉′ + bz(k)|Z〉′

uHH =
1
√

2
|X − iY〉′

uLH =
1
√

2
|X + iY〉′. (B1)

The conduction and SO bands intermix, while the HH and LH
bands remain uncoupled and retain a free-electron-like dispersion.
We compute z matrix elements by rotating the primed basis back
to unprimed functions using Eq. (A12). Then, applying Eq. (A10)
and normalizing by Eq. (A21) yields

Mz
C−HH = 〈uc |pz|uHH〉 =

3
√

2
ac sin θ

Mz
C−LH = 〈uc|pz|uLH〉 =

3
√

2
ac sin θ . (B2)

The matrix elements are identical because 〈iS|pz|Z〉 is the
only nonzero matrix element by symmetry, and only the |X 〉′

term contains a |Z〉 component when rotated into the unprimed
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coordinates. The same behavior exists for Mc−so; the |Z〉 couples
with the |iS〉 component of uso. Because these bands experience
the same optical coupling and are energy degenerate throughout
the Brillouin zone, contributions to the 3PA coefficient from
transitions originating in LH and HH bands will be identical. As
we mentioned in the main text, for brevity we refer to these as the
HH and LH contributions. By comparing the red and blue curves
in Fig. 5 for AlN, ZnO, and GaN, we see the equality of these
contributions except for minor difference because1 is not exactly
zero.

We reasonably approximate the shape of these curves with low
spin-orbit coupling by the expression

α3 ∝
1

x 5

∣∣∣∣ A
x 2
+

B
x 2
(3x − 1)

∣∣∣∣2(3x − 1)
1
2 , (B3)

where x is the photon energy normalized to the bandgap, ~ω/E g.
Eq. (B3) is derived from Eq. (A20) by first solving for kr using the
approximate energy conservation condition

E cv(kr )− 3~ω≈ E g +
~2k2

r

2µcv
− 3~ω= 0, (B4)

where 1/µcv = (1/µc − 1/µv) is the inverse reduced effective
mass. Normalizing all energies, we obtain

kr =

√
2µcv

~
(3x − 1)1/2. (B5)

The A term in Eq. (B3) describes triply-allowed 3PA pathways
with k-independent matrix elements. The B term accounts for
allowed-forbidden-forbidden transitions and picks up a k2

r term

because each forbidden matrix element is approximately linear in k
near the zone center.

Quantum interference arises due to differing relative magni-
tudes and signs between A and B in Eq. (B3). The triply-allowed
term dominates for HH and LH contributions when1≈ 0, lead-
ing to a 3PA which scales as Wherrett’s theory predicts [Eq. (2)].
From this, we determine that there is either constructive or weak
destructive interference, and the actual result can only be found
by tediously expanding each term in the sum and comparing. In
contrast to the HH and LH, the SO contribution clearly demon-
strates strong deconstructive interference: the triply-allowed term
still dominates near the zone center, but the allowed-forbidden-
forbidden terms have opposite sign and grow as kr increases.
Eventually this term grows larger than the triply-allowed term,
flipping the sign of the sum. Because the 3PA coefficient scales with
the magnitude squared of the sum, this sign change appears as a
drop down to zero followed by a bounce back upward. This is very
clearly seen in the green curve for ZnO.

As spin-orbit splitting increases from zero, the LH wave func-
tion becomes distinguished from that of the HH. However,
this identity only persists throughout a region of the Brillouin
zone determined by the strength of the spin-orbit interaction.
Quantitatively, this means that aLH and cLH of Eq. (A15) decay
away to zero as k increases so that the wave function tends to
the same form as that for HH. When spin-orbit coupling is
small, this decrease occurs very quickly. See Fig. 7 for a plot of the
expansion coefficients: Eq. A1(a) shows how the wave functions
change throughout the Brillouin zone in InP (1/E g = 0.08), and
Eq. A1(b) shows what happens when 1/E g = 0.008, near to the
value for GaN. Figure 8(a) shows the band structure obtained for

Fig. 7. Expansion coefficients for the light hole unit cell function versus three-photon energy sum for simulated values of (a) 1/E g = 0.08 and
(b)1/E g = 0.008. The horizontal axis is related to k by E cv(k)= 3~ω for v = LH.

Fig. 8. Energy bands of InP calculated from parameters given in Table 2 with horizontal axes chosen to be (a) k and (b) three-photon energy sum reso-
nant with the conduction (C) to LH gap at a given k (E cv(k)= 3~ωwith v = LH). The ranges of k values in (a) and (b) are identical.
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InP. To facilitate easy comparison with features in Fig. 5, we also
plot in Fig. 8(b) the same band structure but with the horizon-
tal axis to be the three-photon energy sum resonant with a light
hole to conduction transitions. Specifically, three-photon energy
sums correspond to a given k by the relation E cv(k)= 3~ω where
v = LH. Figure 8(a) shows that the slopes of HH and LH band
energies become nearly identical at large k.

For intermediate 1/E g , we see that the LH and HH contri-
butions in Fig. 5 nearly equalize at some photon energy. Some
minor differences may remain, attributable to differing denom-
inators in the perturbation expansion. This merging of LH and
HH contributions is apparent in the 3PA curves for InP, AlP, ZnS,
and CdS. Comparing Fig. 7 and Fig. 5, we see that HH and LH
3PA contributions approach each other as the magnitude of the
HH-like expansion coefficient (|bLH|) of the LH band nears unity.

LH contributions for intermediate 1/E g still experience
destructive interference as the triply-allowed term is partially
cancelled by allowed-forbidden-forbidden transitions. Note, how-
ever, that this cancellation is more complex than that of SO holes
with 1= 0. As shown in Fig. 7, the |iS〉 component of the LH
wavefunction increases then decreases, leading to nonmonotonic
forbidden transition matrix elements that depend on aLH. This
nonmonotonicity partially explains why the interference does not
lead the 3PA coefficient to pass through 0 as in the1= 0 limit. For
materials with large spin-orbit coupling, the LH and HH curves
remain distinct throughout the entire region of interest, and the
3PA spectral shape is not easily attributed to a specific interaction
term. This is the behavior exhibited by CdTe, GaSb, InAs, and
InSb.
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