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ABSTRACT

The science of texture analysis is fundamental to various applied fields such as
medical diagnosis, remote sensing, and material science. Recently, it has been proposed
that the normalized complete second-order statistics, also referred to as the two-point
probability density function (2P-PDF), be used for texture characterization.'> This
conjecture is supported by Julez’s 1962 visual experiments which showed that the human
visual system could not discriminate textures of equal first- and second-order statistics.’

The aim of this research is to investigate class separability for classification
efficacy based on different normalization schemes of 2P-PDFs. Three different methods
of normalization were considered: linear scaling, and matching of first-order statistics to
either a uniform or a Gaussian distribution.

Considering four visually discriminable texture ensembles, results show that
matching to an image with a Gaussian grey level distribution provides the highest level of
class separability. The two other normalization schemes considered, linear scaling and
the matching of first-order statistics to a uniform distribution, yield a good but sub-
optimal and a poor class separability, respectively. Based on the results of matching first-

order statistics to a Gaussian distribution, this normalization method will be next tested

across medical imaging data sets that typically offer more subtle differences.
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CHAPTER 1 - INTRODUCTION

The research presented in this thesis describes the use of normalized second-order
grey level statistic as a basis for effective texture characterization. While its application
to medical imaging is ultimately our aim, the methods apply generally across various
fields of image science as well.

Medical imaging is an assistive technigue in the diagnosis of various illnesses. It
is required that medical images be of good quality in order for the technique to be
effective. This leads to the need for image quality criteria and assessment. Image quality
assessment is the ability to extract useful information from an image, for medical or
scientific purposes. It can also be defined as the ability of a human or a mathematical
model “observer” to perform a task. Task performé,nce in medical diagnosis can be split
into two categories, classification and estimation tasks.!

There are, however, certain problems associated with the use of different
observers. For example, psychophysical methods that cén be utilized to quantify task
performance of a human observer do not provide in themselves a direct relationship
between the image quality and the optimal setting of the imaging system or parameters of
the processing algorithm. Additionally, these studies are tedious and time consuming,
Finally, given the diversity in the type of images (e.g. fatty breast mammograms versus

dense parenchyma), large numbers of images are required.”




To alleviate the problems associated with psychophysical studies, mathematical
models could be utilized as predictors of human performance, and researchers strive to
establish such models.?’ Ideally, such models require the determination of the grey level
statistics of the image backgrounds, the model of the imaging system or the parameters of
the algorithm, and the characterization of the signal to be extracted.

Beginning with the grey level statistics of the image backgrounds, a complete
description of the associated probability densities must be determined. However, in
many practical cases a complete knowledge of the probability densities is neither readily
available nor feasible to calculate.” An alternative is to utilize a model that only requires
the use of partial grey level statistics such as the first- and second-order statistics. Upon
doing so, it is necessary to estimate the grey level statistics with the use of a group of
similar images, referred to as an ensemble of images.

In remote sensing, an ensemble of images (e.g. images of a wheat field) can be
obtained by a series of pictures taken of a type of agricultural environment. Such an
ensemble of images forms a class. In the case of medical data sets where the images may
vary on a continuum from patient to patient, thus offering no specific evidence of where
one class ends and another begins, another technique is to apply a texture synthesis
algorithm to an image. This technique allows synthesis of an ensemble of images, in
order to form a class. Another approach may consist of gathering a time sequence of
images for a particular patient diagnosed as normal according to standard procedures.
This time sequence could be made over a span of months or years. Such an ensemble of

images whose grey level statistical properties may be estimated would characterize the
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class “normal” for that patient. An image acquired at a latter time whose grey level
statistical properties differ significantly from those established for the class “normal”
may suggest a state of illness.

The modeling of the imaging system is completed through the understanding and
application of the physics of the imaging process. Lastly, the characteristics of the signal
to be extracted are specified by the task. An example of a detection task would be a
radiologist looking for tumors ranging in size from 1 mm to 10 mm and having different
borders. For a texture classification task, the desired signal of interest is the texture itself.
An exampie would be the diagnosis of liver disease, comparing an abnormal liver
ultrasound to a normal liver ultrasound.* Classification is also applicable to many areas
outside the medical field. Two such fields are material science, for rock classification;
and remote sensing, for habitat determination.’

The research presented here deals with texture characterization, for the problem of
image classification. Characterization of texture images deals with the statistical grey
level desctiption and definition of sets of distinct texture classes, whereas classification is
the grouping or distribution of samples to the appropriate class. Due to the wide
applicability of texture analysis in image understanding, improvements in the
characterization process are desirable. We propose to characterize texture clasées based
on their complete second-order grey level statistics.

The research is presented in three main chapters: Chapter 2 describes the basis for
the normalization of the second-order grey level statistics and an associated distance

measure. The experimental methodology that acts as the basis for image simulation and
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modification, as well as the distance measure are given in Chapter 3. Finally, the results

of the distance measures within and between classes are presented in Chapter 4.




CHAPTER 2 - A MEASURE OF TEXTURE CHARACTERIZATION
BASED ON SECOND-ORDER STATISTICS

2.1 Second-order statistics

An image such as a texture can be considered to be a two-dimensional random
process. Second-order grey level statistics of a random process can be defined as the
ensemble two-point probability density function (2P-PDF). Given two pixels separated
by a distance vector r = r(x,y)} shown in Figure 1 the 2P-PDF of an ensemble of texture
images is defined as the probability of co-occurrence of the associated grey levels when

observed over the ensemble of texture images, and as r varies in length and orientation.

Image 3

D\ [mage 2
Imagel

Image 5

Pixel 2

Figure 1 The complete 2P-PDF is iflustrated. Given a vector r that separates two pixels of
potentially different grey levels, the 2P-PDF determines the frequency of occurrence of the pair of

grey levels throughout an ensemble of texture images. As r varies in length and orientation the
complete 2P-PDF is formed,




The 2P-PDF provides structural information about a random process, as it offers
information on the spatial relationship between grey levels at multiple scales and
orientations. The 2P-PDF can be determined for either an ensemble of texture images -or
for an individual texture image. An example of a 2P-PDF for a particular scale and
orientation is shown in Figure 2. The 2P-PDF is a graphical description of the co-
occurrence of grey level pairs. The ensemble 2P-PDF is determined as depicted in Figure
1. For an individual texture irnage, the 2P-PDF of a given scale and orientation is
calculated by determining the grey level distribution of all pixel pairs within the image

that are separated by a vector distance r. As r varies in scale and orientation, the 2P-PDF

18 forrned.

a0

Grey level 2

0 a0 il
Grey level 1

Figure 2 The 2P-PDF is plotted. For a specified vector r the co-occurrence of grey level values 1 and 2
is plotted. The lighter colors represent a higher frequency of occurrence of grey level pairs,




This concept can also be understood by observing the joint probability
distribution function of two grey levels given by

P(g1,22) = P(g1)P(g2lg1), (1)
where P(g;) is the one-point probability density function (1P-PDF), i.e. the distribution of
gfey levels within an image, and P(g)lg)) is the conditional probability density of grey
level g» occurring given that grey level g has occurred. Thus we are able to not only
determine the probability of the grey level value of a given pixel, but we are also able to
determine the probability of the grey level value of that pixel with respect to the grey
level value of another pixel. It is also important to note that g; and g, are considered to
be statistically independent if the occurrence of one pixel has no bearing on the
occurrence of the other. In this case it follows that

P(g1,g2) = P(g1)P(g2lg1) = P(g1)P(g2)- , (2)
Eq. 2 expresses that if the two random variables are uncorrelated, their joint probability
density function becomes the product of the two marginal density functions, or 1P-PDFs.°
This observation will be shown to be the basis for the contribution of the research

presented here.

2.2 Why Use Complete Second-Order Statistics?

We shall motivate answers to why we propose to use complete second-order
statistics as a basis for characterization, instead of extracted features from second-order
statistics. This can be addressed by giving an example of the use of an extracted feature.

The power spectrum, for example, which is one component of the complete second-order
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statistics, is often considered for texture characterization.® The power spectrum of a
stationary random process is defined as the Fourier transform of the process’
autocorrelation function. In many cases the justification for its use is that power
spectrum analysis has been a means of spectral analysis of noises and cother signals.
However, the use of the power spectrum does not provide sufficient information for
texture image characterization because texture images have more complex structures.

The inability of the power spectrum to offe-r adequate information, when
pertaining to a statistical texture, is based on the fact that the power spectrum only retains
amplitude information while disregarding phase information. Since the phase
characteristics specify the structural information of an image, the power spectrum does
not provide a unique description of the image.9’m Consequently there may be multiple
texture images with the same power spectrum but potentially having different structural
malkeups, thus nullifying the ability of the power spectrum to provide an accurate basis
for texture characterization in many cases. Only in the case of a Gaussian random process
does the power spectrum provide enough information to completely describe the second-
order statistics. Hence for non-Gaussian processes the power spectrum only provides a
portion of the descriptive information necessary for the complete description of the
second-order statistics.

Yet another question to be addressed is, “Why not use higher-order statistics?”
Based on Julez’ experiments, it is known that visual discrimination between images with
the same first- and second-order statistics is not possible.” Thus when dealing with

texture images with differing second- and higher-order statistics it is a worthwhile step to
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first look at the complete second-order statistics before delving into higher-order
statistics. Higher-order statistics may be considered as a basis for future work, depending
on whether the complete second-order statistics are capable of fully characterizing texture
images. Thus, in the endeavor to acquire an effective figure of merit for complex

background characterization, we propose to use the complete 2P-PDF. 51

2.3 Texture synthesis

The estimation of the two-point prebability density function most generally
requires that an ensemble of statistically equivalent texture images be provided. To
synthesize an ensemble of images, we utilize a texture synthesis algorithm previously
developed by Rolland et, al.'' The texture synthesis framework employs a recursive
steerable pyramid transform which has -a set of filter banks. The pyramid transform
consists of four layers each providing filtering of the sample texture images and
downsampling by a factor of two. The filtering is made by bandpass and orientation
filters. The orientation filters form a quadrature mirror filter bank.!! The texture image is
decomposed by feeding 1t through.the pyramid transform. In parallel, a uniformly
distributed white noise image is also input into the pyramid transform. The white noise
image acts as a point of origination for the synthesis. Once the decompositions have been
completed, the histograms of the white noise image are matched to that of the sample
image at multiple scales and orientations. To compute the synthesis, the histogram-

matched noise images acquired at each orientation and scale are recombined, in a bottom

up recombination process. A factor of two upsampling and Gaussian blur are applied
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between scales, during recombination. Loss of brightness, due to the downsampling, is
also accounted for at this time. The process is iterated to yield a synthetic image. To

create another synthesized image a different realization of white noise must be employed.

2.4 Texture characterization

When performing texture classification there are two main concerns to be
addressed: the definition of the classes and the classification criteria. The former,
referred to as texture characterization, is most important. The efficacy of classification is
dependent upon how distinct the classes are, which in our case will be specified by a
distance metric between the 2P-PDFs."? Standard classification methods can always be

applied.

2.4.1 Definition of classes

To define the various classes, the boundaries of the spread of textures within a
class must first be determined. Each realization of a texture within a class has an
estimated 2P-PDF associated with it, as does the texture ensemble. For each texture a
distance d can be computed between its 2P-PDF and the average 2P-PDF of the
ensemble. Therefore, there is a probability distribution P{d} associated with d, over the
texture ensemble. The associated cumulative distribution function can be computed as

Car)=P{d=<r}, (3)

the probability that the distance between the 2P-PDF of a texture and the ensemble

average 2P-PDF is less than or equal to some parameter r. The cumulative distribution
10
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function has a value between zero and one. The radius of a class can now be defined as
the value of r at which a specific value of the cumulative probability distribution function

(CPDF) is achieved.”® For example, if the value of the CPDF is .95, then the radius of

some class C is expressed as, rcg5 . Using the 2P-PDF of a texture ensemble, the radius of

a texture class can thus be determined.

The determination of how close two classes are, is also a significant issue. An
effective measure of classification requires that the distance between two classes, let us
call them A and B, be greater than the sum of the two radii of the associated classes,

dap > 1" g5 + 17 5. (4)

This is represented Figure 3. This example provides a maximum response, however the
classification error will vary depending on how much overlapping occurs between the
two texture classes. For example, if

g5 > dap + 1 g (5)
then it follows that a complete discrimination between the two classes is not possible,

since class A is within class B, as depicted in Figure 4.




Texture Class A Texture Class B

i1 [

Figure 3 The complete discrimination between two texture classes is illustrated. Given two texture classes
Aand B, the ability to discriminate between the two classes is dependent upon the distance d,5 between

the two classes being greater than the sum of the radii of the individual classes, g5 + 18 g

_//

P
das

Figure 4 The total lack of discrimination between two texture classes A and B is illustrated. Since the
distance between the two classes dygp is less than the sum of the radii of the classes, no discrimination

between the classes is pogsible,




2.4.2 Distance measure

The quantification of class separability can now be undertaken, given that the
spread of textures within the classes has been defined. The method of class separability
we propose is based on the quantification of the similarity between two 2P-PDFs. A
distance measure between two texture classes A and B can be established by calculating
the root-mean-square distance between two probability density functions.® This distance
measure is given by:

d = Eellpater.gzr)-pnere2r) dgrdg) ™, ©®)
in this case, g1 and g; are the grey levels at pixels 1 and 2 within the images; and r 1s the
vector separation between locations 1 and 2. The summation is over a finite set of vectors
r. The vector is considered to be finite because the images consist of a finite set of
pixels, the spacing of which helps to determine a lower bound. Going back to equation
(2) we see that the 2P-PDF is equivalent to the product of the two 1P-PDFs, for the case
of large r. Consequently, because the 1P-PDFs are all the same, all of the corresponding
terms are eliminated, thus setting an upper bound for r. Additionally, the upper bound
could be determined by the image size. Inaccuracies may result, in this case, in the
estimation of both the 2P-PDFs and the associated distance d. In any case, the need to
select an optimal parameter for r in order to calculate the 2P-PDF is alleviated.'" If PA
and pp represent the 2P-PDFs of two images A and B, the distance between the two
images is estimated. If pa and pp represent the ensemble 2P-PDFs of two texture

classes, the distance between the two classes is estimated.
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2.5 Normalization of 2P-PDF

We have hypothesized that prior to the determination of a distance measure, the
normalization of the 2P-PDF of a texture image is necessary when performing texture
characterization or classification. Normalization plays a critical role because variations
in the 1P-PDF of a texture cause variations in the associated 2P-PDF. For example, any
comparison between textures without initial normalization would be equivalent to
comparing two pictures of the same scene or object acquired in different light settings.
That is to say, if we take a picture of a rock at noon and then retake the same picture later
in the evening, the pictures are the same in structure, but the information readily available
for the 2P-PDFs would vary greatly due to the difference in the greyscale. This concept
is illustrated in Figure 5 A-D. A distance measure between the 2P-PDFs of the two
pictures would yield results that infer that the two textures have different structures. This
would lead to a classification of the two images as members.of different groups. It is thus
necessary to normalize the two-point probability density function to remove any potential
contributions from the one point probability density function of a random process, in

order to be able to compute a distance measure with results that are meaningful.




(A) (B)

Figure 5. To depict the need for normalization prior to the determination of a distance measure, -

the grey level values of one rock texture sample has been scaled to 2 different ranges: (A) A
rock texture scaled from 0 to 150 grey levels, and (B) the same rock texture scaled from 105 to

255 grey levels.




0 180 0 100 8
r=90,81 r=3,81 r=24, 81 r=381,81

Figure 5C The complete 2P-PDF of the rock texture scaled from 0 to 150, with r values ranging from
r=r(0,0) tor =r(81,81) is shown. The brighter the colors, the higher the frequency of accurrence of
a pair of grey levels. This figure shows that as r increases, the shape of the 2P-PDF becomes more

rotationally symmeiric, thus reflecting the lower correlation between grey levels.

16




Figure 5D The complete 2P-PDf of the rock texture scaled from 105 to 255, with r values ranging from
r=r{0,0) to r = r(81, 81) is shown. Compared to Figmre 5C this figure shows how a shift in the overall
greyscale causes a shift in the associated 2P-FDFs.
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CHAPTER 3 - EXPERIMENTAL METHODS

3.1 Image simulation

To investigate the impact of the normalization of second-order statistics when
performing texture characterization, three different normalization methods have been
implemented. In doing so, we have generated a total of four different sets of images each
relating to a different type of normalization: unmodified images (or no normalization);
scaled images; and images whose histograms have been matched to either an image with
a uniform distribution of grey levels referred to henceforth as a uniformly distributed

white noise image, or an image with a normal (Gaussian) distribution.

3.1.1 Unmodified images

We considered four texture classes: rock, grass, granite, and residual
mammogram texture. The residual mammogram texture will thus be referred to as the
residue texture. The first three texture images were acquired from Brodatz’s texture
atlas.'® The residue texture was formed by blurring a mammographic texture with a
Gaussian distribution having a standard deviation of six pixels. The resulting spatially
varying image was subtracted from the original mammogram image, thus producing the
residue texture image.'”

From these sample textures, the unmodified images are generated by utilizing the

texture synthesis framework described in Chapter 2. A total of 100 images were
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synthesized, 25 for each texture class. The 25 synthesized rock images are produced

- from the combination of the rock sample texture and twenty-five different realizations of

TOCK N araniie

residue

Figure 6 Four texture samples are shown: the “rock”, “granite”, “grass”, and “residue” textures. For
each texture four images were assembled to form each texture image. For example in the upper left
quadrant of the rock image is the original sample texture. The three remaining quadrants are
synthesized samples of the rock texture. Similarly, this applies to the granite, grass and residue
textures,
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uniformly distributed white noise images. The other 75 texture images, from the grass,
granite, and residue classes, are synthesized in the same fashion. Each synthesis employs
a different realization of a umiformly distributed white noise image. Samples of the
syntheses can be seen in Figure 6. The 100 unmodified images provide the basis for the

scaled and histogram matched texture images.

3.1.2 Linearly scaled images
For the case of the scaled images, a weighting function is applied to each image.
The grey level values of each image are linearly scaled from 0 - 255. This is done by
applying a weighting equation to the specified image, given by

Outputimage = (Inputimage — Minin) x MaxQut - anOut ®
Maxin — Minin

where Inputlmage is the array of pixels that makes up the input image, and Outputlmage
is the array of pixels that makes up the output image. Minln and MaxIn are the minimum
and maximum grey level values of the input image, respectively. The maximum and
minimum grey level value of the output image in our case, MaxOut and MinOut, equal
255 and 0, respectively. This type of normalization may experience problems with noisy
images, because of possible grey level outliers. If this form of scaling was retained, this

issue may be addressed with the application of some form of filtering (e.g. a median

filter) before the scaling is applied.




3.1.3 Histogram-matched images

We shall now normalize the 100 unmodified images by applying the histogram
matching process to each of the texture images. The purpose for utilizing histogram
matching is that it offers a method for the meodification of the one-point probability
density function of all the images to some desired form. An exact histogram mafching
procedure was applied to create the two normalized sets of textures. Specifically, the
sort-matching algorithm was employed to produce images whose histograms are matched
exactly to the histogram of a model image.'® The model image will be either a uniform.

white noise or a Gaussian noise image.

3.1.3.1 Uniformiy distributed grey level images
The second set of images was histogram matched to a uniformty distributed white

noise image. The 512 x 512-pixel array white noise image was generated with the use of
a random number generator that produced a uniform distribution of numbers ranging

from zero {0 one.

3.1.3.2 Gaussian distribution grey level images
The third set of texture images was matched to a Gaussian distribution noise

image. The Gaussian distribution was produced with the use of a random number
generator, RandomN, which generates a normal distribution of numbers centered at zero,

with a standard deviation of one. For our purpose we instituted a Gaussian distribution,

Gauss = 128 + RandomN * (128/3). N
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Gauss is a distribution with a mean value of 128 and a standard deviation of 128/3. This

value was chosen in order to allow for an untruncated Gaussian.

3.2 Distance measurement

The calculation of the distance measure between two 2P-PDFs requires that the
determination of the 2P-PDFs of the textures considered be followed by the application
of the distance algorithm. Beginning with the 2P-PDF, we first determined the co-
occurrence of two pixels of grey levels g; and gi, which are separated by a vector
distance r = r(x, v).

A relative frequency method was employed to estimate the 2P-PDF. This method
takes two copies of the same image, let’s say image A in this case, and while holding one
image stationary shifts its copy by a vector distance r from it’s originating position. This
is done to find the co-occurrence of the grey levels for each pixel in the overlapping area,
which is equivalent to determining the number of occurrences of specific grey level pairs
within the same image when separated by a distance vector r. This process is illustrated
in Figure 7. The sum of the elements of the acquired grey level distribution array or 2P-
PDF was then normalized to 100. Similarly this process was applied to a second image,
B. We next determined d°, the squared difference between the two normalized 2P-PDFs.
The global distance measure between the 2P-PDFs was obtained by summing over the r

values and taking the square root, as expressed in Eq. (6).
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Based on symmetry and computational time, we only sum over the values of r
such that repetitions of specific r values are left out. Recognizing that r = r(x,y) is

equivalent to r = r(-x,-y) we avoid summing over equivalent values of r.

Texture Al

Pixel 1 r

Pixel 2

Texture A

Texture A2

: Figure 7 The relative frequency method used to estimate the 2P-PDF is illustrated, for a given r

i vafue. To determine the co-occurrence of grey level pairs within an image, two copies of an image,
il Al and A2, are made. A2 is shifted, by some vector r, from the origin of Al. In the overlapping area
between the images, pairs of grey levels are automatically formed. The frequency of occurrence of
various pairs of grey levels within the overlapping area provides the 2P-PDF of image A, for a given

r.




CHAPTER 4 - RESULTS

We shall present results of distances computed within and between the four
classes rock, grass, granite, and the residue texture. Distance measures within a class,
also referred to as intra-class distances, should offer small variations in distances, while
distance measures between classes, also referred to as inter-class distances, should
furnish larger variations in the distances. More specifically, for an effective measure of
class separability it is necessary that the inter-class distances be in agreement with Eq (4),
where the inter-class distance is larger than the sum of the radii of the two individual
classes.

Figure 8 shows the computation of intra-class distances, that is the distribution of
distances between all possible combination of pairs of single image 2P-PDFs within a
group. The distances are plotted as a function of the frequency of occurrence of a
distance value. The three plots within Figure 8 apply to images that are linearly scaled,
matched to a uniform distribution, and matched to a Gaussian distribution, respectively.
It can be scen that all of the intra-class distances are relatively small in value as expected,
where small will in fact be measured relative to typical inter-class distances.

With respect to inter-class distances, although the distribution of distances
between pairs of images, each from one class, may yield an overlap between various pairs

of classes considered, this is not an absolute sign of there being no discrimination

between classes. It is necessary to determine if the distance between classes is equivalent
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Figure 8 The distribution of distance measures between estimated 2P-PDFs within groups is showa.
The 2P-PDF is estimated for ¢ach of the images within a texture class. The distance measure between
the 2P-PDFs of all the possible pairs of image combinations within a group are made. These distance
measures are then plotted here as a distribution of distance as a function of frequency of occurrence.
The first plot being for linearly scaled images, the second plot for images that have been matched to a
uniform distribution, and the third for images that have been matched to a Gaussian distribution.
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to, larger than, or smaller than the sum of the within class radii of the two classes in
question.

Figures 9, 10, and 11 represent the distribution of inter-class distances. The
distribution plots for Figure 9 are created by estimating the 2P-PDFs of each image
within the four texture ensembles. Taking two ensembles at a time the distance measure
between the 2P-PDFEs of the images from the different groups are calculated, for all
possible image pair combinations. The distributions are then plotted as a function of
frequency. Plots A, B, C, and D are made with respect to granite, grass, residue, and
rock, respectively. Figure 10 illustrates the distribution of distances betWeen groups that
have been matched to a uniform grey level distribution. Figure 11 depicts the distribution
of distances between groups that have been matched to a Gaussian distribution. Both
Figures 10 and 11 are created utilizing the same method as Figure 9. The amount of
overlap of the distance distributions varies in each of these figures, and is more or less
pronounced dependent upon the méthod of normalization utilized. We shall now

examine each case.

4.1 Distribution of distance measures between groups: Linearly scaled images

This form of normalization offers a good but sub-optimal class separability. This
is due to the closeness of the value of the distance between rock and grass, shown on the
x-axis of Figures 9 B and D, and the sum of the radii of the two classes, given in Table 1.

However in spite of the small value encountered, because drock-grass is larger than the

sum of the two classes” radii we are able to disctiminate between the classes. Other
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distances found between classes and reported in Figure 9 are well above the sum of the
radii of the corresponding classes. However, it is likely that for cases where the texture
images are less visually discriminable, this method will not be able to provide effective

class separability.

4.2 Distribution of distance measures between groups: Histogram-matched images
to a flat distribution

This process provides a poor result for class separability. It neither satisfies the
criteria for effective texture classification given by Eq. (4), nor provides a distinct
separation between any pair of the texture classes. This can be confirmed by comparing
the distance values of Figure 10 and the results of Table 2. We hypothesize that this poor
performance is partially due to the fact that the broad range of grey levels utilized in this
method is unable to provide an accurate estimate of the 2P-PDF. If so, this could have
been alleviated by the use of texture images of a larger size, however, the texture images

used were intentionally kept at a size of 512 x 512-pixels for comparison purposes.

4.3 Distribution of distance measures between groups: Histogram-matched images
to a Gaussian distribution

This method of normalization provides effective class separability for textures, as
shown in Figure 11 and Table 3. This method offers the highest level of discriminability
between groups. lhe distance measures provided when using this form of histogram

matching allow for a specific range of distance measure distributions between any two
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classes. The lack of overlap between any of the distance measures and the large values of
d, except for the distance between granite and rock, compared to the individual spread of
the classes shows the potential of this technique for efficacy of classification. Although
small between class distances are observed, this method remains the most potentially
effective because of the ability to optimize the standard deviation of the Gaussian
distribution, which would potentially allow an even higher level discriminability between

classes.
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Figure 9 The distribution of distances between the 2P-PDFs groups that have been lingarly
scaled with respect to (A) Granite, (B) Grass, (C) Residue, (D) Rock is shown. These plots are
created by estimating all of the 2P-PDFs for each of the individual images within the four groups
of images that have been linearly scaled. Utilizing (wo ensembles of textures at a time, the
distance measures between the 2P-PDFs of images from two different groups are calculated, for
all possible image pair combinations. The distribution of distance measures is plotted here as a
function of the frequency of occurrence of the distance values. Fach plot is with respect to a
particufar texture group. '
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Figure 10 The distribution of distances between groups that have been matched to uniformly
distributed white noise with respect to (A) Granite texture, (B) Grass texture, (C) Residue
texture, and (D) Rock texture is shown here. These plots are created by estimating all of the
2P-PDFs for each of the individual images within the four texture groups that have been
matched to a uniform distribution. Utilizing two ensembles of textures at a time, the distance
measures between the 2P-PDFs of images from two different groups are calculated, for all
possible image pair combinations. The distribution of distance measures is plotted here as a
function of the frequency of occurrence of the distance values. Each plot is with respect 1o a
particular texture group.
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Fig 11. Distribution of distances between groups that have been matched to a Gaussian distribution
with respect 1o (A) Granite texture , (B) Grass texture, (C) Residue texture, and (D) Rock texture.
These plots are created by estimating all of the 2P-PDFs for each of the individual images within the
four texture groups of images that have been matched to 2 Gaussian distribution. Utilizing two
ensembles of extures at & time, the distance measures between the 2P-PDFs of images from two
different groups are calculated, for all possibie image pair combinations. The distribution of distance
measures is plotted here as a function of the frequency of occurrence of the distance values. Each
pioi is wilh respeci i o particular iexiure group.




Texture A | Texture B | ros”™ + ros>
ROCK GRANITE 6.788
ROCK GRASS 5.38
ROCK RESIDUE 7.498
GRASS GRANITE 6.1
GRASS RESIDUE 6.811
GRANITE RESIDUE 8.218

Table 1 The sums of the radii of texture pairs, for scaled images, are listed here. The radius of each
ensemble of textures is determined by first calculating the ensemble average 2P-PDF, by estimating the 2P-
PDFs of each of the images within an ensembie. Utilizing all of these 2P-PDFs an average 2P-PDF is
computed. The distances between the average 2P-PDF of a class and the individual textures within the
class are then computed, thus showing the distribution of distances with respect to the average 2P-PDF,
This distribution is also known as the radius of a texture class or the spread of textures within a class.

Texture A | Texture B | ros" + ros-
ROCK GRANITE 4398
ROCK GRASS 4,001
ROCK RESIDUE 4357
GRASS GRANITE 4352
GRASS RESIDUE 4311
GRANITE RESIDUE 47708

Table 2 The sums of the radii of texture pairs, for images matched to a uniform distribution, are listed here.

Texture A | Texture B | ros” +ros°
ROCK GRANITE 4.098
ROCK GRASS 3.797
ROCK RESIDUE 3.926
GRASS GRANITE 4.104
GRASS RESIDUE 3.931
GRANITE RESIDUE 4,233

i Table 3 The sums of the radii of texture pairs, for images matched to a Gaussian distribution are listed
T here.




CONCLUSION

A method of texture characterization based on the complete second-order
statistics of the associated random process was proposed. The necessity for the
normalization of the second-order statistics was presented.  Three methods of
normalization, linear scaling, and histogram matching to uniform, and Gaussian
distributioné were investigated. |

Three different sets of results were obtained for the case of texture
characterization employing visually discriminable, synthesized ensembles of images.
Good, but sub-optimal class separability was yielded for linear scaling. Histogram
matching to a uniform distribution produced poor class separability. Higher overall class
separability was yielded with the utilization of histogram matching to a Gaussian
distribution.

Given this encouraging result on synthesized texture ensembles that can be
discriminated visually, future research will include natural texture classes that differ more
subtlely. Furthermore, future research will aim to establish whether this finding, for
histogram matching to a Gaussian distribution, extends to medical texture data sets, by
determining a theoretical normalization function that predicts maximum class separability

over typical data sets (e.g. ultrasound liver images or MR tmages of bone).
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