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ABSTRACT 

 Optical coherence imaging, including tomography (OCT) and microscopy (OCM), has 

been a growing research field in biomedical optical imaging in the last decade. In this imaging 

modality, a broadband light source, thus of short temporal coherence length, is used to perform 

imaging via interferometry. A challenge in optical coherence imaging, as in any imaging system 

towards biomedical diagnosis, is the quantification of image quality and optimization of the 

system components, both a primary focus of this research. We concentrated our efforts on the 

optimization of the imaging system from two main standpoints: axial point spread function (PSF) 

and practical steps towards compact low-cost solutions. 

 

Up to recently, the criteria for the quality of a system was based on speed of imaging, sensitivity, 

and particularly axial resolution estimated solely from the full-width at half-maximum (FWHM) 

of the axial PSF with the common practice of assuming a Gaussian source power spectrum. As 

part of our work to quantify axial resolution we first brought forth two more metrics unlike 

FWHM, which accounted for side lobes in the axial PSF caused by irregularities in the shape of 

the source power spectrum, such as spectral dips. Subsequently, we presented a method where 

the axial PSF was significantly optimized by suppressing the side lobes occurring because of the 

irregular shape of the source power spectrum. The optimization was performed through optically 

shaping the source power spectrum via a programmable spectral shaper, which consequentially 

led to suppression of spurious structures in the images of a layered specimen. The superiority of 

the demonstrated approach was in performing reshaping before imaging, thus eliminating the 

need for post-data acquisition digital signal processing. Importantly, towards the optimization 

 iii



and objective image quality assessment in optical coherence imaging, the impact of source 

spectral shaping was further analyzed in a task-based assessment method based on statistical 

decision theory. Two classification tasks, a signal-detection task and a resolution task, were 

investigated. Results showed that reshaping the source power spectrum was a benefit essentially 

to the resolution task, as opposed to both the detection and resolution tasks, and the importance 

of the specimen local variations in index of refraction on the resolution task was demonstrated. 

 

Finally, towards the optimization of OCT and OCM for use in clinical settings, we analyzed the 

detection electronics stage, which is a crucial component of the system that is designed to 

capture extremely weak interferometric signals in biomedical and biological imaging 

applications. We designed and tested detection electronics to achieve a compact and low-cost 

solution for portable imaging units and demonstrated that the design provided an equivalent 

performance to the commercial lock-in amplifier considering the system sensitivity obtained 

with both detection schemes. 
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CHAPTER ONE: INTRODUCTION 

This part of the dissertation starts with a summary of the role of optics on medicine. Then, 

the origin and basics of biomedical optical imaging with interferometry will be discussed. 

Preliminary studies toward the invention of optical coherence tomography (OCT) and initial 

work on the subject will be reviewed. Finally, our motivation for the research and summary 

followed by the dissertation outline will be presented. 

 

1.1 Optics in Medicine 

We can state that the history of optics in medicine starts with the invention of the microscope. 

Microscopes have been used by scientists to magnify samples such as biological specimen since 

the late 17th century. However, simple microscopes are not able to provide images of the inner 

structures of specimens in vivo. Later, the discovery of x-rays by William Roentgen in 1895 

enabled a new medical imaging system which measures the transmission of x-rays through 

biological materials such as the human body [Macovski 1983]. X-ray computerized tomography 

then emerged that deduced the spatial distribution of the absorption coefficient of portions of the 

human body based on a mathematical solution derived by J. Radon [Born and Wolf 2002]. Since 

x-rays were found not to be useful for scanning the soft tissues as they penetrate and pass 

through the soft tissue without significant change, other techniques such as ultrasound imaging 

were proposed to diagnose soft tissue [Fenster 2000]. A major drawback of ultrasound imaging 

is the poor resolution. To obtain images with higher resolution, techniques such as diffraction 
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tomography was developed. However, reconstruction of images with diffraction tomography is 

more complicated. Other techniques have thus been developed to obtain see through images of 

the human body. Magnetic resonance imaging is an important example [US Patent No. 

4,319,190].  

 

The interaction of light with biological systems has attracted the attention of scientists for a long 

time [Tuchin 2002]. Optical properties of tissues have been investigated since the early 1900’s. 

Optical biomedical imaging techniques are based on one or more of the transmission, absorption, 

reflection, scattering and fluorescence of the light when it is incident on tissue. The studies 

showed that absorption of light in biological samples, such as skin and blood, is significantly low 

in an optical window between ~600 nm and ~1300 nm which is called the diagnostic and 

therapeutic window [Parrish 1981, Anderson 1981, and Roggan 1999]. Light emitted in this 

window can penetrate deeper into the tissue due to relatively low absorption enabling transfer of 

optical information from the inside of tissues. Outside this window, light is absorbed in short 

distance disabling penetration in the tissues because of high water absorption in the infrared, as 

given that 80% of the human body consists of water, and because of absorption and scattering by 

proteins and molecules in the ultraviolet [Tuchin 2002, Mobley 2003].   

 

Different optical devices has been developed and/or employed to benefit from light in medicine 

some of which are based on historical instruments. For example the Michelson interferometer in 

biomedical optical imaging enables measuring the optical properties of light which can be used 

for biodiagnosis.    
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1.2 Michelson Interferometer 

The physical structure of an OCT setup is based on a device invented by Albert Abraham 

Michelson, which is called the Michelson interferometer. The Michelson interferometer is used 

as the basis for all of the experimental setups discussed in this dissertation. 

 

After Thomas Young proved that light possesses the properties of wave showing that light can 

interfere, many optical theories used the concept that there existed a medium in the whole 

universe called luminiferous ether which made the propagation of electromagnetic waves and 

thus light possible, since the scientists at that time believed that light could not propagate in 

empty space. For example, Maxwell studied mathematics of electromagnetism presuming that 

the propagation medium was luminiferous ether. It was assumed that the luminiferous ether was 

transparent, stationary and filled the whole space in the universe creating an absolute frame of 

reference. 

   

The instrument, which is universally named as the Michelson interferometer, was invented by 

Albert A. Michelson in late 19th century. He planned to run an experiment to study the existence 

of the luminiferous ether, through which the earth was assumed to be moving. His idea was to 

build an apparatus which was supposed to have two arms perpendicular to each other, with one 

arm traveling in the direction of the earth’s motion. He was expecting the light to travel a longer 

time in the direction of the earth’s motion in luminiferous ether and a shorter time in the opposite 
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direction, and he was considering that the light traveling in the other arm perpendicular to the 

earth’s motion would have traveled back and fourth in the arm in the same time [Michelson 

1881].  

 

In his instrument, which he proposed to be employed as an interferential refractor, Albert A. 

Michelson used a half-silvered, semitransparent glass plate, which is now called a beam splitter, 

a glass plate which is employed to compensate for the thickness of the half-silvered plate, and 

two plane glasses silvered on the front surface, namely mirrors. Figure 1.1 shows the structure of 

the Michelson interferometer as proposed by Albert Michelson [Michelson 1881, Michelson 

1887]. 

 

 

Figure 1.1: A sketch of the Albert Michelson’s interferential refractor, which is now universally 
called a Michelson interferometer. The light source employed was a small lantern with its flame 
at focal point of a lens. 
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Albert Michelson employed this instrument to observe the interference fringes formed by 

superimposition of the light from the arms of the interferometer. He considered that there should 

have been a shift in the position of the interference fringes given that light was expected to travel 

a longer time in the arm which is in the direction of the earth’s motion in the luminiferous ether. 

However, with his instrument he showed that there was no shift in the observed interference 

fringes which was possible only if there was no luminiferous ether, hence light was traveling at 

the same velocity in all directions. With this work and his results, Albert Michelson became the 

first US citizen to win the Nobel Prize (1907), as stated by the award committee, “for his optical 

precision instruments and the spectroscopic and metrological investigations carried out with their 

aid”.  

 

The Michelson interferometer later served in many fields of optics such as interferometric 

sensors, spectroscopy, reflectometry and biomedical optical imaging.  

 

1.3 Michelson Interferometer and Low-Coherence Imaging 

The Michelson interferometer is an amplitude-splitting type of interferometer. Light travels from 

a source to a beam splitter, which divides the incident light into two different paths generally 

with equal optical power. Light beams traveling in two different paths are scattered or reflected 

back, for example from mirrors, so that they follow the path back to the beam splitter where they 

are recombined and spatially mode-matched. Interference of the light beams is observed at an 

observation plane or at a photodetector.  
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Light is an electromagnetic field having an amplitude and phase. In coherent imaging, variations 

in both the amplitude and the phase of the light are recorded to form an image. The structure of 

the Michelson interferometer enables changing the phase of the fields while their amplitudes 

vary depending on the scattering or reflection coefficients of the materials placed at the end of 

the interferometer arms. Generally, one of the interferometer arms is employed as the reference 

and is called the reference arm. A sample is placed in the other arm which is called the sample 

arm. The amplitude variations due to the reflection or backscattering from a sample are detected 

by a photodetector. The detected amplitude variations are dependent on the relative phase 

difference between the fields in the interferometer arms.     

 

Low-coherent (i.e. temporal coherence) light sources, which have short coherence time, emit 

light enclosed in a packet of finite number of waves with different wavelengths. A broad spectral 

bandwidth is a characteristic identity of low-coherent light sources. Coherence is related to the 

random nature of the optical fields with its amplitude and/or phase fluctuating in time [Mandel 

and Wolf 1995, Goodman 1985]. Two light beams from the same light source can be 

superimposed using a Michelson interferometer. The interference signal obtained at the detector 

presents the autocorrelation of the random fields, which is also called the temporal coherence 

function or the self coherence function, if the interfering two beams are equivalent. A time delay 

is introduced to the fields by varying the length of the interferometer reference arm. A general 

definition of the coherence time is given by the length of the time delay between the equivalent 

optical fields when they become uncorrelated. Coherence length is defined as the length of the 

path traversed by light in vacuum during the coherence time. Low-coherent light sources become 
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uncorrelated relatively much faster compared to the monochromatic or quasi-monochromatic 

sources with a narrow spectral bandwidth. Hence light beams from a low-coherent light source 

are able to interfere only for an extremely short time delay or short distance between them. For a 

time delay larger than the coherence time, no interference signal can be observed. The short 

coherence length provided by the low-coherent sources plays a critical role in low-coherence 

interferometry applications such as testing and investigating optical fibers and devices with a so 

called optical low-coherence reflectometer, and biomedical imaging with optical coherence 

tomography (OCT) [Huang 1991a].        

 

1.4 Motivation 

Light is a promising medium to be used in biomedical imaging. The Michelson interferometer by 

itself is an amazing optical instrument that can be used in different applications for different 

purposes including OCT. Its structural simplicity is an advantage for research. However, a 

challenge in optical coherence imaging, as in any imaging system towards biomedical diagnosis, 

is the quantification of image quality and optimization of the system components.  

 

A full system design and optimization of OCT including the light source, the detection 

technology, and scanning are inevitable to extract useful data from biological samples. OCT is a 

relatively novel biomedical imaging system which needs to be further improved and optimized in 

order to be accepted by the medical community in biodiagnosis. Furthermore, important 

measures in the imaging, such as the axial point spread function and the axial resolution, are to 
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be carefully quantified. Factors influencing such measures are to be analyzed towards the 

assessment of image quality, and negative impacts are to be corrected. Also, for such assessment 

a useful mathematical method needs to be employed for early optimization of the imaging 

system to save time, energy, and cost. Moreover, compact low-cost solutions are to be developed 

to ensure portable units that can be employed in clinical settings. One step towards compactness 

is replacing bulky laboratory equipment, for example the lock-in amplifier, with compact 

components, for example detection electronics implemented on a small printed circuit board. 

 

1.5 Research Summary 

The purpose of the research is the optimization of the OCT system from two main standpoints: 

axial point spread function (PSF) and practical steps towards compact low-cost solutions.  

 

The axial PSF and axial resolution are mainly related to the spectral characteristics of the 

imaging light source. In our research we discuss in detail the quantification the axial resolution in 

an optical coherence imaging system and propose different metrics in order to understand which 

ones may be more reliable in biomedical imaging, while presenting the results of those metrics 

especially when the light source employed has irregularities in the shape of its power spectrum. 

Furthermore, we propose to optically shape the source power spectrum to suppress side lobes in 

the PSF of the imaging system, which also leads to suppression of spurious structures in the final 

image reconstructed. Importantly, towards the optimization and objective image quality 

assessment in optical coherence imaging, impact of source spectral shaping is further analyzed in 
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a task-based assessment method based on statistical decision theory. In the final part of this 

research, we study the analog detection of the phase-modulated interference signal and present a 

compact low-cost design that can achieve equivalent performance to a commercial high end 

lock-in amplifier. 

 

1.6 Dissertation Outline 

The rest of the dissertation is organized in the following way:  

 

Chapter 2 summarizes the previous related work performed on low-coherence interferometry and 

reflectometry which have played a critical role for the development of OCT, and describes 

advancements and achievements in research on OCT. 

 

Chapter 3 details the principles and theory of OCT along with the theory of the Michelson 

interferometer with coherent and low-coherent sources. The imaging system is quantified by 

developing a mathematical framework presenting the detected interferometric signal. 

 

Chapter 4 discusses resolution in OCT and some of the source parameters influencing it. The 

axial or longitudinal resolution provides the resolution along the path of depth-scanning which is 

related to the spectral characteristics of the light source employed in the system. The lateral or 

transversal resolution is related to the optics focusing in the sample arm. We propose and analyze 

different metrics for axial resolution, which is the main focus of Chapter 4, and present the 
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impact of the shape of the source power spectrum on the axial resolution and PSF. Furthermore, 

we briefly discuss a novel optimization and performance assessment method for optical 

coherence imaging based on statistical decision theory. 

 

 

In Chapter 5 we introduce a novel method to improve the PSF of the OCT imaging system. The 

method is based on shaping the power spectrum of the broadband light source illuminating an 

OCT system with a technology based digital micromirror device. We demonstrate the 

suppression of side lobes in the PSF recorded with an ASE light source after the spectral shaping 

process. We then analyze the impact of the source spectral shaping in a task-based assessment 

method based on statistical decision theory. 

  

 

Chapter 6 discusses a crucial component in OCT imaging, which is the detection electronics. 

First the mathematical background of detection is presented and then the design of compact low-

cost demodulating detection electronics with monolithic integrated-circuit active filters and 

logarithmic amplifier is demonstrated. We quantify the sensitivity of the system with both the 

designed electronics and the commercial lock-in amplifier, and present images of fresh onion for 

comparison of two different detection schemes.  
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Chapter 7 summarizes the contributions of the research presented in this dissertation and 

discusses the results of the research. 
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CHAPTER TWO: RELATED WORK 

In this chapter, the steps toward the development of the technology leading to OCT imaging 

are discussed. We review the previous research and advancements achieved in OCT research, 

which has been a fast growing field in the last decade.  

 

2.1  Low-Coherence Interferometry in the Telecommunications Industry 

Light is reflected or backscattered at the interfaces of optical structures where there is an abrupt 

change in index of refraction. The Michelson interferometer illuminated with a low-coherent 

light source has been successfully applied to test the continuity of optical structures such as 

optical fibers. The technique used to detect the location where Rayleigh backscattering and/or 

Fresnel reflection occur in optical structures has been called optical low-coherence reflectometry 

(OLCR), also known as optical coherence-domain reflectometry (OCDR). 

 

In 1987 Youngquist et al. proposed to replace one of the mirrors in a free-space Michelson 

interferometer with a miniature optical assembly [Youngquist 1987]. They employed a laser 

diode with short coherence length to illuminate the interferometer. Given that the interference of 

the light beams recombined at the beam splitter occurs only when the beams are coherent (i.e. 

time delay between the beams is as short as the coherence time of the light source) Youngquist 

presented locations in optical assemblies where reflections occured with 10 μm resolution.  
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Danielson and Whittenberg, meanwhile, introduced a new type of reflectometer which they used 

to test single-mode optical fibers [Danielson 1987]. They built a fiber-optic Michelson 

interferometer illuminated by an LED and used directional couplers instead of beam splitters. 

Measuring the interference signal occurring due to Fresnel reflections in discrete locations along 

the fiber, they determined the gap separation in a single-mode optical fiber, loss due to this 

separation, and the effect of stress applied to the optical fiber on the interferogram. They also 

discussed that dispersion in the two arms of the fiber-optic interferometer is to be matched to 

prevent broadening in the interference signal. Later in 1991 Danielson et al. proposed to measure 

the phase slope of the Fourier components of the interference signal detected in time domain in 

order to determine the locations of the reflections with higher precision [Danielson 1991]. A 

dispersive sample was employed in the sample arm of the interferometer. 

 

A group in Japan, Takada et al., again in 1987 reported experiments to locate the faults in optical 

waveguides devices with a fiber-optic Mach-Zehnder interferometer in combination with a free-

space Michelson interferometer [Takada 1987]. Takada et al. employed a superluminescent 

diode (SLD) with a coherence length of 50 μm. A fiber-optic Mach-Zehnder interferometer was 

built with a fixed mirror at the end of the reference arm and a fixed optical fiber or waveguide in 

the other arm. Light beams reflected from the reference mirror, and reflected or backscattered 

from the optical fiber or waveguide were directed to a free-space Michelson interferometer. The 

Michelson interferometer consisted of a fixed mirror in one arm and another mirror placed on a 

translating stage in the other arm. Optical path difference was introduced in the Michelson 

interferometer by moving the mirror where light beams were superimposed and detected by a Si 
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PIN diode. Takada et al. modulated the light in the sample arm of the Mach-Zehnder 

interferometer and performed envelope detection with a lock-in amplifier. The lock-in amplifier 

was set to detect the signal to account for the frequency of modulation plus the frequency shift 

introduced by the moving mirror in the Michelson interferometer. The fiber-optic Mach-Zehnder 

interferometer provided the sum of the reference field and sample field with low coupling loss 

while the correlation was obtained in the Michelson interferometer. They reported a 

measurement sensitivity of -116 dB and estimated the spatial resolution to be 380 μm which was 

the displacement in the mirror location by which the signal dropped to a noise level of -116 dB. 

Takada et al. also estimated the refractive index of the fiber core under test by immersing the 

fiber end to index matching oil and measuring the amplitude of the interference signal while 

changing the refractive index of the index matching oil. No reflection and thus no interference 

signal were expected when the refractive indices of the fiber core and index matching oil were 

equivalent.   

 

The development of OLCR in telecommunication industry was reviewed by Gilgen et al. [Gilgen 

1989] and Masters [Masters 1999]. The achievements of high spatial resolution and dynamic 

range in OLCR later inspired some research groups to apply it to form 2-dimensional 

tomographic images of biological samples. 
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2.2 Development of OCT 

Huang et al. recognized that the principles of low-coherence interferometry were analogous to 

ultrasound imaging [Huang 1991a]. The idea to measure the reflections and scatterings of waves 

from biological samples has been successfully applied in ultrasound imaging. Given that a 

sensitivity of as low as -120 dB had been achieved in OLCR, optical power as low as an order of 

femtowatt reflected from a sample was able to be detected. However, until 1991 nobody had 

tried to employ a biological tissue as a sample in OLCR and to form a 2-dimensional image with 

the backscattered or reflected light from a biological sample.  

 

In 1986 Fujimoto et al. demonstrated a new technique to investigate the microstructure of 

biological systems [Fujimoto 1986]. This technique was based on nonlinear cross-correlation 

using femtosecond laser pulses. A beam splitter was employed to direct a portion of the 65-

femtosecond pulses on a biological sample and a delay line. The light beam traveling through the 

variable delay line reached to an angle-phase-matched KDP second-harmonic crystal. Reflected 

and backscattered pulses from the sample also arrived to the KDP crystal, but through a different 

path. Reference and sample light beams were cross-correlated at the KDP crystal. Fujimoto et al. 

suggested that the spatial resolution of the system was ~15 μm which was equal to the full-width 

at half-maximum (FWHM) of the cross-correlation traces. Using this technique Fujimoto et al. 

observed the cross-correlation signal of light beams reflected and backscattered from the eye of a 

rabbit and human skin with the reference beam. Moreover, they measured the thickness of the 

cornea of the rabbit eye. We should note that the intensities of the light beams not their 

amplitudes were cross-correlated in this technique.  
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The idea of cross-correlating reflected or backscattered light beams were also applied by a group 

of researchers in Austria. Fercher et al. measured the optical eye length of several human beings 

using a Fabry-Perot interferometer illuminated by a semiconductor laser with relatively short 

coherence length [Fercher 1988]. They observed the Newton’s interference fringes from the eye. 

The principle was based on sending two superimposed light beams one of which was delayed by 

the Fabry-Perot interferometer by two times the separation of its reflective plates. Interference 

fringes were visible with an infrared-scope if the delay introduced by the interferometer were 

compensated by the optical eye length of the subject with an uncertainty of source coherence 

length. Fercher et al. measured the eye length of several human beings optically with their 

interferometric system and acoustically by the ultrasonic technique and compared the results 

which demonstrated a small difference in the order of 0.1 mm. 

 

In early 1991 a group of researchers in MIT led by James Fujimoto reported their work for the 

distance measurements in the anterior eye [Huang 1991b]. A modified Michelson interferometer 

illuminated by a broadband light source was employed. The experimental system was similar to 

the one demonstrated by Youngquist et al. [Youngquist 1987]. The interference signal was 

recorded by a detector followed by lock-in amplifier as a function of the reference mirror 

position which was placed on a translating stage with a stepper motor. Basically, Huang et al. 

successfully used the optical coherence domain reflectometry technique to measure corneal 

thickness, corneal excision depth and anterior chamber depth of the eye with a spatial resolution 

of 10 μm.  

 16



In late 1991 an article was published in Science with the title of “Optical Coherence 

Tomography” [Huang 1991a]. For the first time 2-dimensional cross-sectional images of internal 

structures in biological samples were demonstrated. In this work, the low-coherence 

interferometer or reflectometer was extended to form tomographical images of biological tissues. 

The system was a fiber-based Michelson interferometer built using single mode fiber and one 

50/50 fiber coupler. The source was a superluminescent diode. The axial or depth scanning of the 

sample was performed with a mirror mounted on a translating stage. Similarly, the lateral 

position of the beam focused to the sample was translated laterally after each depth scan. The 

group of researchers headed by James Fujimoto demonstrated 2-dimensional OCT images of 

human retina and human coronary artery with an axial resolution of 17 μm. It was reported that 

the system could detect reflected power as low as 10 fW with ~95 dB dynamic range. Huang et 

al. opened a new field in biomedical optical imaging with their work in 1991 and added the term 

“Optical coherence tomography” to the literature.      

 

2.3  Advancements in OCT 

The results reported by Huang et al. in 1991 showed that optical coherence tomography is a 

promising technique for clinical applications especially in ophthalmology to form tomographic 

images of human eyes. Clivaz et al., independent from the research group in MIT, reported that 

they employed an optical low-coherence reflectometer built using a single-mode fiber to study 

the optical parameters of diffusive biological samples (i.e. fresh artery), such as refractive index 

and attenuation [Clivaz 1992]. Schmitt et al. further investigated measuring optical properties of 
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biological tissues using a low-coherence reflectometer [Schmitt 1993]. Schmitt et al. based their 

studies on first-order scattering theory unlike Clivaz et al. who studied Fresnel reflections from 

biological samples. Later, Tearney et al. employed OCT to determine the refractive index of 

highly scattering human tissue by measuring the optical path length in the tissue or tracking the 

focal length shift in tissue moving along the optics axis [Tearney 1995]. Furthermore, 

Kholodynkh et al. precisely measured the backscattering and scattering coefficient of tissue, such 

as skin, using OCT suppressing the speckle noise in the system [Kholodynkh 2003].  

 

In a classical OCT system the sample arm light beam is focused on the sample with a low 

numerical aperture lens. The low numerical aperture lens provides a relatively large field of view 

in the sample which is longer than the coherence length of the source. When a high numerical 

aperture focusing element is employed in the sample arm, OCT is called optical coherence 

microscopy (OCM) [Izatt 1994, 1996, Yadlowski 1995]. High numerical aperture focuser 

provides a relatively small field of view in the sample. However, high numerical aperture 

focusing improves the transverse or lateral resolution on the sample compared to low numerical 

aperture focusing. In OCM different scanning methods, such as focus tracking, were 

implemented to compensate the defocusing of backreflected or scattered light due to the small 

field of view of the focusing element [Schmitt 1997a]. In focus tracking the focal point in the 

sample is scanned into depth along with the reference arm scanner. 

 

There have been several different depth scanning mechanisms implemented for OCT imaging. 

The most common scanning mechanism is a linear translational stage with a DC or a stepper 
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motor. A mirror or retroreflector is mounted on the stage. Translating the stage along the optic 

axis allows collection of backscattered or reflected light from the inner structure of the sample 

given that the interference of the beams is observed only if the optical path length difference 

between the arms is less than or equal to the source coherence length. Increasing the speed of 

scanning has been one of the main investigations since motion artifacts cause severe artifacts and 

loss of information in OCT images of living biological systems. An alternative scanning 

mechanism was implemented by Tearney et al. for OCT [Tearney 1996]. Single-mode fiber in 

the reference arm was wrapped around a cylindrical piezoelectric transducer which stretched the 

fiber and thus increased the optical path length when a voltage applied with a speed (~600 Hz 

repetition rate) about two orders of magnitude more than former scanning methods. Another 

depth-scan mechanism was implemented again by Tearney et al. [Tearney 1997a]. This 

technique was based on a well-known property of Fourier transform, i.e. a linear phase ramp in 

the frequency domain corresponds to a time delay in the time domain and is analogous to the 

femtosecond pulse shaping technique presented by Weiner et al. [Weiner 1988]. The reference 

beam is dispersed with a diffraction grating and imaged on an oscillating galvomirror where the 

phase ramp is introduced to its Fourier transform. This mechanism is called rapid-scanning 

optical delay line (RSOD) and was previously implemented by Kwong et al. for femtosecond 

time-resolved signal averaging measurements and for rapid autocorrelators to measure the 

pulsewidth [Kwong 1993]. Later, video-rate (32 frames/second) OCT was accomplished by 

Rollins et al. employing an RSOD with a scan repetition rate of 4-kHz [Rollins 1998]. The delay 

and dispersion characteristics of the RSOD have recently been detailed by Zvyagin et al. 

[Zvyagin 2003]. A different scanning mechanism was also realized by Szydlo et al. by rotating a 
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cube before the reference mirror with an air bearing turbine at 28.6-kHz scan repetition rate 

[Szydlo 1998]. This scanning system was employed in an optical low-coherence reflectometer.  

 

The sources commonly employed in OCT are superluminescent diodes (SLD) radiating at near 

infra-red (centered at wavelengths from ~800 nm to ~1550 nm) with a broad bandwidth (~60 

nm) and thus a short coherence length (~10 μm). SLDs are laser diodes with anti-reflection 

coatings on both facets, which prevent them from lasing even at high bias currents, so they solely 

amplify spontaneous emission in a broad spectrum. Since the spectral bandwidth of the source is 

related to the axial resolution of the system, several different light sources other than SLDs with 

larger spectral bandwidth have been proposed to be used in OCT. The improved light sources for 

OCT provide higher resolution and signal-to-noise ratio (SNR). Bouma et al. built and optimized 

a Kerr-lens mode-locked Ti:Al2O3 oscillator emitting around 800 nm with a spectral bandwidth 

of 145 nm [Bouma 1995]. Later, Bouma et al. also implemented a self-phase-modulated Kerr-

lens mode-locked Cr:forsterite laser source emitting at 1.28 μm as an alternative OCT light 

source for high resolution imaging [Bouma 1996]. A Yb-doped high power fiber source was also 

applied in OCT [Bashkansky 1998a]. This fiber laser was a high power light source emitting at 

1.08 μm with a smooth spectral shape. However the spectral bandwidth was relatively narrow. 

Therefore the axial resolution was relatively poor compared to other light sources used in OCT. 

Another light source implemented for OCT was a Kerr-lens mode-locked Ti:Sapphire laser with 

double-chirped mirrors [Drexler 1999]. This femtosecond laser source was emitting sub-two-

cycles pulses centered at 800 nm with bandwidths of up to 350 nm. Drexler et al. accomplished a 

depth resolution of as low as 1 μm in tissue. Povazay et al. combined a commercial compact sub-

 20



10-fs Ti:Sapphire laser with a photonic crystal fiber and built a light source emitting at 725 nm 

with a spectral bandwidth of 325 nm [Povazay 2002]. The reported axial resolution of the OCT 

system implemented with this source was 0.75 μm. Recently, a commercially available 

broadband light source radiating at around 1300 nm was successfully employed by Bizheva et al. 

for OCT imaging [Bizheva 2003]. This light source consists of pulsed erbium fiber laser in 

combination of a highly nonlinear fiber which leads to a supercontinuum generation from 1.1 μm 

up to ~2 μm. The drawback of the light source is the instability of the emitted light. Fluctuations 

in power spectral density (also called power spectrum or PSD) and thus output power cause 

troubles in OCT imaging. Other light sources applied in OCT are thermal lamps such as tungsten 

halogen lamps [Fercher 2000, Vabre 2002] and xenon arc lamps [Fercher 2000]. The extremely 

broad bandwidth of thermal light sources provides about 1 μm resolution. However, the 

disadvantages of the thermal sources are their low-brightness and thus relatively smaller dynamic 

range. Table 2.1 summarizes some of the light sources with their properties which have been 

utilized or have the potential to be utilized in OCT imaging. 

 

The research work on OCT performed since 1991 has been slightly focused on theoretical 

analysis beside the system improvement. Pan et al. established a relation of the interference 

modulation with path-length-resolved reflectance simulated using a Monte Carlo technique [Pan 

1995]. Schmitt et al. adapted the extended Huygens-Fresnel formulation of beam propagation in 

turbulent atmosphere to OCT with the investigation of speckle noise in the images [Schmitt 

1997b]. Another theoretical analysis of OCT based on the extended Huygens-Fresnel principle 

was performed for both single- and multiple scattering in highly scattering tissue [Thrane 2000]. 
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In their model Thrane et al. took multiple scattered photons into account together with multiple 

scattering effects.  

 

Table 2.1  Summary of some of the broadband light sources for OCT imaging 

 

Light Source Center 
Wavelength [nm] 

Bandwidth 
[nm] 

Power [mW] Reference 

SLD 830 
930 
1300 
1500 

70 
100 
50 
170 

12 
7.5 
10 

0.15 

[Superlum 2005] 

Multiplexed SLD 890 155 4 [Ko 2004] 

KLM* 
Ti:Al2O3 
 
Cr:forsterite 

 
~800 
800 
1300 

 
145 
350 
120 

 
400 

 
100 

 
[Bouma 1995] 
[Drexler 1999] 
[Bouma 1996] 

ASE 1565 80 7.72 [Akcay 2003] 

Nonlinear fiber 
Er-pulsed 
Nd: Glass 

 
1375 
1064 

 
470 
139 

 
4 
90 

 
[Bizheva 2003] 
[Bourquin 2003] 

Yb-doped fiber 1064 30 40 [Bashkansky 1998a] 

PCF** 725 325 27 [Povazay 2002] 

Tungsten halogen 
lamp  

887 
840 

320 
260 

2x10-4 [Fercher 2000]  
[Vabre 2002] 

*KLM: Kerr-lens modelocked, **PCF: Photonic Crystal Fiber 

 

Some other studied subjects in OCT are as follows; detection [Podoleanu 2000], optimal 

interferometer designs [Rollins 1999], endoscopic applications with OCT [Tearney 1997b, 
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Feldchtein 1998, Pan 2001], en-face imaging [Podoleanu 1999, Sticker 2002], polarization-

sensitive OCT [Hee 1992, de Boer 1999, 2002], different medical applications of OCT other than 

human eye, such as dental [Colston 1998] and dermatology [Welzel 2001], image enhancement 

with signal processing on the acquired interferometeric signal [Kulkarni 1997, Bashkansky 

1998b] and on the power spectral density of the light source [Tripathi 2002]. Furthermore, some 

general review articles about OCT have been published [Fercher 1996, 2002, 2003, Schmitt 

1999].  
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CHAPTER THREE: PRINCIPLES AND THEORY OF OCT 

This chapter describes and discusses the principles and theory of OCT based on the fact 

that an OCT system has the same structure as of a Michelson interferometer. First, we detail the 

operation of the Michelson interferometer and discuss the impact of the temporal coherence of a 

light source which illuminates it. Then, the interference of low-coherent (i.e. low-temporal 

coherent) light sources is explicated. Finally, the formation and properties of an OCT signal, 

which are crucial toward the quantification of axial resolution, are discussed. 

 

3.1 Michelson Interferometry with Monochromatic Stationary Source 

The superposition of two or more light beams at a region in space is called interference. The 

interference phenomenon of light beams is explained with the wave nature of light, since the 

intensity at the superposition region is not simply the arithmetic sum of the intensities of the 

interfering light beams, but it presents variations in time and/or space depending on the phase 

difference between them.    

 

An interferometer is a device which is utilized to superpose the light beams. We discussed the 

structure of Michelson interferometer in Chapter 1 and stated that it realizes the interference by 

splitting the amplitude of a light beam into two different paths, i.e. arms of the interferometer, 

and by recombining the split beams each of which possess an additional phase accumulated by 

propagation in the arms of the interferometer. 
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Figure 3.1 presents the schematic of a common free-space and fiber-optic Michelson 

interferometer. The light beam from the source is incident on a beam splitter. The beam splitter 

divides the amplitude of the incident light beam and directs the light to two different paths which 

we call the reference arm and sample arm of the interferometer. The distance of the mirror in the 

reference arm and the distance of the mirror or the sample in sample arm from the beam splitter 

are denoted as lr and ls, respectively. When the light source illuminating the interferometer is 

assumed to be monochromatic, i.e. coherent, the electric fields traveling in the arms of the 

interferometer represented by Er and Es are given by 

( ) ( ){ }tlkiAtE rrr ⋅−⋅−⋅= ω2exp       

( ) ( ){ }tlkiAtE sss ⋅−⋅−⋅= ω2exp  ,         (3.1) 

where k is the propagation constant and equals λπ /2 n , where λ is the wavelength and n is the 

refractive index of the medium in which light propagates (n equals 1 for air) , and ω  is the 

optical frequency and equals λπ /2 c , where c is the speed of light. The factor of 2 in the 

exponentials of Equation 3.1 denotes the round trip of the light in the arms of the interferometer. 

A photodetector with a finite integration time detects the superposed light beams and provides 

the time integrated/averaged intensity which we call interference signal henceforth. 
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Figure 3.1: Schematic diagram of (a) a free-space and (b) a fiber-optic Michelson interferometer 
with the electric fields and their propagation distances traveled in the interferometer arms shown. 
PD: Photodetector, CL: Collimating Lens. 

 

The mathematical description of the interference signal measured by the photodetector of the 

Michelson interferometer demonstrated in Figure 3.1 can be given by  

( ) ( ) ( ) 2
,d r r s sI t t E t E tα α′ ′= +  ,    (3.2) 
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where αr and αs are coefficients describing the losses along the interferometer arms including the 

reflections at the mirror and the sample, the brackets describe the time averaging over the 

integration time of the detector. If the source field is stationary, then the interference signal 

Id(t,t’) can be given as a function of τ, i.e. in the form of Id(τ), where τ is the difference of the 

time-of-flight of the light beam between the interferometer arms given by . 

When the sample in the interferometer is a mirror, and the beam splitter divides the amplitude of 

the light source equally, then Ar and As in Equation 3.1 are equal and can be expressed by A 

which implies that Er and Es become equivalent fields and thus Equation 3.2 can be expressed as 

( ) clltt sr /2 −=′−

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ){ }

2 2

2 2

2 2

2

0

0 2 Re

d r r r s s s r s r s

r s r s

r s r s

I E t E t E t E t E t E t

        

        

       

           ,

τ α α τ τ α α

α α α α τ τ

α α α α τ

∗ ∗

∗

= ⋅ ⋅ + ⋅ − ⋅ − + ⋅ ⋅ ⋅ ⋅ −

⎡ ⎤= + Γ + ⋅ ⋅ Γ + Γ⎣ ⎦

= + Γ + ⋅ ⋅ Γ

τ∗

  (3.3) 

where Γ is the autocorrelation of the electric fields and Re is the real part of the complex 

expression. The time difference τ can be converted to a difference in the distances that the light 

beams travel in the reference and the sample arms of the interferometer. With this conversion 

and by using the description of the electric field given in Equation 3.1, Equation 3.3 can be given 

by 

( ) ( ) ( ){ } 2-expRe2 2222 lkiAAlI srsrd Δ⋅⋅⋅⋅⋅⋅++=Δ αααα ,                         (3.4) 
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where Δl is path length difference between interferometer arms which is lr minus ls. Equation 3.4 

represents an electrical signal which consists of a DC and an AC part. The DC part has a fixed 

voltage value throughout the measurement, which is also called a DC offset. The AC part is a 

sinusoid which fluctuates as a function of the phase difference of electric fields propagating 

different distances in the interferometer arms and thus accumulating different phase. While the 

DC offset is the arithmetic sum of the intensities of the interfering light beams, the AC part of 

Equation 3.4 presents the interference phenomenon. Therefore, the DC component of the 

detected signal does not contain useful information about the interference and usually filtered out 

electrically.  

 

3.2 Principles of Low-Coherence Interferometry 

In Section 3.1 we discussed the interference with a coherent/monochromatic light source. 

According to Born and Wolf two light beams are coherent if the amplitude and phase 

fluctuations are completely correlated [Born and Wolf 2002]. Similarly, we describe a coherent 

light source as a light source which is able to interfere with itself as shown in Equation 3.4 for 

any phase difference even if one of them propagates an infinite distance and accumulates infinite 

phase. Therefore, the coherence length of a coherent light source is infinite, where the coherence 

length is a term used to call the maximum acceptable difference in path length, for example 

 for the system shown in Figure 3.1a, for which two light beams can still interfere, in 

which case they are said to be correlated.  

( sr ll −2 )
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In a real physical case no light source can be monochromatic, i.e. it cannot emit at a single 

wavelength. The power spectral density (power spectrum or PSD) of a monochromatic light 

source would be expected to consist of a single line at the emission wavelength. However, it is 

not realistic and even the sharpest spectral line in the PSD of a source has a finite width [Born 

and Wolf 2002]. If a spectral width is present in the source PSD, than the light source is 

polychromatic, which means it emits at more than one wavelength. Another physically 

unrealistic condition is a light source having a PSD with infinite width. In Equation 3.3 we 

showed that the interference signal is related to the real part of the autocorrelation of the electric 

fields propagating through the interferometer arms. According to the Wiener-Khintchine 

theorem, the autocorrelation function and PSD of a light source establish a Fourier Transform 

pair which is expressed by 

( ) ( )ωτ S⎯→←Γ ℑ      (3.5) 

where ( )ωS  is the power spectral density in the angular frequency domain, which can also be 

represented as the wavelength power spectral density ( )λS , and ℑ  denotes the Fourier 

transform operation. Hence, a light source with a PSD of infinite width presents no correlation 

with itself for any nonzero time-delay τ or difference of path length Δl, which implies that the 

coherence length of incoherent sources is zero. With an incoherent light source it is physically 

impossible to observe any fluctuations in the interference signal, which are called fringes, and 

the intensity of the detected superposed light beams equals the arithmetic sum of the individual 

intensities of each beam.    
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Coherent and incoherent light sources are physically non available. All light sources in nature are 

partially coherent since as stated they always have a finite width PSD. The degree of coherence 

of a light source is described using its coherence length. The coherence length of partially 

coherent light sources is neither zero nor infinite. However, some partially coherent light sources 

may provide an interference signal over large path length differences or time-delays and some of 

them over relatively shorter path length differences or time-delays. A low-coherent light source 

is a type of partially coherent light source. It has a relatively short coherence length meaning that 

the interference signal using for example a Michelson interferometer can be observed only for 

small differences in path length, i.e. 2Δl is within the short coherence length of the light source. 

Fig. 3.2 illustrates the interference with long and short coherence length light sources.  

 

The coherence length of a light source is related to its PSD. From Equation 3.5 we can see that 

the interference signal for a light source with finite width PSD cannot be expressed as in 

Equation 3.4 anymore. A mathematical description of the interference signal is to be formulated 

for light sources with a PSD of finite width considering the Wiener-Khintchine theorem. Thus, 

we can derive the following mathematical relation between the interference signal and PSD of a 

light source, 

( ) ( ) ( )  22expRe222

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ Δ⋅⋅−⋅⋅⋅+⋅+=Δ ∫

∞

∞−
λ

λ
πλαααα dliSIlI srsrd ,         (3.6) 

where I is the intensity of the light source, the expression with the integral represents the Fourier 

transform operation, and S(λ) is the PSD of the light source which can be measured by an optical 
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spectrum analyzer (OSA). In Equation 3.6 we see that the AC part of the expression is related to 

the PSD. From the Fourier transform theory we know that if a function is broad in one domain, 

then its Fourier transform will be narrow in the transform domain. Then we can deduce that a 

short coherence length light source should have a broad bandwidth. Meanwhile, we previously 

stated that the interference signal with a low-coherent light source is observed for a small Δl only 

that has a maximum limit of the source coherence length. The relation between Δl and bandwidth 

of PSD will be discussed and quantified in detail in Chapter 4. 
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Figure 3.2. Illustration of the interference phenomenon with a long coherence length (quasi-
monochromatic) and a short coherence length (broadband) light sources. 
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Let us assume that the DC offset of the interference signal detected by the photodetector is 

filtered out after photodetection using a high pass or band pass filter. So, the remaining AC part 

of the signal is given by  

( ) ( )  22expRe
⎭
⎬
⎫

⎩
⎨
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⋅⎟
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⎞
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λ
πλ dliSKlI AC ,    (3.7) 

where K is a constant equal to srαα2 . Performing a Taylor Series expansion about the center 

wavelength λo of the PSD for the phase term in the exponential, Equation 3.7 becomes 
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Since the higher order terms in the expansion are small compared to the lower order terms we 

can neglect the higher order terms in Equation 3.7 and express it as  
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When the path length of the interferometer reference arm lr is varied in time for example by 

moving the reference mirror with a translational stage, a rate of change for Δl is provided. If the 

speed of the translational stage is given by vm and t is the time duration of path length change, 

then Δl is given by t⋅mv  and Equation 3.9 becomes 
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In Equation 3.10 there is a phase term outside the integral operation which is related to the rate 

of change of Δl, i.e. vm, and the center wavelength of the source PSD. This term represents a 

phase modulation in the electrical signal generated by the photodetector. The phase modulation 

in this case is due to the Doppler shift caused by scanning the reference arm path length with a 

translational stage moving at a constant speed. Because of the Doppler shift the center electrical 

frequency of the signal  is shifted in the electrical frequency domain by the amount given by of

o
of

λ
mv2

=   .                         (3.11) 

The phase modulation with the Doppler shift provides optical heterodyning and demodulation of 

the heterodyne signal after the photodetection increases the signal-to-noise ratio (SNR) of the 

detected signal. The demodulation, i.e. envelope detection, process is detailed in Chapter 6. 

 

Equation 3.10 presents a basic expression for the photodetector response of a low-coherence 

interferometer based on the wavelength PSD of the light source. Converting the wavelength to 

optical frequency ω  we also can express the photodetector response as a function of optical 

frequency whichever is convenient. We present a more detailed mathematical framework in 

Section 3.3 which presents the OCT signal considering more features than the source PSD and 

the rate of change in the reference arm path length reference. Indeed we shall see that it is an 
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approach to the derivation of the interference signal which accounts for statistical features in the 

source field and the photodetection. 

 

3.3 OCT Signal 

We stated in Section 3.2 that an essential component of a low-coherence interferometer is to 

have a broadband and thus a short coherence length light source. A light source with a broad 

spectral bandwidth emits an electric field which consists of multiple plane waves at different 

optical frequencies in the spectral band of the source PSD propagating as a wave package. 

Indeed, the Fourier transform of the plane waves describes the emitted source electric field 

vector  which is given by ( )tsoE

( ) ( ) ( )∫
∞

∞−
= ωωω dtit soso

ˆexp EE  ,    (3.12) 

where the caret (^) denotes a Fourier domain function and all variables in boldface denote either 

a vector or a matrix. The amplitude of the electric field emitted by the light source is split at the 

beam splitter and directed into the reference and the sample arms of the interferometer. We can 

describe the losses due to the beam splitter, the absorption in the interferometer arms, non-equal 

reflections from the reference mirror and the sample mirror or a sample as a frequency-

dependent function by ( )ωα rˆ  in the reference arm and ( )ωα sˆ  in the sample arm. So, the 

expression for the electric field at the photodetector which presents the electric fields unified at 
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the beam splitter after propagating in the reference and sample arms of the interferometer can be 

given by 

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ωωωωφωαωωφωα dtitititit sossrr EE ˆ,expˆ,expˆ +++= ∫
∞

∞−
( ) ,        (3.13) 

where ( )ωφr  and ( )ωφs  are the phases accumulated through propagation in the reference and 

sample arms of the interferometer, respectively. For the sake of simplicity in future mathematical 

descriptions we define 

( ) ( ) ( )[ ] ( ) ( )[ ]tititm ssrr ,expˆ,expˆ, ωφωαωφωαω +=  .  (3.14) 

Therefore, Equation 3.13 will be expressed as 

( ) ( ) ( ) ( ) ωωωω dtitmt soEE ˆexp,∫
∞

∞−
=  .   (3.15) 

( )tE  and  are stochastic processes. When the PSD of the light source possess a broad 

spectral bandwidth, the electric field emitted 

( )ωsoÊ

( )tsoE  obeys circular Gaussian statistics, which 

implies that ( )tsoE  equals zero [Goodman 1985, Rolland 2005], where 〈*〉 denotes the 

ensemble average or statistical average. Similarly, from Equation 3.13 we infer that the ensemble 

average of  equals zero as well. ( )tE
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The electric field  arriving at the photodetector induces a photocurrent which can be 

expressed as 

( )tE

( ) ( )∫ Δ−
′′

Δ
=

t

tt
tdtN

t
etI  ,     (3.16) 

where N(t) is the number of photoelectrons created, Δt is the integration time of the detector, and 

e is the electron charge (1.6x10-19 Coulombs). If we define a time window r(t) with a duration 

equal to the integration time of the detector, Equation 3.16 becomes 

( ) ( ) ( )∫
∞

∞−
′′′−

Δ
= tdtNttr

t
etI ,      (3.17) 

where r(t) is defined as 

( )
⎩
⎨
⎧ Δ≤≤

=
            otherwise    , 0

      0for     , 1 tt
tr  .    (3.18) 

It is well known that the photocurrent generation is a Poisson process resulting from the random 

arrival of photons at the detector. Therefore, the time-varying number of photoelectrons N(t) can 

be referred to as a doubly stochastic Poisson process [Barrett 2004]. Given that there are two 

sources of randomness in our system which are the Poisson process associated with the detection 

and the Gaussian process associated with the source electric field, in order to obtain mean 

photocurrent, N(t) is to be statistically averaged over each process as given by 
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( ) ( ) ( ) ( )tttNtN EE†ρ==   ,          (3.19) 

where ρ is given by 

oe
AR
η

ρ
⋅
⋅

= ,        (3.20) 

where R is the responsivity of the detector, A is the area of the detector, and oη  is the impedance 

of free space which equals 377 Ohms. In Equation 3.19, we first get the conditional mean of N(t) 

over the Poisson statistics denoted as ∗  or ∗ , and then average it over the Gaussian statistics. 

Plugging Equation 3.19 to Equation 3.17 we obtain the mean photocurrent at the detector as 

( ) ( ) ( )
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etI
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Using the description of  given in Equation 3.15 and adopting the description of ( )tE ( )N t  

given in Equation 3.19 we can rewrite the expression of the mean photocurrent as 

( ) ( ) ( ) ( ) ( )( )[ ]
( ) ( ) tddd

titmtmttr
t

etI

′′′⋅

−′′′−
Δ
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  exp,,
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where ( ) ( )ωω ′so
†
so

ˆˆ EE  can be described as  
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Assuming the source electric field is stationary, the expression ( ) ( )tt so
†
so

ˆˆ EE ′  represents the 

scalar autocovariance function of the source electric field which will be denoted by ( )ttG ′− . 

The Fourier transform of the scalar autocovariance function ( )ωĜ  gives us the PSD of the light 

source denoted by ( )ωS . Hence, we can relate Equation 3.23 to the PSD of the light source  
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Now, taking the last expression in Equation 3.24 and using it in Equation 3.22 we can obtain the 

definition of the mean photocurrent in relation to the source PSD as 

( ) ( ) ( ) ( )∫ ∫
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⎤
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Δ
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If the detector integration time is assumed to be instantaneous, which means ( ) ( )ttttr ′−=′− δ , 

then Equation 3.25 becomes 

( ) ( ) ( )∫
∞

∞−Δ
= ωωωρ dStm

t
etI 2, .                (3.26) 
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Let us assume that rα  and sα  are constants rather than frequency-dependent functions. When 

we multiply ( tm , )ω  defined in Equation 3.14 with its complex conjugate and obtain ( ) 2, tm ω  

and then plug it to Equation 3.26 we obtain the mean photocurrent as 

( ) [ ] ( ) ( ) ( ) ( )[ ]
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⎩⎨
⎧ −++

Δ
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∞

∞−

∞
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ωωφωφωααωωααρ dttCosSdS

t
etI srsrsr  ,,222 , (3.27) 

where  is the intensity of the light. Equation 3.27 presents the mean photocurrent as 

the response of an instantaneous detector under the assumption that system losses are 

independent of the optical frequency. The phase accumulated for example with the propagation 

of the light in the reference arm is defined as  

( )∫
∞

∞−
ωω dS

( ) rrr ll
c

t 222,
λ
πωωφ ==  ,        (3.28) 

where lr is related to time as shown in Equation 3.9 to 3.10.  

 

Equations 3.6 and 3.27 can be used to model the mean photocurrent. We should note that a 

detector with an instantaneous response and a system with flat loss at all source frequency or 

wavelength is physically not available. However, such assumptions are legitimate in simulations 

to reduce the complexity of the simulation process including coding and runtime. 
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3.4 Discussion 

In this Section we present and discuss simulation results based on the mathematical framework 

derived in Section 3.2 and 3.3. To simulate a single scan OCT signal we first assume that the 

sample in the sample arm is a mirror with 100% reflectivity over all source wavelength or optical 

frequency and there is no wavelength-dependent loss thus no dispersion in the system. The 

missing information to simulate the detector response is the PSD of the light source. Therefore, 

we first need to generate a PSD. In Chapter 1 we discussed that in biophotonics the best spectral 

region for light-tissue interaction is the diagnostics and therapeutic window which is from 600 

nm to 1300 nm along with spectral characteristics of light sources suitable for OCT imaging 

demonstrated in Table 2.1.  

 

In Figure 3.3 we present a computer generated source power spectrum centered at 950 nm with a 

spectral bandwidth of 50 nm. The PSD is chosen to be a Gaussian function of wavelength which 

is a common practice in simulations associated with broadband optical light sources [Schmitt 

1997b, Bruno 2003] under the assumption that the commercially available light sources such as 

SLDs produce near-Gaussian power spectra. The accuracy of such assumption shall be discussed 

later. The expression used for the interference signal is given by Equation 3.7, as well as 3.27. 

Figure 3.4 presents the AC response of the detector, i.e. interference signal, as a function of 

reference mirror displacement where for example a displacement of zero means that the optical 

path length of the reference and sample arms are equal. The simulated interference signal is 

associated with its envelope demonstrated by a dashed line. In the simulation we observe a 

modulated signal. The modulation happens as the optical path length of the reference arm is 
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changed at a constant rate, i.e. certain distance per time for example 1 mm/second. A carrier 

signal is a sinusoid with a carrier frequency given by Equation 3.11. Its period in terms of the 

reference mirror displacement is always half the center wavelength λ0 regardless of the rate of 

change in the optical path length of the reference arm. This outcome can be deduced from 

Equation 3.10 where at each instance when the mirror displacement vmt equals λ0/2, the phase of 

the signal changes by 2π.  

 

In the detection process the interference signal will be demodulated so that the envelope of the 

signal will be extracted, as the carrier signal does not include useful information but just shifts 

the electrical frequency of the signal into other frequency ranges where there is less noise 

[Haykin 1994].  

Figure 3.3: A computer generated PSD which represents a virtual broadband light source 
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In Figure 3.5(a) we demonstrate only the envelope of the interference signal, i.e. demodulated 

interference signal, in linear scale and in Figure 3.5(b) in logarithmic scale. The plot in 

logarithmic scale gives us an idea about the dynamic range of the envelope. Given that the 

Fourier transform of a Gaussian function is also a Gaussian and the interference signal is the 

modulated Fourier transform of the source PSD as given by Equation 3.10, we expect the 

envelope function to be Gaussian. We see in Figure 3.5(b) that the Gaussian envelope presents a 

high dynamic range and fast dropoff as the reference mirror displacement departs from the zero 

position. Indeed, a Gaussian PSD leading to Gaussian envelope with such features is the main 

reason for the desire to employ light sources having a Gaussian PSD in OCT imaging.     

 

 

2/0λ

Figure 3.4: The interference signal simulated under ideal conditions according to the PSD shown 
in Figure 3.3. The dashed line is the envelope of the signal. 
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(a) (b) 

Figure 3.5: Interference signal after demodulation, i.e. the envelope of the interference signal (a) 
in linear scale, (b) in logarithmic scale. 
 



CHAPTER FOUR: QUANTIFICATION OF RESOLUTION IN OCT 

In this Chapter we discuss resolution in OCT and source parameters influencing it. The 

discussion is based on that an OCT system has an axial or longitudinal resolution giving the 

resolution along the path of depth-scanning that is related to the spectral characteristics of the 

light source employed in the system, and a lateral or transversal resolution that is related to the 

optics focusing sample arm light beam onto the sample. After briefly describing the lateral 

resolution, we discuss the main topic, i.e. axial resolution, where we propose and analyze 

different metrics and present the impact of the shape of the source power spectrum on the axial 

resolution and PSF. Finally, we briefly discuss a novel optimization and performance assessment 

method for optical coherence imaging based on statistical decision theory. 

 

4.1 Lateral Resolution 

In OCT the lateral or transverse resolution is independent of axial resolution unlike in classical 

microscopy and is determined by the optics which is focusing the sample arm beam onto the 

sample regardless of the coherence length of the source. By definition the diameter of the 

focused beam defines the lateral resolution.  

 

Focusing optics with low NA is commonly employed in OCT because they have a relatively 

large Rayleigh range and thus provide longer depth of focus. The depth of focus is required to be 

at least as large as the scanning range in the sample which is usually <3 mm for highly scattering 
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tissue. Low NA optics ensures sufficiently large depth focus however at the expense of a larger 

spot size thus worse lateral resolution. On the other hand high NA lenses has smaller F/# and 

thus provide smaller spot size than low NA lens at the expense of short depth of focus that often 

does not stretch along for example a 3 mm scanning range in a turbid sample. 

  

For high NA applications a dynamic focus tracking which moves the position of the spot size in 

the sample along the scanning direction is required for depth, i.e. axial, imaging [Schmitt 1997c, 

Qi 2004]. However, high NA focusing may be employed for high-resolution en-face or parallel 

OCT imaging where the sample is scanned in 2-dimensions laterally [Izatt 1996] rather than 

axially, i.e. in-depth. A common term used for an OCT system which occupies a high NA optics 

to focus the light beam onto the sample is optical coherence microscopy (OCM) [Izatt 1994, 

Aguirre 2003]. In the literature we see that up to 0.8-NA microscope objectives have been used 

for OCM imaging [Clark 2004], while an OCT system usually employs <~0.20-NA focusing 

optics [Izatt 1996, Bizheva 2003].  

 

4.2 Metrics for Axial Resolution 

In OCT the coherence length sets the temporal width of the interferometric OCT signal formed 

by the low-coherence interferometer, and consequently sets an upper bound on the axial 

resolution of the imaging system. 
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The power spectrum (or PSD) of the source, which is fully characterized by its shape, its spectral 

bandwidth, and its center wavelength, is of a critical importance for the ability to resolve small 

structures in optical coherence imaging as it sets the base of coherence length computing. In 

optical coherence imaging, the coherence length appears in the detected signal through the self-

coherence function which is regarded as the axial point spread function (PSF) of the imaging 

system [Goodman 1985]. Here, we investigate the PSF based on the spectral characteristics of 

the source.  

 

There are various metrics for the measurement or estimation of the coherence length that is the 

product of the speed of light c with the coherence time cτ  from the PSF which extracts a 

measure about its width. For example, we can measure the full-width at half-maximum 

(FWHM), the width at  of the maximum, and the equivalent width of the PSF where each 

metric is separately used to quantify the width of a function [Bracewell 1965]. The coherence 

length defined as the full width at half maximum (FWHM) of the PSF has been most extensively 

used to predict axial resolution in optical coherence imaging while for an estimation of the 

coherence length, thus axial resolution, the spectral shape of a source is usually assumed to be 

Gaussian. Nevertheless, the power spectra of real sources are typically non Gaussian. The 

advantage of such an assumption is that a mathematical expression can be used for the estimation 

of the coherence length. Such a mathematical expression employs the numerical values of the 

bandwidth and the center wavelength of the source PSD to obtain a numerical estimation of the 

coherence length or coherence time (one leading to another) instead of recording or simulating 

the PSF and measuring its width or computing its coherence length and time from the PSF. 

1−e
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4.2.1 Computing the Coherence Length 

The self-coherence function, which is also called the autocorrelation function, of a light source is 

the PSF of the OCT system when the light beams reaching the photodetector are identical which 

occurs when the specimen in the sample arm is a high reflective mirror, and when there is no 

dispersion, no wavelength-dependent loss, and the source PSD remains unchanged throughout 

the system. This assumption is more realistic for free-space OCT given that air unlike optical 

fiber does not induce any dispersion on the light beam propagating in the interferometer.  

 

Under the described conditions the self-coherence function of the light source becomes the 

inverse Fourier transform of the source PSD as given by Equation 3.5 (i.e. ( ) ( ){ }λτ S1−ℑ=Γ , 

where ( )τΓ  is the self-coherence function). The normalized self-coherence function provides the 

complex temporal coherence function of the source that is given by ( ) ( ) (0/ΓΓ )= ττγ . 

 

A first, most commonly employed metric for the coherence length is the FWHM of the PSF that 

is the modulus of the complex temporal coherence function ( )τγ   

( ) FWHMFWHMc ccl τττ ⋅=−= '''.    ,                                       (4.1) 

where ( ) ( ) ( ) 2/0''' γτγτγ == . Another metric for the coherence length is that defined as the 

product of the speed of light c and the coherence time τc given by [Goodman 1985, Mandel and 

Wolf 1995] 
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⋅= 2

.   ,                                                (4.2) 

where the absolute-square-integral (ASI) of the complex temporal coherence function is defined 

as the coherence time. We also used the root-mean-square (RMS) width of the temporal 

coherence function as a metric for axial resolution [Akcay 2003]. The RMS-Width (RMSW) lσ 

of the complex temporal coherence function is given by  
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where μ is the mean of γ(τ) and is given by 

( ) ( ) ττγτττγμ dd ∫∫
∞

∞−

∞

∞−
= /   .                                           (4.4) 

 

4.2.2 Coherence Length and Resolution 

A general definition of longitudinal resolution accepted in optical coherence imaging is half the 

coherence length of the source given that light performs a return trip in the arms of the 

interferometer [Fercher 1996, Zhang 2001a]. The choice of the FWHM of ( )τγ , i.e. PSF, for 

coherence length, most commonly chosen as previously mentioned, is historical in nature and 

derived from the Rayleigh resolution criterion, which states that two equally bright point sources 
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are barely resolved when the first zero of the Airy disc of the image of one point, which is the 

spatial PSF of the imaging system for a circular aperture, is at the center of the Airy disc of the 

image of the other point. In this configuration, the resulting image intensity at the center 

corresponds to 73.5% of the intensity at the peaks [Goodman 1985]. It is important to note that 

the shape of the PSF is critical to the value of the composed image intensity at the center. 

Therefore, a criterion derived for Airy disks shaped PSFs may not necessarily apply generally to 

other shaped functions. 

 

If we return to fundamentals, the longitudinal resolution of an optical coherence imaging system 

is the minimum longitudinal separation detectable in two successive distinct locations (or layers) 

in the specimen that is illustrated in Figure 4.1 with different optical characteristics such as 

varying refractive index, where backreflections occur. To formulate the signal detected while 

scanning the specimen model shown in Figure 4.1 we can use Equation 3.27 and present the 

OCT signal as 
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where lr(t) indicates that the reference arm path length is scanned. The first and second cosine 

term presents the interference of the reference arm field with the field E1 and E2 in Figure 4.1, 

respectively. While the variable τ in previous Equations represents the difference of time-of-

flight of the light beams in the reference and sample arms of the interferometer setup which is 
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associated with the speed of light and is called time delay in the dissertation, the variable t 

represents the measurement time which is associated with the scanning speed of the reference 

arm. Filtering out the DC term in Equation 4.5, the information-bearing AC term is given by 
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In establishing an upper bound for axial resolution, we shall assume that the displacement 

between two layers Δz is an integer multiple of the center wavelength of the source in the 

material of propagation. Hence, the temporal coherence functions are assumed to be in phase. In 

this case, the envelope of the detected signal is proportional to the summation of the modulus of 

the two temporal coherence functions with a time delay in between them. If a phase mismatch 

exists, the resulting signal will also depend on the phase of the complex temporal coherence 

functions. The assumption of phase matching leads to the worst result in terms of resolution. 

However we use this assumption in order to be able to compare the metrics 

n n´ 

A B 

n0=1 

  Δz

E1 

E2 

Figure 4.1: A specimen model with two layers to determine the axial resolution. Δz is the 
separation between the two layers n and n´ are the refractive indices. 
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4.3  Simulation Results 

4.3.1 Real PSD versus ideal PSD 

Light sources employed in optical coherence imaging systems have usually PSDs ( )λS  

approximated to a Gaussian function in order to estimate the axial resolution [Fercher 1996, Izatt 

1996, Hitzenberger 1999, Bouma 1995 and Pan 1995]. Several groups have carried out 

experimental assessments showing a good agreement between the self-coherence width predicted 

from the source spectrum and the measured PSF [Wang 1999, Hitzenberger 1999, Bouma 1995]. 

The two last examples, which employ a superluminescent diode and a Ti:Al2O3 laser, 

respectively, underline the need of taking into account the fact that the sources were not 

Gaussian to evaluate the coherence length. In order to present the impact of the source PSD on 

the coherence length, we first consider two general mathematically defined PSDs which are 

Gaussian and Lorentzian. Later, we compare the Gaussian and Lorentzian PSDs to a real source 

PSD all having the same spectral bandwidth and the same center wavelength. 

 

A general expression for a normalized Gaussian PSD (i.e. ( )∫ = 1λλ dS ) and its inverse Fourier 

transform, Γ(τ) is given by 
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where λo is the center wavelength and Δλ is the –3 dB spectral bandwidth. Γ(τ) is by definition 

normalized to one. If the PSD of the source is a normalized Lorentzian instead of a Gaussian, 

S(λ) and Γ(τ) are given by 
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An explicit mathematical expression for the coherence length of a light source with a 

mathematically defined PSD is derivable for each metric discussed in Section 4.1.1. In Table 4.1 

we present these expressions which formulate the coherence length of a source with either a 

Gaussian or a Lorentzian PSD that have temporal coherence functions as given by Equations 4.8 

and 4.10. 

 

To study the effect of the assumption that a real source has an ideal PSD, where ideal means a 

Gaussian or Lorentzian, we compare the coherence lengths computed for a real source PSD and 

equivalent (i.e. same bandwidth and central wavelength) Gaussian and Lorentzian PSDs. The 

real light source we considered is a superluminescent diode (Superlum Diodes SLD-471). It is a 
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broadband, low-coherence source centered at 950 nm with a spectral bandwidth of 62 nm. In Fig. 

4.2(a) we present the PSD of the real source, as well as the normalized Gaussian and Lorentzian 

PSDs given by Equations 4.7 and 4.9, where the center wavelength and bandwidth were set to 

match that of the SLD-471. The presented PSDs are normalized to unity for comparison. Fig. 

4.2(b) shows the computed modulus of the complex temporal coherence functions ( )τγ  

corresponding to the PSF of the imaging system associated to each PSD shown in Fig 4.2(a). 

 

Table 4.1  Coherence length of a Gaussian and Lorentzian PSD formulated for three metrics 

 

PSD FWHMcl .  ASIcl .  σ.cl  

Gaussian 
λ
λ

π Δ

22ln4 o  
λ
λ

π Δ
⋅

22ln2 o  
λ
λ

π Δ
⋅

22ln2 o  

Lorentzian ( )
λ
λ

π Δ

22ln2 o  
λπ

λ
Δ⋅

2
o  

λπ
λ
Δ⋅
⋅ 22 o  

 

 

The spectrum analyzer employed to measure the PSD of the SLD-471 provides a discrete data 

set of 1001 samples (N) with 0.4 nm resolution (δλ). The domain of the time delay τ depends on 

the center wavelength λo and δλ as [ ( ) ( )δλλδλλ ⋅⋅− cc oo 2/,2/ 22 ], such that the time delay 

resolution δτ will be  which equals 7.513 femtoseconds. The complex 

temporal coherence function is estimated using an inverse fast Fourier transform. 

( )( δλλ ⋅⋅− cNo 1/2 )
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(a) 

(b) 

 
Figure 4.2: (a) Measured PSD of the SLD-471: the normalized Gaussian PSD and the normalized 
Lorentzian PSD (λo=950 nm, Δλ=62 nm for each), (b) corresponding PSFs, i.e. modulus of the 
complex degree of temporal coherence functions. 
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Table 4.2 presents the computed coherence lengths of the SLD-471 and the two theoretical 

sources. As shown in Table 4.2, different spectral shapes present different coherence lengths, 

thus axial resolutions for images recorded by OCT, although they have the same bandwidth and 

center wavelength. While approximating the PSD of the SLD-471 to a Gaussian function results 

in an error of about 10% for coherence lengths evaluated through ASI and FWHM metrics, the 

error increases up to ~40% for RMS-width metric. The results show that the coherence lengths 

computed from the Lorentzian PSD are about half that of the coherence lengths of the Gaussian 

PSD and the SLD-471 for ASI and FWHM metrics, however its RMSW is larger than for a 

Gaussian.  

 

Table 4.2  Coherence length of Sources with different shaped PSDs 

 

Sources FWHMcl .  [μm] ASIcl .  [μm] σ.cl  [μm] 
 

SLD-471 
 

 
14.14 

 
10.78 

 
9.61 

Gaussian 
 

12.83 9.65 5.49 

Lorentzian 6.42 4.64 6.58 
SLD-471, Gaussian, and Lorentzian correspond to the PSDs as presented in Fig. 4.2(a) with the same label, 
respectively. The metrics used to compute the coherence length are described in Section 4.1.1. 
 
 
 

To validate the accuracy of these computations we compared the values for the coherence length 

of the Gaussian and Lorentzian PSDs obtained from Equations 4.1, 4.2, and 4.3 to those 

presented in Table 4.1 which relate only the bandwidth and center wavelength of the source PSD 

to the coherence length for each metric. Numerical computational errors between 0% and 0.7% 
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occurred between the results obtained from computation with the formulas and from the 

simulated PSF. These numerical errors, which occurred due to the discrete form of the PSD and 

the temporal coherence functions, are small enough to neglect.  

4.3.2 Computation of Coherence Lengths of Sources with Extended PSDs  

PSDs of real sources usually include spectral bumps and dips in their shapes, which leads to 

sidelobes in the interferometric signal. The sidelobes may significantly affect the resolution of 

the system. However, longitudinal resolution can always be estimated from the measured PSD of 

the light source following the metrics presented.  

 

The deformation (i.e. dips) of the spectral shape of sources employed in optical coherence 

imaging is usually observed for high power (~101 to ~102 mW) broadband sources (~102 nm), 

such as the Superlum SLD-47-HP with a Gaussian dip in its spectrum as shown in the 

specification sheet of the product [Superlum 2005], mode-locked Ti:Al2O3 laser sources with 

multiple dips and bumps in their spectrum [Bouma 1995, Drexler 1999], and the SLD-370 as 

presented in a partial coherence interferometry experiment [Hitzenberger 1999]. 

 

We investigated the effect of a dip in the PSD of virtual sources on the coherence length and 

associated longitudinal resolution. A Gaussian PSD with 100 nm spectral bandwidth centered at 

940 nm was generated with Matlab™. We introduced spectral dips into the Gaussian PSD by 

subtracting Gaussian functions of 45 nm spectral bandwidth centered at 940 nm and different 

magnitudes. Each resulting normalized PSD had a 100 nm spectral bandwidth with different 
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amplitudes of spectral dip. Figure 4.3 shows the Gaussian PSD (red dashed line) and the 

generated PSDs with spectral dips.  

Figure 4.3: A Gaussian PSD with 100 nm -3 dB spectral bandwidth centered at 940 nm (red 
dashed line) and PSDs of the same bandwidth and center wavelength with different spectral dip 
amplitudes. 
 
 
 
Power spectral analyses of these PSDs were performed. Figure 4.4 presents the plot of the 

numerical results for the coherence length of each PSD as a function of the percentage of the 

level difference between the dip minimum (PSD value at the dip) and the peak of the PSD 

(maximum value which equals one in a normalized PSD), where a zero percentage of spectral 

dip refers to the Gaussian PSD. In Figure 4.5 the simulated modulus of the temporal coherence 

functions of the PSDs with 49.13%, 5.1% dip, and Gaussian are presented as examples. 

Coherence lengths were estimated using three metrics presented in Equations 4.1, 4.2, and 4.3.   
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Figure 4.4: The coherence length is presented as a function of the amplitude percentage of the 
spectral dip in the source PSD computed using the ASI, RMSW and FWHM metrics. 0% dip 
corresponds to a pure Gaussian PSD, i.e. with no spectral dip.  

 
Figure 4.5: ( )τγ  of the PSDs of the 100 nm bandwidth centered at 940 nm source with selected 
percentage of spectral dip. 
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4.3.3 Ability to Resolve Two Layers 

We shall predict here the ability to resolve two layers separated by Δz for the selected sources 

discussed above. Referring to Figure 4.1, we assume as previously detailed that the phases of the 

complex temporal coherence functions are the same, and the index of refraction n' is chosen such 

that αsm, given by Equation 4.6, equals one. We set the separation of these layers Δz to half 

 given by Equation 4.1 or half  given by Equation 4.2, both presented in Table 4.2 

and Figure 4.4. We first considered the normalized Gaussian, Lorentzian, and SLD-471 PSDs, 

which were described in Section 4.2.1. The ability to resolve two layers are presented in Figure 

4.6(a)-(c), respectively. Then, we employed two of the PSDs, specifically with the 8% and the 

49.13% spectral dips, presented in Section 4.2.2. The results are demonstrated in Figure 4.6(d) 

and 4.6(e). 

FWHMcl . ASIcl .

 

In Figure 4.6 we do not set the layer separation according to the source coherence lengths 

determined from the RMSW metric because the other two metrics are sufficient to describe the 

resolution trend given that  has a value either less than  or between  and  as 

shown in Table 4.2 and Figure 4.4 except for a slightly larger value in the case with Lorentzian 

PSD. 

σ.cl ASIcl . ASIcl . FWHMcl .
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Figure 4.6: Envelopes of the interferometric signals I1 and I2 due to backreflections from two 
successive layers (left column , right column 2/.FWHMclz =Δ 2/.ASIclz =Δ , and thus 

cz /2Δ=Δτ ) and the resulting signal I for a source with (a) Gaussian PSD, (b) Lorentzian PSD, 
(c) SLD-471 presented in Fig. 4.2(a), and (d) PSD with 8% spectral dip amplitude and (e) PSD 
with 49.13% spectral dip amplitude presented in Fig. 4.3. 

4.3.4 Discussion 

Significant differences in computed longitudinal resolution and coherence length for real and 

theoretical sources with the same bandwidth and center wavelength but with different spectral 

shapes were presented. Such results demonstrate the importance of taking into account the shape 
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of the source PSD in predicting axial resolution. A source with a slightly narrower spectral 

bandwidth than another source could possibly lead to higher resolution than the latter, simply 

based on its ‘superior’ shape. Such findings are further strengthened by the analysis of coherence 

lengths from PSDs of same spectral width, yet having varying amplitudes of spectral dips. 

Results show that approximating a PSD with a spectral dip to a Gaussian PSD of the same center 

wavelength and bandwidth leads to incorrect values of coherence length obtained using any 

metrics considered. In Figure 4.4 we see that the source coherence length computed with all 

metrics increases significantly when there is even a shallow dip in the source PSD compared to 

the coherence length of a Gaussian PSD with the same spectral characteristics. This outcome 

indicates that the optimum PSD of a broadband light source to be used in OCT is one which is 

free of spectral dips. While the spectral bandwidth and the center wavelength is carefully 

considered as a major parameter which affects the axial resolution in OCT, the spectral shape of 

the source PSD should not be undervalued.  

 

A spectral dip in a PSD introduces side lobes in the temporal coherence function. When 

computing the coherence length through the FWHM metric, we measure the FWHM of the main 

lobe disregarding the side lobes. If the side lobes are located close to the main lobe, the overall 

FWHM of the temporal coherence function could be larger than the FWHM of the main lobe. 

When using the ASI and RMSW metric to compute the coherence length, the integration process 

extends through the main lobe and the side lobes (e.g. Figure 4.5). Integrating the side lobes will 

result in a larger value of the coherence length and thus worse axial resolution compared to the 

axial resolution value obtained from a PSF with the same main lobe but no side lobes. However, 

 62



if a case occurs where the side lobes are far from the main lobe, the effect on the image will be 

the presence of ghost images and will not be necessarily a decrease in axial resolution especially 

according to the FWHM metric.      

 

In the simulations conducted based on the separation of two layers and various PSDs, results 

show that two layers, with a separation of half the FWHM of the modulus of the temporal 

coherence function, can not always be resolved depending on the shape of the PSD of the source, 

as shown in Figure 4.6(d). Also, the half of the coherence length derived through the absolute-

square-integration does not provide a detectable separation of the layers except in the case of a 

source with a Lorentzian PSD. Moreover, the plots in Figure 4.6 indicate that the dip between the 

two maxima of the resulting signal is not as low as 73.5% of the amplitude of the peak, which is 

required by the Rayleigh resolution criterion for the PSFs having the shape of the Airy pattern. 

However, none of the PSFs presented in this Chapter have the shape of the Airy pattern. Given 

that the PSF of an OCT imaging system may own different shapes depending on the spectral 

shape of the source PSD, defining a resolution criterion assuming that the PSF has a single shape 

such as Gaussian is not suitable.   

 

The metrics used and presented are limited in their ability to precisely predict experimental 

results, given that the refractive index n has to be taken into account in the resolution prediction 

as shown in Section 4.4 and Section 5.3. Furthermore, the media itself could significantly affect 

the axial resolution as a result of dispersive effects of the specimen [Lee 2005]. Finally the setup, 

including the detection scheme, may also be a source of decrease in resolution, given the group 

 63



velocity dispersion in the fiber of a fiber-based OCT system, the polarization mismatch between 

the two arms and unsuitable coating for the optical elements across the entire spectrum of the 

source, and noise.  

 

Two additional remarks are necessary to end the discussion. The first one concerns the other 

aspects of the sources that are also important for the quality of optical coherence imaging, such 

as the dynamic range [Chinn 1993], and the temporal fluctuations [Drexler 1999]. The second 

one underscores the fact that the axial resolution we have set is not the last limit we could 

achieve if we take into account image processing. Indeed, knowing the self-coherence function, 

the noise and some optical properties of the media, appropriate deconvolution operation may 

lead to improve axial resolution [Kulkarni 1997, Schmitt 1998]. Furthermore, in next Chapter we 

present an approach to optimize the PSF of the imaging system by suppressing the side lobes via 

optically shaping the source power spectrum. 

 

4.4 Task-based Metric 

We developed a mathematical framework based on task performance that uses statistical decision 

theory for the optimization and performance assessment of OCT [Rolland 2005]. The 

development of such framework was motivated by the art of diagnosis in medical imaging, 

where image quality is estimated based on the performance of an observer on specific tasks 

[Barrett 1998]. Assessing the image quality provided by an imaging system without a given task 

and based on the observer’s subjection is called subjective assessment. Subjective assessment 
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provides arguable results as it may change with the system or the observer and it does not fulfill 

a purpose [Barrett 1990]. Therefore, a definition of task is necessary for objective assessment. 

The pioneer studies on objective assessment of image quality were conducted by Barrett et al. 

[Myers 1985, Smith 1986]. Two major task categories may be defined: classification and 

estimation. In our current study we limit our investigation to classification tasks. We define two 

tasks: a signal-detection task and a resolution task. A signal-detection task is generated to 

investigate whether the OCT signal can be detected. The purpose of a resolution task is to study 

whether two interfaces can be resolved with the OCT system [Rolland 2005]. 

 

Signal-detection and resolution tasks are binary classification tasks since they consist of only two 

hypotheses which are the negative hypothesis H0 and the positive hypothesis H1 such as signal is 

present or absent, or the layers can be resolved or not. We have two classes defined for these 

tasks: the 0th class for the cases when H0 is true and the 1st class for the cases when H1 is true. An 

ideal observer can be employed to perform the task if all statistical information of the data is 

available to the observer, i.e. a probability density function (PDF) is known under each 

hypothesis. The ideal observer provides the maximum performance one can get from any 

observer. When the PDF information is not available, the Hotelling observer [Barrett 2004] is a 

preferred alternative. The Hotelling observer is a linear discriminant which depends on the 

second order statistics of the data. In our studies, we employ the Hotelling observer to perform 

the defined classification tasks which is discussed in-depth in Chapter 5. The Hotelling observer 

generates a scalar detectability index to discriminate data into a certain class according to 

negative and positive hypotheses. In a recent paper [Rolland 2005] we proposed to use the 
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detectability index and area under the receiver operating characteristics curve (AUC) to 

determine how well an optical coherence imaging system which is considered to be a free-space 

Michelson interferometer performs a given task. Different types of observer models have been 

described and discussed in the literature [Myers 1985, Smith 1986, Fiete 1987, Barrett 1990, 

Rolland 1992, Wollenweber 1999, Barrett 2004, Rolland 2005].   

 

In task-based performance analysis, we investigate the impact of some system parameters such 

as the source coherence length and/or the spectral shape of the PSD and sample model on the 

detectability and AUC of the imaging system. While the task-based metric does not provide an 

exact numerical value for the axial resolution, the AUC curve shows the system performance for 

a resolution task. We discuss the task-based performance analysis further in Chapter 5 in an 

application of the task-based assessment method. 
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CHAPTER FIVE: OPTICAL SPECTRUM SHAPING FOR 
OPTIMIZATION OF THE PSF IN OCT 

In this Chapter we introduce a novel method to improve the PSF of the OCT imaging 

system. The method is based on shaping the power spectrum of the broadband light source 

illuminating an OCT system with a technology based digital micromirror device. The technology 

presented is applied to the OCT system at the output of the light source before the interferometer 

and thus before the data acquisition. We demonstrate optimization of the axial PSF obtained 

from an ASE light source where the side lobes of the PSF are suppressed by smoothing the shape 

of the source power spectrum via a programmable spectral processor. We then demonstrate the 

impact of the spectral shape of broadband light sources in a task-based approach for assessment 

of signal-detection and resolution in OCT. 

 

5.1 Improved the PSF by Optical Spectral Shaping 

In Chapter 4 we demonstrated that the temporal coherence property of the light source or power 

spectrum governs the axial PSF of the imaging system [Bouma 2002, Akcay 2002], thus the 

axial resolution. In OCT, light sources having smooth and rather symmetrical power spectra are 

preferred. Specifically, irregularities in the shape of the power spectrum such as spectral dips 

lead to side lobes in the axial PSF as shown in Figure 4.5 that cause ghost images and mask weak 

axial reflections located near a strong reflection for example. Real broadband light sources, 
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however, especially as the source spectra become broader, often present spectral dips in their 

power spectra.  

 

Inhibition of the side lobes of spatial PSFs in optical imaging has been previously investigated. 

For example, Crowe et al. [Crowe 1993] proposed a nonlinear digital operator to be applied in 

the post-processing stage to suppress side lobe effects of the spatial PSF on images obtained 

through a square aperture. Similarly, digital signal processing and optimization algorithms on the 

acquired interferometric signal have been previously employed in OCT to increase resolution or 

to minimize the effect of the PSF sidelobes when the source had either a power spectrum 

departing from a Gaussian or when several sources were combined to generate a source with 

larger spectral bandwidth. Bashkansky et al. [Bashkansky 1998b] showed how a simple 

deconvolution can lead to an equivalent reshaping of the spectrum structure of the source 

resulting in an increase in the axial resolution. However, this method leads to a significant 

increase of the noise floor. Tripathi et al. [Tripathi 2002] later proposed to reduce the side lobes 

in the axial PSF applying a correction curve on the measured interferometric signal. The authors 

reported side lobes reduction with a lower increase in noise floor. Zhang et al. [Zhang 2001b] 

demonstrated an optimization algorithm to select the wavelengths and coherence lengths of 

several LED’s which were combined to obtain an axial PSF with a shorter coherence length and 

reduced side lobes compared to an arbitrary combination of sources. However, except for [Zhang 

2001b] all the above described methods are based on post data acquisition signal processing 

techniques while we present in this Chapter the experimental results demonstrating inhibition of 

side lobes of the axial PSF in OCT by optical spectral shaping of the source power spectrum 
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prior to data acquisition. Our research is motivated by the hypothesis that correcting the power 

spectrum at the source output and thus before data acquisition will be more useful for practical 

use than as a post-processing correction especially for in vivo real-time imaging where there is 

no extra post-processing time available for correcting the side lobes in the PSF. 

 

For a free-space Michelson interferometer where there are no wavelength-dependent or 

frequency-dependent losses throughout the interferometer, we can use Equation 3.27 to represent 

the AC part of the detected interferometric signal that will be given by 

 ( ) ( ) ( ) ( )[ ωωφωφω dttCosStI srAC
 ∫

∞

∞−
−∝ ,, ]

)

, (5.1) 

where ( tr ,ωφ  and ( ts , )ωφ  are the phases accumulated through propagation in the reference and 

the sample arms, respectively. The envelope function of the detected signal defines the axial PSF 

of the imaging system. While in practice electrical envelope detection circuits and devices such 

as lock-in amplifiers or RMS voltmeters can be utilized, mathematically we describe the 

envelope function of a signal through forming an analytical signal representation of the detected 

signal as 

( ) ( ) ( ){ }tsiHtstsa −=  ,                                                         (5.2) 

where  is a square-integrable real signal such as given by Equation 5.1 and  is Hilbert 

transform operator where the Hilbert transform of 

( )ts { }∗H

( )ts  is given by   
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 .                                                       (5.3) 

The absolute value of the complex analytical signal sa(t) provides the envelope of the real signal 

s(t) which is given by 

( ) ( ) ( ){ } ( ) ( ){ }[ ]22 tsHtstsiHtstsenv +=−=  .                                 (5.4) 

By plugging Equation 5.1 into 5.4 we obtain a mathematical description of the PSF of the OCT 

imaging system given by 

( ) ( ) ( ){ }[ ]22

ACAC
tIHtItPSF +=  .                                     (5.5) 

The detected photocurrent signal and thus the axial PSF of the OCT imaging system can also be 

related to the wavelength PSD of the light source that is given by 

( ) ( ) ( ) ( )[ λλφλφλ dttCosStI srAC
 ∫

∞

∞−
−∝ ,, ]  ,                               (5.6) 

In measurements, we often record the axial PSF as a function of the position of the reference arm 

mirror rather than time where the change in the position of the reference arm mirror is equivalent 

to the increase in the reference arm optical path length where the reference arm mirror may be 

scanned with a linear translational stage moving at a constant speed.  
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In Chapter 4, we discussed the effect of the shape of the source power spectrum on the OCT 

signal and simulated the axial PSFs for a real superluminescent diode and virtual ideal sources 

with specific spectral characteristics. Now we propose a new use of a novel programmable 

spectral processor (PSP; Newport OSP-9100) for OCT instrumentation. For the first time, this 

component is shown to be applicable to the optical shaping of the power spectrum of a 

broadband source before data acquisition in OCT imaging. This processor is based on the Texas 

Instrument DLPTM micromirror technology [Duncan 2003]. The light, which enters the PSP via a 

single mode fiber, is dispersed across the micromirror array by a diffraction grating, and is then 

re-imaged into the exit fiber via the grating. The hundreds of thousands of micromirrors in the 

array act as a reflective spatial light modulator, selectively reflecting portions of the spectrum 

into the exit single mode fiber, while simultaneously eliminating or reducing portions of the 

original spectral components causing spectral dips that are not desirable. Figure 5.1 illustrates the 

process of optical spectral shaping via a digital light processor (DLP) also known as a digital 

micro mirror device (DMD). 

 

Grating Grating 

Figure 5.1: Selective attenuation of optical power contained in different wavelength bands via 
DMD [Duncan 2003]. 
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Figure 5.2: Schematic of the experimental setup used for axial PSF measurements: PSP, 
programmable spectral processor; C, collimator; BS’s, beamsplitters; M1, M2, mirrors.  

 

A free space Michelson interferometer depicted in Figure 5.2 was implemented with a balanced 

photoreceiver (Nirvana 2017-M) to measure the axial PSF before and after optical spectral 

shaping. A balanced photoreceiver was employed to eliminate intensity noise of the light source. 

A broadband amplified spontaneous emission (ASE) source (Newport BBS-430) emitting at 

1565±40nm was employed during the experiments. This source was selected in this set of 

experiments given that the PSP operates between 1520 nm and 1620 nm. The PSP was connected 

to the ASE source through a single mode fiber patch cord. The optical power at the output of the 

PSP was 7.72 mW while it passed through the PSP without any shaping. A fiber pigtailed 

collimator delivered the optical power from the output of the PSP to the interferometer. Axial 

scanning was performed at a speed of 1 mm/s with a linear translational stage. A personal 
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computer (PC) was used to control the PSP and the translational stages that carry the mirrors and 

to acquire the data via a DAQ board using LabView (see Appendix B). We employed a digital 

lock in amplifier (Stanford Research SR-830) to perform envelope detection of the signal 

modulated by the Doppler shift introduced by the scanning reference arm mirror.  

 

To shape the PSD of the ASE source we first needed to generate a transmission function for the 

PSP that sets the final shape of the PSD after the spectral shaper. Ideally, a Gaussian power 

spectrum is desired at the output of PSP. However, the device cannot amplify the optical power 

in any wavelength band. On the contrary it operates on the principle of power attenuation. 

Therefore, the purpose in our application is to clean the spectral dips in the source power 

spectrum so that the source PSD becomes smoother in shape. In order to set a transmission 

function for the PSP we first measured power spectrum of the ASE source denoted by S0(λ). A 

broadband Gaussian power spectrum Sg(λ), which could fit under the measured power spectrum 

of the source, was then generated digitally using MatlabTM. The transmission curve T(λ) was 

computed as the ratio of the generated Sg(λ) to the original S0(λ) power spectra when S0(λ) was 

larger than or equal to Sg(λ). Otherwise T(λ) was assigned zero. Then T(λ) was converted to dB-

scale and each value was rounded to a single decimal place, because the attenuation resolution of 

the PSP was 0.1 dB. Figure 5.3 illustrates the generation of the transmission function and the 

resulting source power spectrum. We see that the shaped power spectrum does not have the 

spectral dips anymore but it is not an exact truncated Gaussian due to the limited resolution of 

the PSP. 
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(a) (b) 

(c) 
 

Figure 5.3: (a) The source PSD is the blue curve and underneath it a Gaussian PSD is fitted, (b) 
the transmission function which is obtained from the ratio of the source and Gaussian PSDs 
shown in (a) and is then rounded to one decimal place to accommodate 0.1 dB amplitude 
resolution, (c) the source PSD (blue curve) is presented with the resulting PSD underneath it 
measured using the transmission curve shown in (b).  

 

Following the same procedure described above a second transmission curve was generated that 

gives a shaped power spectrum which has a slower transition from the peak region of the power 
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spectrum toward its tails. Figure 5.4(a) presents the second transmission function denoted T2 

along with the first one described in Figure 5.3 and denoted T1 both as a function of wavelength. 

Transmission functions were sent to the PSP via GPIB. The final power spectra shaped by the 

PSP using transmission functions are presented in Figure 5.4(b) together and denoted S1 and S2, 

respectively. S1, also shown in Figure 5.3(b), which is in linear scale, can be given by 

10^[(S0.dB+T1.dB)/10] where the subscript dB indicates that the function is in log-scale. The total 

power loss after the spectrum shaping was measured to be -2.3 dB, corresponding to a 4.54 mW 

of output power. When the second transmission function was transferred to the PSP, we obtained 

a shaped power spectrum S2 as shown in Figure 5.4(b). For this case, the total power loss was -

3.4 dB, corresponding to a 3.53 mW of output power. Figure 5.4(b) presents the original, i.e. 

unshaped, power spectrum of the ASE source as well. 

   (a)      (b) 

 
Figure 5.4: (a) The transmission functions to be transferred to the PSP to smooth the shape of the 
source power spectrum, (b) the power spectra measured with an OSA before and after spectral 
shaping: S0; unshaped power spectrum, S1; shaped power spectrum obtained with T1,and S2; 
shaped power spectrum obtained with T2.   
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Figure 5.5 shows the axial PSFs corresponding to the original power spectrum as well as the two 

shaped power spectra shown in Figure 5.4(b). The PSFs were recorded using the experimental 

setup shown in Figure 5.2. With the first shaping operation, up to 12.9 dB suppression in the side 

lobes of the axial PSF was obtained as shown in Fig 5.5(a). The noise floor of the axial PSF in 

the far-field increased by only 2.2 dB. Similarly, with the second spectrum shaping operation up 

to 7.6 dB suppression in the sidelobes of the axial PSF was obtained as shown in Figure 5.5(b). 

The log-scale PSFs represent the ten times base-ten-logarithm of the recorded voltage signal that 

is normalized. The increase of the axial PSF in the far-field was in this case as small as 1.8 dB. 

In Table 5.1, the associated change in the FWHM, ASI and RMS-width of the axial PSFs of the 

original spectrum as well as that of the two shaped spectra are reported. The quantities are 

obtained using the methods described in Chapter 4. While the FWHM metric predicts a small 

loss in resolution, the two other metrics report either an increase or an insignificant change in 

axial resolution, further pointing to the need to further investigate experimentally the applied 

significance of the various resolution metrics. 

 

Figure 5.6 shows side by side an image formed by the original spectrum and that formed by the 

shaped spectrum. These data are raw data with no averaging to reduce background noise and no 

image processing applied. Both images are 400 x 400 pixels and represent a 1-mm x 1-mm 

portion of an onion. The images are log-compressed which means that each axial scan also called 

A-scan which is acquired at the output of the lock-in amplifier in linear-scale in volts, are 

converted to log-scale and then normalized to 255 gray levels to form an 8-bit gray level image. 

Throughout the unshaped spectrum image, spurious structures are clearly visible as a 
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consequence of the side lobes of the PSF. The spectrally shaped image clearly shows suppression 

of ghost images.  

 (a)   (b) 

Figure 5.5: The PSFs recorded experimentally. We compare the change in PSF after first spectral 
shaping operation in (a), and after second one in (b) to the PSF recorded with the unshaped 
source power spectrum. 
 

Table 5.1  Axial resolution for the differently shaped power spectra computed according to three 
metrics described in Chapter 4. 

Axial PSF from FWHM [μm] ASI [μm] RMS-width [μm] 

S0 (blue curve) 22.3 19.9 19.74 

S1 (red curve) 24.9 19.1 20.05 

S2 (green curve) 24 18.6 20.03 
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(a) (b) 

Figure 5.6: Images of onion before (a) and after (b) spectral shaping.    

 

In conclusion, we have investigated the impact of optical spectral shaping of an OCT light source 

on the axial PSF of the system. The PSP enabled shaping the source power spectrum and 

inhibition of the side lobes of the axial PSF for two different spectral shapes that were smoother 

than the original spectrum. Shaping the source power spectrum was shown to be a powerful 

method for the optimization of the system PSF and suppression of spurious structures in the final 

image. Furthermore, optical spectral shaping is a real time process and allows hardware 

optimization for imaging rather than post-data acquisition digital signal processing. 
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5.2 Possible Extension: Modular Optical Spectral Shaper 

In Section 5.1 the unit utilized was operable in a wavelength band from 1520 nm to 1620 nm. A 

modular optical spectral shaper based on DMD technology can be conceptualized to operate at 

other common wavelengths for OCT sources which are detailed in Table 2.1. However, in 

practice the extension is challenging. Figure 5.7 presents a possible schematic of an optical 

spectral shaper. This structure is similar to that of femtosecond pulse shapers [Weiner 2000]. In 

this configuration the grating and DMD are one focal length away from a cylindrical lens. The 

grating that disperses the individual wavelengths of the spectrum of the light source in a cone is 

followed by the cylindrical lens, which focuses the dispersed beam on the DMD so that it forms 

a thin wide rectangle at the surface of DMD where the total reflectance at each wavelength is 

controlled by the number of micromirrors that are turned on. Light reflected from the DMD 

passes through the cylindrical lens and individual wavelengths are recombined at the grating 

again. The beam that is spectrally processed is coupled back into a single-mode optical fiber via 

a fiber-pigtailed collimator. This setup is similar to the one summarized in Figure 5.1.  

 

A major challenge in such a modular system is the overall power efficiency. SLDs, which are 

commonly employed in OCT because of their large bandwidth and low cost, provide relatively 

low optical power (e.g. on the order of 1 mW). Therefore, it is not preferred to loose extra optical 

power which will decrease the incident power on the specimen, while incident power on the 

specimen is critical for SNR of the system and penetration depth in the specimen. The insertion 

loss of the PSP presented in Section 5.1 is measured at <7 dB. The sources for the loss in this 

system are the double-incidence of the light beam on the diffraction grating which has <100% 
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diffraction efficiency, throughput efficiency of the DMD that is estimated to be in the range of 

65% including mirror reflectivity, fill factor, diffraction efficiency and duty cycle [Dudley 2003] 

and losses while coupling the light beam back into a single-mode fiber.  

 

 

Figure 5.7: Schematic that presents a possible structure for an optical spectral shaper. 

 

At a typical OCT wavelength band such as from 800nm to 1300nm, the first challenge to realize 

an optical spectral shaper is to find a diffraction grating with high diffraction efficiency over a 

wide wavelength band covering the broad bandwidth of the source. The OCT sources often emit 

unpolarized light. On the other hand, the efficiency of blazed diffraction gratings strongly 

depend on the state of polarization of the incident light being higher for one polarization state 

(except very low blaze angles). Furthermore, the efficiency of a grating is rated at a given 
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wavelength called blaze wavelength while measured in Littrow configuration. Littrow 

configuration describes a specific incidence angle for the beam when its first order diffracted 

light is retroreflected, i.e. travels on the same axis with the incident light. The diffraction 

efficiency with a light beam incident on a blazed diffraction grating with an angle different than 

Littrow angle may decrease significantly. For example, diffraction efficiency of a diffraction 

grating with 830 grooves/mm and 21.4° blaze angle, which is rated to be ~90% at Littrow 

configuration, is computationally expected to decrease down to ~60% when the incidence angle 

is 50° which would add up to 4.4 dB loss in a double-pass configuration. In practice, loss is 

measured as low as ~10 dB including the fill factor on the photodiode of the power meter. To 

implement an optical spectral shaper with a reflective blazed diffraction grating operated in 

Littrow configuration is physically not possible given that the first-order diffracted beam 

propagating in a cone is to be collected by a lens and projected on to the DMD. Near-Littrow 

configuration can be implemented if the DMD is aligned to operate in retroreflective mode. 

Otherwise, the beam returning to the grating gets out-of-focus at the grating surface when the 

grating and the lens are not parallel, i.e. the grating is tilted to establish near-Littrow 

configuration. The incidence angle of the incoming light beam can be adjusted to implement a 

near-Littrow configuration keeping the grating and lens parallel. However, for small blaze angles 

this can be challenging. The retroreflective configuration requires a circulator at the fiber 

collimator to direct the returned light beam into another port rather than letting it go back to the 

source [Riza 2003]. One challenge at this step is the absence of broadband circulators at common 

OCT source wavelengths such as ~900 nm in the market. Without a circulator, operating the 

system in near-retroreflective mode can be a solution but the coupling of the returning light that 
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propagates close to the incident light beam in to a single mode fiber would be very challenging. 

Resonant diffraction gratings can be a good solution in obtaining high diffraction efficiencies in 

off-Littrow configuration. Recently, a research group has reported over 99% diffraction 

efficiency in the -1st order of a resonant diffraction grating made of a mirror, a dielectric layer 

and high index corrugation at layer-air interface at 1064 nm wavelength [Destouches 2005]. 

 

In an optical spectral shaper comprising a DMD, the DMD is employed as a reflective binary 

spatial light modulator (SLM) which controllably attenuates the optical power contained at 

certain wavelength bands over the source power spectrum given that each individual wavelength 

is incident on a sufficiently large micromirror array. Figure 5.8 demonstrates the transmission 

curve of DMDs which are optimized for different spectral ranges; UV, VIS and IR. The DMD 

from Texas Instruments consists of 1024x768 micromirrors with individual micromirror pitch 

size of 13.68 µm and ~0.4 µm spacing between neighboring micromirrors. Each micromirror can 

be tilted in a binary fashion ±12º or ±9.2º on a diagonal axis. When tilted the DMD forms a 2D 

coarse diffraction grating with 13.9 µm grating pitch. The disadvantage of the DMD in such a 

configuration is the occurrence of many Fraunhofer diffraction orders when a coherent light 

beam is incident. While in many displays and optical imaging applications a large number of 

diffracted orders can be collected over a large solid angle, coupling all diffracted orders into a 

single-mode optical fiber in photonics applications is challenging.  

 

Texas Instrument’s DMD manufactured for telecom applications in the near infrared (DMD-IR) 

is specially designed to have ±9.2º tilt angle. In such a design the DMD forms a switched blazed 
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grating with 88% of the diffracted energy coupled into a single diffraction order at 1550 nm 

[Duncan 2002, Dudley 2003]. This DMD has been used in dynamic optical filtering and optical 

switching around the 1550 nm wavelength band [Dudley 2003]. However, it has been showed 

that the diffracted energy is shared by adjacent diffraction orders for a DMD with ±10º tilt angle 

at the same wavelength band [Duncan 2003].  

    [nm] 

Figure 5.8: Transmission curve of DMD provided in three different versions. [Dudley 2003]. The 
yellow shaded area shows the range most OCT light sources emit at. 

 

For applications with a light source centered somewhere between 800nm and 950nm, we see in 

Figure 5.8 that the transmission of the DMD for visible light applications starts to decrease 

smoothly in that wavelength band, while the one for IR makes a sharp increase particularly 

around ~900 nm both lacking a flat spectral response at 100%. Therefore, we decided that the 

visible light version of the DMD is more suitable for applications in low near-infrared up to 
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about 1000 nm. One major concern while using DMD-VIS is how it diffracts the incident beam. 

To observe the phenomenon, we visualized the diffraction pattern of DMD-VIS with ±12º tilt 

angle. A modelocked femtosecond Ti:Sapphire laser centered at 820 nm with a bandwidth of 

~100 nm was employed. We used a fiber-pigtailed collimator to illuminate the DMD. Figure 

5.9(a) shows the beam profile at the output of the collimator captured with a CCD camera. In 

Figure 5.9(b) we present the light beam reflected and diffracted by DMD when each micromirror 

was tilted +12º. Figure 5.9(c) presents the diffraction pattern when a checker image was 

uploaded to the DMD so that some square groups of the micromirrors were tilted +12º and some 

-12º. In Figures 5.9(b) and (c) we see the 0th order diffracted beam or reflected beam on the right-

hand-side of the figures and many diffracted orders in 2D. The energy in the light beam is clearly 

spatially dispersed into many diffracted orders because of the DMD. To design an optical system 

to collect all diffracted beams in one spot and couple it into a single-mode fiber is a challenging 

task if possible. However, the MEMS mirrors employed as a reflective spatial light modulator 

like in a DMD can still be a promising technology for realization of modular optical spectral 

shapers especially considering the achievements which increased the diffraction efficiency in the 

IR version of the DMD to 88% in one diffracted order. Similar optimizations can be expected 

from manufacturers for operations at other wavelengths. 
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(a) 

(c) (b) 

Figure 5.9: Beam profile (a) at the output of fiber collimator, (b) after DMD with micromirrors 
all tilted +12º, and (c) after DMD where mirrors form a ‘checker image’ 

 

5.3 The Impact of Spectral Shaping on Task-Based Assessment 

In Section 4.3 we introduced a statistical framework for task-based assessment in OCT [Rolland 

2005]. The idea behind the task-based assessment is to optimize the imaging system by 

performing an objective assessment with some different system parameters such as the source 
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coherence length, the shape of the source power spectrum, the local variations of index of 

refraction in specimen scanned etc. In this approach specific tasks are defined and carried out by 

an observer. The evaluation of the performance of the observer is based on some quantitative 

results provided by the observer such as detectability and AUC. Therefore, the observer may also 

be called the evaluator. A mathematical framework is needed to be derived for the OCT system, 

the specimen being scanned, i.e. imaged, the tasks and the observer in order to perform a 

quantitative task-based assessment where the tasks in our case are chosen to be two classification 

tasks: signal-detection and resolution tasks. In this work, the impact of spectral shaping 

presented in Section 5.1 was analyzed with a task-based assessment method. 

 

In our analysis we determined to use the Hotelling observer which implements an optimal linear 

discriminant [Barrett 2004]. The linearity of the discriminant ensures that it is easy to compute 

and less information about test data statistics is needed. An optimal linear discriminant 

maximizes a certain measure of seperability of the classes defined in a classification task. The 

Hotelling observer maximizes the detectability measure d2, which is also called effective SNR, 

as well as the AUC when the test data is normally distributed. The Hotelling observer uses the 

information of mean vectors of test data and covariance matrices to generate the detectability and 

AUC.  

5.3.1 Mathematical Model 

We can represent any test data, i.e. signal or image as an N-by-1 column vector I, which is in our 

case a set of photocurrent signal I(t) acquired and sampled at the output of the OCT 
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photodetector. The detectability index i.e. the detectability, or effective signal-to-noise-ratio 

(SNR), associated with the performance of the Hotelling observer is given by 

  (5.7) ,12 XKX † −=d

where X is a N-by-1 column vector representing the difference in the ensemble averaged vectors 

of the two classes of binary classification task for the hypothesis H0 and the hypothesis H1 which 

are discussed in Section 4.3. If the detected photocurrent signal supports the hypothesis H0, then 

it belongs to the 0th class and the signal vector is denoted by I0. Similarly, if the photocurrent 

signal indicates that the hypothesis H1 is true, we denote the signal vector by I1. Hence, the 

vector X will be given by 

 .. .. .. ..1 0X I I= −  , (5.8) 

where 〈..〈〈∗〉〉..〉 indicates the ensemble average over all sources of randomness. The quantity K 

in Equation 5.7 is an N-by-N matrix which represents the weighted average covariance matrices 

across the two classes based on their priori probability. If we assume that the probability of 

occurrence of each class is the same, i.e. one half, then K will be given by 

 ( )012
1 KKK +=  , (5.9) 

where Ki are the autocovariance matrices under each class (i.e. i= 0, 1). The elements of the 

autocovariance matrix may be written as 
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 ( ) ( ) ( ) ( ) ( ) ............, miniminimni tItItItIttK −= . (5.10) 

We can relate the detectability to a common scalar quantity called the area under the receiver 

operating characteristics curve (AUC), under the assumption that the Hotelling test statistic is 

normally distributed under each class [Barrett 1998 and 2004]. This normality assumption can be 

justified under the central limit theorem since the Hotelling test statistic is a linear combination 

of the components of the data vector and, for the task we are considering, these components are 

statistically independent random variables. The relation between the AUC and the detectability is 

given by 
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where erf(·) is the error function. 

5.3.2 Evaluation of the Hotelling Observer Performance 

We described in the Section 5.3.1 the basics on how to quantify the performance of a Hotelling 

observer by computing the associated detectability and AUC. The photocurrent signal derived 

indeed possesses two sources of randomness as discussed in Section 3.2. While the electrical 

field emitted by the source presents circular Gaussian statistics, the photodetection is a Poisson 

process due to the random arrival of photons at the detector. Thus, we derived the mean 

photocurrent signal in Equation 3.25 as 
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which accounts for two sources of randomness. As a result, we should accordingly update the 

sampled autocovariance matrix elements shown in Equation 5.10 to include averaging over both 

sources of randamness as 

 ( ) ( ) ( ) ( ) ( )miniminimni tItItItIttK −=,  . (5.13) 

A more explicit expression for the autocovariance matrix elements for the ith class is needed to 

simulate the detectability and AUC for a task. Such an expression is given by [Rolland 2005] 
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where a general definition of the mean photocurrent N(t) is given by 

( ) ( ) ωωωρ dStmtN )(, 2
∫
∞

∞−
= .                                        (5.15) 

As shown in Equations 5.12, 5.13 and 5.14 the source power spectrum is related to the mean 

number of photoelectrons ( )tN , the mean photocurrent ( )tI , and the autocovariance 

matrix K which are critical parameters for the computation of the detectability and thus the 

AUC. Therefore, the spectral characteristic of the light source employed is expected to strongly 

affect the performance of the Hotelling observer. 
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Having the mathematical expressions to compute the detectability index and AUC of the 

Hotelling observer, we need to model a specimen to be employed in the imaging system, so the 

performance of the observer may be computed for a given task. In this investigation, we choose a 

single layer specimen model such as a glass plate bounded by two different interfaces (A and B) 

as shown in Figure 5.9. This Figure illustrates a more explicit specimen model similar to the one 

in Figure 4.1. The first interface is assumed to be between air and the front surface of the 

specimen which reflects a portion of the light beam, which is assumed to be normally incident on 

the surface, due to the change in refractive index from 1 to n, where n is the refractive index in 

the specimen. The second interface is modeled to be between the specimen and a substrate with a 

refractive index given by n+Δn. The Fresnel reflection coefficients at the first and second 

interfaces at normal incidence are given by 
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The more general expressions of the Fresnel coefficients would be used for non-normal 

incidences in future applications [Born and Wolf 2002]. Representing the thickness of the layer 

by a variable Δd, the phase accumulation of light propagating in the layer is given 

by ( cdnmi /exp Δ )ω  where m is the number of passes through the layer and c is the speed of light 

in vacuum. Assuming that the rest of the system is not optical frequency-dependent the 

frequency response of the sample arm ( )ωα sˆ  is given by  

 ( ) ( ) ⎟
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2
11 ωωα  , (5.17) 
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where we assume that the reflected optical power becomes negligible for the second and higher 

order reflections at the interfaces depicted by a dashed line in Figure 5.10.  

n n+Δn 

A B 

n0=1 

  Δd

 

Figure 5.10: Specimen model: n is the refractive index of the specimen and Δn is the change of 
refractive index from the specimen to the substrate. 

5.3.3 Task Definitions 

We focused our investigation on two classification tasks, a signal-detection task and a resolution 

task, for the performance assessment of the Hotelling observer in OCT imaging. These tasks 

shall be performed by the Hotelling observer as described above and the performance will be 

evaluated using the detectability and AUC analysis. 

 

The signal detection task is established to specify the minimum change in refractive index Δn 

between the specimen layer and the substrate at the second interface, which can be detected by 

the system. The thickness of the layer Δd is set to a constant quantity which is approximately 

twice the source coherence length so that the light beams reflected from the first and second 

interfaces (A and B) of the specimen do not interfere. If there is no second interface to be 
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detected, then the hypothesis H0 is true. Under ideal conditions there is no second interface if Δn 

equals zero. On the other hand, the second interface can be detected, i.e. there is a second 

interface, for any non-zero value of Δn. This is the case when hypothesis H1 is true. The observer 

computes the detectability and AUC as a function of Δn in order to determine how they behave 

with increasing values of Δn. 

 

The goal of the resolution task is to assess the minimum thickness of the specimen layer that the 

system can discriminate and to observe the performance of the observer with increasing 

thickness of the specimen. We set the change in refractive index from the specimen layer to the 

substrate Δn to various constant values. When the thickness of the specimen layer Δd equals 

zero, the second interface overlay the first interface. This is the true case for hypothesis H0. On 

the other hand for a nonzero thickness Δd the hypothesis H1 is true, i.e. an interface may be 

resolved. The observer performance is quantified by computing the detectability and AUC as a 

function of the specimen layer thickness Δd. Figure 5.11 demonstrates the specimen structures 

for both hypotheses under each task. 
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Figure 5.11: The structure of the specimen which presents the cases when the hypothesis is true 
for (a) signal detection task where the difference in refractive index between specimen and the 
substrate Δn is the variable, and (b) resolution task where the specimen thickness is the variable. 
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5.3.4 Simulation Results  

We investigated the signal detection and resolution tasks while the Hotelling observer performed 

the task for different source power spectra. The first power spectrum we used in our simulation 

was that of a broadband amplified spontaneous emission (ASE) source (Newport BBS-430) 

emitting at 1565±40nm. Our goal was to compare the detectability and AUC for unshaped and 

shaped powers spectra of the same ASE source. We explained the spectral shaping process in 

Section 5.1. The measured wavelength power spectra of the source before and after spectral 

shaping that are shown in Figure 5.4(b) were prepared for simulations by first converting them to 

frequency spectra. The power spectra as a function of optical frequency were then normalized by 

the area under the original power spectrum, i.e. the source power before spectral shaping 

performed. Figure 5.12 presents each power spectra (S0: the original source power spectrum, S1 

and S2: shaped power spectra) prepared to be employed in the simulations. The original power 

spectrum of the ASE source contained significant spectral dips previously presented to cause 

side lobes in the PSF of the imaging system. With the spectral shaping process, smoother power 

spectra S1 and S2 with no spectral dips were created at the cost of 2.3 dB and 3.4 dB loss of 

optical power over the original power spectrum S0 as discussed in Section 5.1. 

 

The first step of the simulation procedure was to obtain the mean number of generated 

photoelectrons and thus the mean photocurrent signal and the autocovariance matrix. Then we 

derived and computed the detectability and AUC for either a signal-detection or a resolution 

task, while simulating those quantities, we ignored the losses and phase shifts of the beam 

splitter in the OCT system that was chosen to have free-space Michelson interferometer structure 
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as shown in Figure 3.1(a). The reference mirror was assumed to have a flat reflection response 

with 100% reflectivity for all frequencies; )(ˆ ωα r  is 1. Hence, ( )tm ,ω  that is defined in Equation 

3.14 and also appears in Equation 5.12 became 
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Figure 5.12: The frequency power spectrum of the ASE source S0; solid curve, power spectrum 
after the first shaping operation S1 (i.e.dotted curve) and after the second shaping operation S2 
(i.e. dashed curve). 
 

The mean photocurrent signal of the OCT system was detected at a photodetector when the 

optical path in the reference arm of the interferomoter is scanned, for example, by a linear 

translational stage moving at a constant speed of vm. The increase in the optical path length of 

the reference arm was given by vmt where t is the time interval when scanning was performed. 

Thus t presented the measurement time for one scan as well. The distance lr was fixed to show 
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the distance from the beam splitter to the initial position of the reference mirror while ls was the 

distance from the beam splitter to the front surface of the specimen. The phases accumulated in 

the reference and sample arms of the interferometer were then given by 

( ) ( ) ( )  2,     and       v22, m ssrr l
c

ttl
c

t ωωφωωφ =+= ,                           (5.19) 

and used in Equation 5.18. The distance lr was assigned to be slightly smaller than ls, i.e. ls-28 

μm so that the front surface of the specimen could be detected in scanning simulation. The 

measurement time t was set to 0.8 ms while the speed of the translational stage was 0.154 m/s. 

The photodetector modeled in the simulations had a bandwidth of 125 KHz (like that of a 

Nirvana Model 2017 photoreceiver) corresponding to 4 μs of detector integration time. Hence, 

we formed a time vector for the simulations that we performed using MatlabTM which consisted 

of 2000 discrete samples with 0.4 μs sampling period spanning from 0 to 0.8 ms so that the 

Nyquist sampling condition was satisfied. In all simulations, the refractive index of the specimen 

n, which was considered to be skin that is a potential specimen in future clinical applications, 

was chosen to be 1.4. We used trapezoidal numerical integrations to compute integral 

expressions.  

5.3.4.1 Signal-Detection Task 

We prepared and ran simulations for the signal-detection and resolution tasks separately. As 

previously described, the signal-detection task was performed to determine the impact of change 

in refractive index Δn on the detectability and AUC generated by the Hotelling observer, while 
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the specimen thickness Δd was set to a constant. We set the specimen thickness Δd to 50 μm, 

which was approximately twice the longest axial resolution computed for each power spectrum 

that were presented in Table 5.1. We simulated the detectability as a function of a change in 

refractive index Δn and demonstrated the results for each power spectra in Figure 5.13(a) while 

Δn was increased from zero to 2x10-5. We then computed the AUC using Equation 5.11 and 

plotted the relation between the AUC and Δn in Figure 5.12(b). We did not increase Δn beyond 

2x10-5, because all AUC curves already reached their maximum that is unity before Δn equals 

2x10-5. The value of the AUC corresponds to the probability of signal-detection. For example, 

AUC equals one when the probability of signal-detection is 100%. Similarly, when AUC is 0.5, 

the probability of signal-detection is 50%. 

 

Figure 5.13(a) shows that the detectability for the original, i.e. unshaped, power spectrum is 

larger than the ones for the two shaped power spectra for any non-zero Δn. The optical spectral 

shaping is based on attenuating optical power at certain wavelength bands and thus it causes 

inevitable power loss. If we denote the areas under the power spectrum curves in Figure 5.12 A0 

for S0, A1 for S1 and A2 for S2, we can clearly see that A0>A1>A2 where the area under power 

spectrum curve defines the optical power of the particular source. Indeed we see in Figure 

5.13(a) that the power spectrum which encloses larger optical power leads to higher detectability 

at a given Δn. Similarly, the AUC curves in Figure 5.13(b) are observed to be rising to the 

maximum value of one faster for power spectra enclosing larger optical power. 
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(a) (b) 

Figure 5.13: (a) Detectability and (b) AUC as a function of change in refractive index Δn 
between the specimen and the substrate. 

 

To suppress the effect of difference in optical power in the simulations, we normalized each 

power spectra individually with its optical power, i.e. area under the measured power spectrum, 

so that each normalized power spectrum enclosed the same optical power which is unity. These 

power spectra are presented in Figure 5.14. For each power spectrum shown in Figure 5.14, we 

demonstrate in Figure 5.15 the AUC curves as a function of the change in refractive index. While 

the AUC curve for the original power spectrum is the same with the one shown in Figure 

5.13(b), we observe that the AUC curves generated from power spectra with different spectral 

shapes but now with the same power are overlapping closely unlike in Figure 5.13(b). Both 

simulations demonstrate that the optical power is the dominant parameter while simulating the 

detectability and AUC for the changes in refractive index Δn in a signal-detection task. 
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Figure 5.14: Power spectra each normalized to have unit optical power. 

 

Figure 5.15: AUC curves computed using the power spectra shown in Figure 5.10.  
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5.3.4.2 Resolution Task 

The goal of the resolution task is to quantify the minimum specimen thickness Δd for which the 

OCT system can resolve the reflections from the interfaces A and B of the specimen shown in 

Figure 5.10. To study the performance of the Hotelling observer for the resolution task, we set 

Δn to certain constant values and varied the specimen thickness Δd for each value of Δn. We 

used the information presented in Figure 5.13(b) to select values of Δn. From Figure 5.13(b), for 

each curve we selected the Δn, denoted Δn1, providing an AUC value of 0.75, i.e. 75% 

probability of signal-detection, and the minimum Δn, denoted Δn2, providing an AUC value of 1; 

We then doubled Δn2, which will be denoted Δn3. To simulate the performance of the Hotelling 

observer for the resolution task, we determined Δn1, Δn2 and Δn3 from Figure 5.13(b) as 

1.543x10-6, 1.007x10-5 and 2.014x10-5 for the power spectrum S0, and 1.976x10-6, 1.160x10-5 and 

2.320x10-5 for the power spectrum S1, and 2.362x10-6, 1.365x10-5 and 2.730x10-5 for the power 

spectrum S2, where S0, S1 and S2 are shown in Figure 5.12. The detectability index and AUC as a 

function of the specimen thickness Δd for each power spectra and for the each selected change in 

refractive index value are shown in Figure 5.16. In the resolution task simulations, the specimen 

thickness is varied from zero to 70 μm which is larger than the twice of the maximum axial 

resolution presented in Table 5.1.  

 

In Figure 5.16(a)-(c) we observe that the detectability for the resolution task increases with an 

increasing change in refractive index. AUC curves shown in Figure 5.16(d)-(f) reach the value of 

1 faster for larger values of Δn. On the other hand, for all minimum changes in refractive index 

chosen Δn1, AUCs never reach one, which means that the probability of resolution for small 
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changes in refractive index never became 100%. However, those AUC curves tend to approach 

an asymptote about an AUC value of 0.85. Until reaching the asymptote, we observe oscillations 

in the AUC as well as detectability curves for specimen thicknesses of less than half the 

coherence length of the source, i.e. axial resolution of the imaging system. The oscillation period 

is measured as half the center wavelength of the source, which is the period of the interference 

fringes for any broadband light source centered at the same wavelength. Thus, the oscillations 

indicate that the light beam reflected from the first interface A interferes with the one reflected 

from the second interface B, when the specimen thickness satisfies the condition that the light 

beam travels an optical path less than half the coherence length in the specimen. The oscillations 

in AUC of the sources represented with power spectra S1 and S2 show that the probability of 

discrimination of interfaces by the Hotelling observer fluctuates continuously over a broader 

range of specimen thickness even if it is well above half the source coherence length in the 

specimen. 

 (a)   (d) 
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 (b) (e) 

  (c) (f) 

 
Figure 5.16: Detectability as a function of the specimen thickness for the ASE source (a) with the 
power spectrum S0, (b) with the shaped power spectrum S1, and (c) with the shaped power 
spectrum S2 which are shown in Figure 5.8, and the corresponding AUC as a function of the 
specimen thickness for the power spectra(d) S0, (e) S1, and (f) S2. 

5.3.5 Discussion 

We demonstrated the impact of the source spectral shape on the performance of the Hotelling 

observer in a signal-detection task and a resolution task in optical coherence imaging. The noise 
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sources considered in the simulations are circular Gaussian noise from the broadband source and 

Poisson noise from the detector. Except for those sources of noise, the system is assumed to be 

ideal with unpolarized light, no dispersion in the specimen and imaging system, and linear 

scanning of a homogenous specimen with normally incident light experiencing Fresnel 

reflections at the boundaries of the specimen.  

 

We showed that the spectral shape is a major factor in the quantitative assessment of 

performance when a resolution task is considered. Our analysis concluded that for a signal-

detection task, the area under the power spectrum curve, i.e. the optical power of the light source, 

is dominant and sources with higher power provide larger detectability regardless of their shape. 

The associated AUC increases faster with a same change in refractive index Δn and reaches unity 

at smaller values of Δn as well. When we equalized the optical power of the light source with 

various spectral shapes, results showed that the AUC for each power spectra overlapped closely. 

This finding indicates that shaping the source power spectrum does not have an impact on the 

OCT performance for the signal-detection task we defined and that the optical power of the light 

source is the major factor defining the performance of the system for this specific task.     

 

The second set of simulations presented the performance of the Hotelling observer for the 

assessment of a resolution task. Results showed that spectral irregularities in the source power 

spectrum lead to fluctuations in detectability and AUC curves over a large range of specimen 

thicknesses while the local variation in refractive index Δn is relatively small, e.g. 1.543x10-6. 

For larger values of Δn, we observed that the detectability index as a function of the specimen 

 103



thickness had larger values and the AUC curves reached 1 for small values of specimen 

thickness. This phenomenon means that the Hotelling observer can discriminate the interfaces 

for any non-zero distance between them if Δn has a relatively large value [Rolland 2005]. Such 

an outcome was original considering classical concepts for axial resolution, which states that two 

distinct layers can be resolved if the distance between layers, i.e. interfaces, is as large as the 

measure obtained by a metric presented in Chapter 4. However, in the task-based metric for 

resolution described above, the results show how the axial resolution depends also on the local 

variations of index of refraction in the specimen scanned. Importantly, the analysis indicates that 

the second interface can be resolved even if it is extremely close to the first one, i.e. the distance 

between them is less than half the source coherence length, under some circumstances. An 

example to such circumstances shown above is a large enough change in the index of refraction 

at the interface or layer. As an example, in Figure 5.16(f) this change corresponds to 2.73x10-5.   
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CHAPTER SIX: DETECTION ELECTRONICS IN OCT 

In this Chapter, we discuss a crucial component in OCT imaging, which is the detection 

electronics. We demonstrate compact low-cost demodulating detection electronics with a 

monolithic integrated-circuit active filters and a logarithmic amplifier. Such an approach aims at 

the optimization of the size of the system towards compact imaging systems for clinical use. We 

first present the mathematical background of detection and then the design of the logarithmic 

amplifier-based OCT detection electronics. The sensitivity of the system with both the designed 

electronics and the commercial lock-in amplifier both having equivalent electrical bandwidth is 

quantified, and images of fresh onion recorded using both detection schemes are presented for 

comparison.  

 

6.1 Analog Signal Processing 

An OCT image is reconstructed by recording and processing the interference of broadband light 

beams back-scattered and/or back-reflected from a specimen with reference the light back-

reflected from a retroreflector or mirror. Scanning the position of the reference 

retroreflector/mirror varies the optical range in the specimen from which light scattered or back-

reflected can interfere with the reference light.  

 

The motion at the reference retroreflector/mirror, which can be provided by placing it on a linear 

translational stage moving at a speed vm, induces a Doppler frequency shift fD in the reference 
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beam. When the Doppler shifted reference beam is recombined with the sample beam at the 

beam splitter of the interferometer to produce interference at the photodetector, the Doppler shift 

is transferred to the frequency of the generated electrical signal. In other words, the detected 

electrical signal is modulated or heterodyned. We can model the Doppler shift modulation in the 

axial PSF of the OCT system starting from the general signal expression given by 
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where the term ( tm , )ω  will be modeled to present the axial PSF measurement, i.e. there are 

perfect mirrors or retroreflectors in both arms of the interferometer and no additional losses 

present. Under such assumptions ( tm , )ω  is given by 
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where lr is the distance from the beam splitter to the initial position of the reference arm mirror 

and ls is the distance from the beam splitter to the sample arm mirror whose position is fixed 

during the measurement. The magnitude or absolute square of ( )tm ,ω  is given by 
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The first term in Equation 6.3 ends up as a DC signal in the signal shown in Equation 6.1, while 

the second term forms an AC signal which is given by 
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When we replace ω by ω−ω0+ω0 in Equation 6.4, where ω0 is the center frequency of source 

power spectrum, then Equation 6.4 becomes 
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where 0ωωϖ −=  In Equation 6.5 lr and ls are non-varying quantities, thus lr minus ls is a 

constant. Hence the term ( ) cll sr /20 −ω  represents a phase term Δφ  which depends on the initial 

position of the reference arm and sample arm mirrors. The time-varying term [ ]cti /v2exp m0ω  in 

Equation 6.5 includes the Doppler shift in the electrical frequency domain that is induced by the 

motion of the scanning reference arm mirror. The modulation of the signal by the Doppler shift 

can be expressed by 
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where the amount of the Doppler shift is given by 0mm0 /v2/v2 λυ == cf D  as previously 

derived in Section 3.2 in a different mathematical framework. As we see in Equation 6.6 both the 

speed of the translational stage and the center wavelength of the broadband light source 
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illuminating the OCT system affect the amount of Doppler frequency shift. We can derive an 

expression for the electrical bandwidth of the detected signal, Δf, where the expression is given 

by . Other depth scanning mechanisms, for example 

the Fourier-domain optical delay line (FD-ODL), may be configured to shift the center frequency 

of the electrical signal as well, where the FD-ODL parameters also set the electrical bandwidth 

of the signal similar to the expression above [Rollins 1998]. 

0
2
0mm //v2/v2 λλλλυ Dfcf Δ=Δ=Δ=Δ

 

An OCT system can also employ an external phase modulator, such as a piezoelectric fiber 

stretcher [Sato 2000, Akcay 2001], a piezo-stack [Hoeling 2000], an acousto-optic phase 

modulator [Xie 2003], or an electro-optic phase modulator [de Boer 2001]. Considering that a 

sinusoidal modulating signal is applied, the externally phase modulation of a signal denoted s(t) 

and given by Aexp[iωt] will be presented including an additional sinusoidal oscillating frequency 

term as  

( ) ( )( )exp ms t A i t MSin tω ω⎡ ⎤= +⎣ ⎦%  ,                                    (6.7) 

where ∼ represents a phase modulated term, M is the modulation index and mω  equals 2πfm, 

where fm is the modulation frequency. Thus, when there is phase modulation, the expression in 

Equation 6.5 becomes  
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where Dω  is 2πfD where fD is described earlier. The modulation term can be expanded into 

Fourier series such that it becomes 
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where Jp(M) is the pth order Bessel function of the first kind [Haykin 1994, Akcay 2001]. With 

the given expression of the phase modulation, the phase modulated signal will be given by 
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In Equation 6.10 we see that the overall frequency shift in the modulated signal equals to the sum 

of the Doppler shift and an integer multiple of the external modulation frequency. While the 

integer p determines the order of the Bessel function of first kind, the modulation index M is the 

parameter which decides what amplitude it takes. That is, given the modulation index M, we 

demodulate the pth harmonic of the modulated signal given that the pth order Bessel function 

takes on the largest amplitude. For example, we should demodulate the second harmonic signal if 

the amplitude of J1(M) is smaller than the one of J2(M).  
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Figure 6.1 presents the RF frequency distribution of the signal which was detected by a fiber-

optic OCT system. The phase modulation was performed by a piezoelectric fiber stretcher which 

was driven with a 20 kHz triangular voltage waveform. We took the measurement at the output 

of the photoreceiver via an RF spectrum analyzer (HP3585A). The interference signal was 

detected, while the optical path lengths of each interferometer arm was set to be equal and both 

fixed, i.e. no Doppler shift present. We observed first four harmonics of the signal and partially 

the fifth harmonic which was centered at 100 kHz. A fiber-optic based imaging system with a 

piezoelectric fiber stretcher as a phase modulator is presented in Section 6.2. 

 

Figure 6.1: Interference signal phase modulated by a piezoelectric fiber stretcher driven at 20 
kHz 
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There are three important steps included in the detection electronics stage of an OCT system, 

where the detected analog signal is processed. These steps are: 

1. Transimpedance amplification of the photocurrent signal generated by the 

photodetector. 

2. Electrical Filtering. 

3. Envelope detection or demodulation. 

A transimpedance amplifier, which is a unit usually embedded in a photoreceiver converts the 

photocurrent signal generated at the photodetector to a voltage signal. The voltage signal is 

modulated at the sum of the Doppler shift and an integer multiple of the modulation frequency. 

Furthermore, it is bandlimited having an electrical bandwidth given by Δf which is described 

above for one case where the scanning is provided by a translational stage. The electrical filter is 

employed to filter the signal at the total modulation frequency and in the band of the signal. 

Therefore, the ideal electrical filter is the one that is a band pass filter centered at the total 

modulation frequency having a pass band as narrow as the signal bandwidth. The final stage of 

the detection electronics is the demodulation process, i.e. envelope detection, of the filtered 

signal. Lock-in amplifiers [Izatt 1996], demodulating logarithmic amplifiers [Rollins 1998], 

RMS voltmeters [Hoeling 2000], analog CMOS circuits [Kariya 2004], and field-programmable 

gate arrays (FPGA) [Schaefer 2004] have been employed in various OCT systems for analog 

signal processing after photodetection. The detection electronics that amplifies the OCT signal 

and conducts the demodulation sets the sensitivity and SNR [Hee 2002]. After the detection 

electronics stage, the analog OCT signal is sampled and converted to a digital signal. The digital 

signal is acquired by a data acquisition board (DAQ) and is recorded in the hard disk of a PC. A 
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set of detected OCT signals processed and then acquired by a DAQ board is prepared to present 

for example a cross-sectional image of the specimen scanned. 

6.2 Imaging System 

We implemented a fiber-based OCT system using single mode optical fiber as shown in Figure 

6.2. The light source illuminating the system is a superluminescent diode (Superlum D930-HP) 

centered at 930 nm with ~80 nm spectral bandwidth. The optical power was measured as 

0.33mW at the sample arm which is the optical power incident on the specimen. Two custom-

designed broadband fiber couplers that can support the large bandwidth of the light source were 

employed in the system to enable the dual-balanced detection of the interference signal. A 50/50 

fiber coupler was employed in the system to provide the second light beam for the dual-balanced 

photoreceiver. We terminated the free arm of the 50/50 coupler with an index matching oil to 

minimize reflection from the fiber-end that otherwise adds an extra DC current in one of the 

photodiodes of the photoreceiver. The interferometer was configured with a second fiber coupler 

(i.e. 80/20) which directed 80% of the input light to the sample arm and 20% to the reference 

arm. We wound a portion of the optical fiber in the reference arm around a piezoelectric tube. 

The piezoelectric tube expands and stretches the optical fiber when a voltage is applied, which 

enables phase modulation of the light traveling in the reference arm. 

 

A gold-coated retroreflector placed on a linear stage that can scan as fast as 25 mm/sec (Newport 

VP-25XA) provided depth scanning of the sample while a second stage was employed for 

transversal scanning. The returning phase modulated reference light was recombined with the 
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light scattered or back-reflected from the sample at the 80/20 fiber coupler. While a part of the 

recombined light was directed to one of the two InGaAs photodiodes in the dual-balanced 

photoreceiver (Nirvana Model 2017), the rest returned to the 50/50 fiber coupler where it was 

split to reach the other photodiode.  

 

 

Figure 6.2: Schematic of the time-domain OCT system implemented with dual-balanced 
detection. SLD: Superluminescent Diode, FC: Fiber Coupler, PM: piezoelectric phase modulator. 
A PCI DAQ card in the PC acquires the signal processed by the detection electronics. The PC 
also controls the scanning stages. 

   

We chose the dual-balanced detection technique to eliminate intensity noise of the light source 

[Podoleanu 2000]. The dual-balanced photoreceiver subtracts the photocurrents generated by the 

two photodiodes, and also includes a built-in transimpedance amplifier. The input signal of the 

detection electronics has two important characteristics: it is modulated at a frequency which is 

set by the sum of the Doppler frequency shift and the frequency of the voltage waveform driving 
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the piezoelectric phase modulator, and it is subject to various noise processes such as 1/f and 

detector noise some of which are outside the bandwidth of the signal and therefore can be filtered 

out. We first employed a lock-in amplifier (Stanford Research SR-830) as detection electronics 

in our system shown in Figure 6.1. We then replaced the lock-in amplifier with custom-designed 

detection electronics, detailed in Section 6.3. The signal generated by the detection electronics 

was acquired by a PCI data acquisition (DAQ) board that performed the analog-to digital 

conversion. A PC was employed to record the digital signal and to form an image at the end of 

the scanning process while controlling the motion of the stages. 

 

Lock-in amplifiers are often used in the demodulation process in many applications. They are 

able to measure AC signals within a certain frequency band isolating it from out-of-band noise 

components. Figure 6.3 shows a simple diagram for a lock-in amplifier. The modulated signal at 

the input of the lock-in amplifier is multiplied with a reference signal that is a sinusoidal signal 

oscillating at the total modulation frequency of the input signal, while it is multiplied in another 

channel by the same reference signal that is phase shifted by 90°. If the first harmonic of the 

modulated input signal is to be demodulated, the frequency of the reference signal will be given 

by fD+fm. From the well-known rules of trigonometry, the result of the multiplication of two 

sinusoids is two AC signals one oscillating at the difference frequency and the other one at the 

sum frequency. Therefore, the resulting signal after multiplication and before low pass filtering 

(LPF) has a DC component and a high frequency component at two times the input signal 

frequency, when the reference signal is set to have the same frequency as the input signal. The 

high frequency component is then filtered out by LPF. The two channel multiplication in a lock-

 114



in amplifier is useful when the phase of the input signal is desired to be measured in reference to 

the phase of the reference signal which is set by the user. However, phase information is lost 

when envelope detection is performed.  

 

Figure 6.3: Diagram of a lock-in amplifier 

  

6.3 Custom-designed Detection Electronics 

The designed detection electronics serves to filter out-of-band noise components in the signal 

detected by the dual-balanced photoreceiver and to perform demodulation like a lock-in 

amplifier but much smaller in size. The OCT signal generated with the system shown in Figure 

6.2 was phase modulated at 38.5 kHz. Active bandpass filters are commonly used for 

applications below 100 kHz, while at higher frequencies passive bandpass filters are preferred 

[Hee 2002] to filter a modulated signal.  

  90° 
 √(x2+y2) Envelope 
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Local/Internal 
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We designed and implemented custom-electronics comprising a bandpass filter (BPF) followed 

by a demodulating logarithmic amplifier, a low pass filter (LPF), and a single-ended-to-

differential amplifier. The BPF is a 4th order Butterworth band pass filter with two cascaded 

universal active filters (Burr Brown UAF42) that implement a KHN biquad topology. The 

UAF42 filters operate in the frequency range between 0 to 100 kHz and can be configured to 

realize Butterworth, Chebyshev, and Bessel filter types. The center frequency of the filter was set 

to 38.5 kHz, which corresponded to the sum of the Doppler shift and the modulation frequency 

induced by the piezoelectric fiber stretcher, with a 1.5 kHz bandwidth that can cover a signal 

bandwidth set by a scanning speed of up to 7.5 mm/s. The demodulating logarithmic amplifier is 

also an integrated circuit (Analog Devices AD606). The output of a logarithmic amplifier is the 

logarithm of the input signal’s envelope [Nash 1999], but with a characteristic rectifier-type 

ripples that need to be removed with low pass filtering. Thus an LPF was implemented to be 

used after logarithmic amplifier with additional UAF42s. At the final stage, additional 

conversion gain was added by a single-ended-to-differential amplifier (Analog Devices 

AD8138). We implemented a switch to potentially bypass the LPF after the demodulating 

logarithmic amplifier. Figure 6.4 shows the block diagram of the designed detection electronics. 

Figure 6.5 shows the output response of the custom-designed detection electronics with the 

cascaded LPF and an additional gain unit after the demodulating logarithmic amplifier, which is 

called the case with modified gain. With only additional gain unit while the LPF is bypassed, the 

output response, which is titled the output with original gain, is also presented. In Figure 6.6 we 

present a sinusoid input waveform with a frequency of 38.5 kHz together with two output 
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waveforms, which are the envelopes of the input waveform obtained with LPF bypassed and not. 

The cutoff frequency of the LPF was set to 20 kHz which was below the frequency of the ripples 

appearing at the output of the logarithmic amplifier. Indeed, in Figure 6.6, we can see that the 

frequency of the rectifier-type ripples at the output waveform recorded with the LPF bypassed is 

~77 kHz and those ripples in the signal were filtered out when the LPF was switched on. 

 

 

Figure 6.4: Schematic of the detection electronics designed to demodulate the OCT signal 
generated at the dual-balanced photoreceiver. BPF: Bandpass Filter, LPF: Low Pass Filter. 
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Figure 6.5: The output response of the detection electronics with and without the filtering and 
additional gain at the final stage. 

Figure 6.6: Input and output waveform relation of the designed OCT demodulator. Bottom 
sinusoid is the input waveform Vin. The middle curve is the output Vout1 when the LPF is 
bypassed and the top curve Vout2 is the output when the LPF is switched on. 
 

The conversion formula for the detection electronics system with the low pass filter and 

additional gain stage after the demodulating logarithmic amplifier was measured as  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=

000112.0
log7172.0 10

inV
outV  ,                          (6.11) 

where Vin was the amplitude of the modulated input signal and Vout was the output of the 

detection electronics. The circuit was implemented on a 8cm x10cm four-layer printed circuit 

board. Figure 6.7 shows the photograph of the detection electronics implemented on the printed 

circuit board. In Appendix A, we present the circuitry of the detection electronics we designed.    
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Figure 6.7: Photo of the printed circuit board designed for filtering and envelope detection. 

 

6.4 Results 

To quantify the sensitivity of the imaging system when the lock-in amplifier (Stanford Research 

SR830) and the new detection electronics were employed, we used an OD1.2 filter followed by a 

mirror in the sample arm of the setup shown in Figure 6.2. Figure 6.8 shows the structure of the 

sample and the focused sample arm light beam. We measured that the OD1.2 filter attenuates the 

optical power of the incident light by -12.36 dB. The controlled attenuation provided the 

information that the OCT signal peaked at -24.72 dB reflectivity given that the sample arm beam 

passes twice through the OD1.2 filter after being back-reflected by the mirror. Therefore, this 
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sample structure imitates a mirror that has a reflectivity of -24.72 dB while the mirror with no 

filter in front is assumed to have 100% reflectivity that corresponds to 0 dB. Fig. 6.9(a) shows 

the signal recorded with the lock-in amplifier. We then scanned the same sample configuration 

using our detection electronics for comparison. Fig. 6.9(b) shows the signal recorded with the 

custom-designed detection electronics. The time constant of the lock-in amplifier was set to 100 

μs which corresponds to a 1.59 kHz LPF bandwidth that is equivalent to the bandwidth of the 

designed detection electronics. 

OD1.2 Filter   Mirror 

 

Figure 6.8: The sample configuration to determine the sensitivity of the OCT system shown in 
Figure 6.1. 
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  (a)  (b) 

Figure 6.9: The OCT signals recorded using (a) the lock-in amplifier (SR830), (b) the custom-
designed logarithmic amplifier-based detection electronics.   

 

We then compared the performance of the designed detection electronics to the lock-in amplifier 

considering the sensitivity of the implemented system with both detection schemes. The system 

sensitivity is a measure which is defined by the reciprocal of the minimum detectable 

reflectivity. This definition means that sensitivity equals to SNR for the signal recorded with a 

100% reflective sample. Such a case happens when all incident optical power is collected back. 

Given recorded signals shown in Figure 6.9, knowing that the optical power collected by sample 

arm focusing optics is attenuated by 24.72 dB, the sensitivity S of the imaging system is given by  

72.24log20 10 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

n

pV
S

σ
 ,                                 (6.12) 
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where Vp is the peak voltage of the detected signal and σn is the standard deviation of the signal 

noise floor [Laubscher 2002]. Table 1 shows the sensitivity of the imaging system with each 

detection scheme. 

 

Table 6.1  System sensitivity S for the two detection electronics 

 

OCT with 
 

 Sensitivity S (dB) 

Custom-designed Detection 
Electronics 
 

87.8 

Lock-in Amplifier 
 

88.8 

 
 
 
 
In the final assessment step, we prepared a fresh-onion sample to obtain its cross-sectional OCT 

image using both detection electronics discussed above. The size of the imaged section of the 

onion sample was 500 μm x 640 μm. Figure 6.10(a) demonstrates the image recorded using the 

lock-in amplifier. Figure 6.10(b) shows an image of the same fresh-onion sample recorded using 

the custom-designed detection electronics. Due to the nature of the logarithmic amplifier, the 

images obtained with the custom designed detection electronics are in log-scale. However, the 

output from the lock-in amplifier is in linear scale and therefore such images were converted to 

log-scale after data acquisition. The images are 8-bit (255 gray level). No image averaging or 

image processing methods were applied. The polygonal structure of the onion sample is clearly 

visible in both images. 
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(a) (b) 

Figure 6.10: Onion image (500 μm x 640 μm) where (a) the lock-in amplifier is employed to 
perform envelope detection, (b) the designed detection electronics is employed to process the 
analog signal generated by the photoreceiver.  

6.5 Discussion 

We analyzed the signal processing stage in OCT. While the optics of the imaging system set the 

limits for performance characteristics such as axial and lateral resolution, the sensitivity of the 

system depends on the detection electronics. We have demonstrated the feasibility of a compact 

and low-cost detection electronics implemented by a few ICs that filter, demodulate, and amplify 

the signal. While commercial lock-in amplifiers have the advantage of being tunable over a wide 

range of frequencies, which has value for optimization across various applications (e.g. real time 
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in vivo biomedical imaging versus in vitro biological imaging), the detection electronics we 

designed is targeted to operate purposely at fixed modulation frequency and signal bandwidth

in vitro or in the field biological imaging to achieve a compact and low-cost solution for portable 

imaging units. Importantly, we demonstrated that the portable unit provides an equivalent 

performance to the lock-in amplifier considering the system sensitivity. Presented detection

electronics is easily adjustable to operate in any range from DC to 100 kHz by changing seve

surface mounted resistors. For modulations higher than 100 kHz, where the active filters are 

limited by the slew-rate and bandwidth requirements imposed on the operational amplifiers 

[Horowitz 1980], UAF42s can be replaced by passive filters comprising capacitor-inductor 

configurations which will not increase the size and cost of the system. Importantly, most loc

amplifiers except some high-cost units that are quite large in size and thus not adequate for 

portable low-cost OCT systems do not operate in MHz range either.  

 for 

 

ral 

k-in 
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CHAPTER SEVEN: SUMMARY OF CONTRIBUTIONS AND 
CONCLUSION 

The work presented in this dissertation comprises three major contributions: a detailed 

discussion and theoretical analysis of axial resolution in optical coherence imaging considering 

the shape of the source power spectrum, the optimization of the imaging system performance via 

optical spectral shaping and the analysis of its impact on the system performance, and the design 

and development of a compact low-cost detection electronics which provides equivalent 

sensitivity to a commercial lock-in amplifier. 

 

In optical coherence imaging the axial resolution that is typically in the range of 1-20 µm is a 

prominent advantage above many other biomedical or biological imaging systems such as 

commercial magnetic resonance imaging (MRI) systems that provide resolution on the order of 

103 µm and ultrasound technology with resolution on the order of 102 µm. Indeed, axial 

resolution is a major selling point of optical coherence tomography and microscopy considering 

that light gets absorbed in <3 mm in turbid tissue such as skin and thus cannot penetrate into 

such tissues as deep as MRI and ultrasound. Despite the importance of axial resolution, we do 

not see any reference specifically focused on this topic prior to 2002. Part of the work we 

conducted targeted to fill this gap and to provide an analytical presentation of axial resolution. 

The analysis consists of two important points: reliability of the current approach and its 

comparison with two other metrics, and the effect of the source spectral shape on axial 

resolution. Our work led to a publication [Akcay 2002] which now serves as a major reference to 

the studies on the quantification of axial resolution in optical coherence imaging systems. As part 
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of the work conducted, we critically approached and evaluated a common assumption, which 

suggested that approximating the spectral shape of a broadband light source with a known center 

wavelength and spectral bandwidth to a Gaussian was legitimate to estimate the coherence length 

and thus the axial resolution. Different metrics such as ASI and RMSW along with FWHM were 

employed in our computations for coherence length and compared to each other. We compared 

several cases. In one case, the axial resolution was compared for two source power spectra: a 

Gaussian, and a non Gaussian which was visibly close enough to a Gaussian but having a slight 

dip at the peak (1.4% below the peak amplitude). A ~10% difference in coherence lengths was 

reported although the two power spectra had the same center wavelength and spectral bandwidth. 

The analysis was extended to different power spectra having the same center wavelength and 

spectral bandwidth but different amplitudes of spectral dip. The formation of the side lobes in 

point spread function was presented in relation to the irregularities in the source power spectrum, 

while their effect on axial resolution was analyzed using different metrics as part of the key 

contribution. In the above studies the quantification of axial resolution was based on an ideal 

system, i.e. the dispersion in the system was considered to be zero, while later in a follow-up 

study, an analysis was conducted showing the impact of group velocity dispersion in the 

specimen on axial resolution [Lee 2005, Akcay 2005a]. 

 

Another key contribution of our work was the experimental demonstration of the side lobe 

inhibition in the axial PSF of an OCT system and the achievement of suppression of spurious 

structures in the reconstructed images by optical spectral shaping of the source power spectrum. 

Such an experimental study was presented to our knowledge for the first time [Akcay 2003]. 
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This was a distinct work when compared to earlier studies directed towards the suppression of 

side lobes in the axial PSF, which were based on post-data acquisition digital signal processing. 

Furthermore, spectral shaping described a direct instrument optimization method that is the 

optimization of a broadband light source for the OCT imaging. In addition, we contributed a 

performance assessment method, called task-based assessment, which analyzed the impact of 

spectral shaping in OCT imaging. This method, which was demonstrated in OCT research for the 

first time by our group [Rolland 2004 and 2005], was employed to quantify the performance of 

the imaging system based on two tasks: a signal detection and a resolution tasks. Results showed 

that reshaping the source power spectrum was a benefit essentially to the resolution task, as 

opposed to both the detection and resolution tasks [Akcay 2005b]. In a signal detection task, the 

optical power of the source was shown to be the dominant factor regardless of the shape of the 

source power spectrum. In a resolution task, the importance of the specimen local variations in 

index of refraction was demonstrated showing that the axial resolution improved with increasing 

change in index of refraction at an interface in the specimen. 

 

Finally, towards the optimization of OCT and OCM for use in clinical settings, we analyzed the 

detection electronics stage. Detection electronics is a crucial component of the system that is 

designed to capture extremely weak interferometric signals in biomedical and biological imaging 

applications. Drawbacks of a commercially available lock-in amplifier utilized to demodulate the 

detected signal are its size and cost. We designed and tested detection electronics to achieve a 

compact and low-cost solution for portable imaging units and demonstrated that the design 

provided an equivalent performance to the commercial lock-in amplifier considering the system 
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sensitivity [Akcay 2005c]. The implemented detection device consists of a few ICs that filter, 

demodulate and amplify the signal, therefore the device is extremely compact in size compared 

to a lock-in amplifier. While commercial lock-in amplifiers have the advantage of being tunable 

over a wide range of frequencies, which has value for optimization across various applications, 

the detection electronics we designed was targeted to operate purposely at fixed modulation 

frequency and signal bandwidth to create a compact and low-cost solution for portable imaging 

units. Nonetheless, designed detection electronics can be adjusted for applications in the 

frequency range from 0 to 100 kHz by changing several surface mounted resistors. Although 

changing resistors does not provide instant tunability, it gives the freedom to adjust the current 

detection electronics or implement new ones for specific bandwidth and center frequency in the 

given range prior to any targeted application.     

 

As part of future work, the optical spectral shaping can be extended to operate at other common 

wavelengths and bandwidths for OCT sources. While different spectral shaping structures can be 

developed employing not only DMDs but also other spatial light modulators, techniques to 

overcome challenges in utilizing DMD-VIS can be developed. Also, micromirror based 

reflective spatial light modulators concentrating diffraction energy in a single order while 

operating at a desired wavelength and bandwidth may rise in the photonics market. On the other 

hand, major future work will be the extension of the task-based assessment method to include 

more complexity such as polarization effects, modulation, additional noise sources, scattering 

and dispersion.      
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APPENDIX A: CIRCUITRY OF DETECTION ELECTRONICS 
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In this appendix we present the electrical layout, i.e. circuitry, of the detection electronics 

which is described and discussed in Chapter 6. The full circuitry is demonstrated in four Figures. 

Figure A.1 shows the 4th order Butterworth filter that is designed with two UAF42 universal 

active filters to band pass filter an input signal modulated at ~40 kHz with a bandwidth of up to 

1.5 kHz. In Figure A.2 we see the demodulating logarithmic amplifier (AD606) that follows the 

BPF. At the output of the AD606 we installed a switch which connects the output either to the 

next stage which includes an LPF that has a cutoff frequency of 20 kHz and a single-ended-to-

differential amplifier (AD8138) which are shown in Figure A.3, or to the single-ended-to-

differential amplifier bypassing the LPF so that we have the freedom to engage the LPF or not. 

Figure A.4 presents the voltage regulator which provides ±5 Volts power supply to the AD606 

and the AD8138 and ±15 Volts to the UAF42’s from ±17 Volts DC input voltage from a 

laboratory DC power supply. 

 

 

 

 

 

 

 

 

 

 130



Figure A.1: BPF circuitry 
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Figure A.2: Circuitry of the demodulation, i.e. envelope detection stage 
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Figure A.3: Circuitry of LPF 
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Figure A.4: Power supply circuitry 
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APPENDIX B: LABVIEW INTERFACE 
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Figure B.1: The screen capture of the LabView interface where the parameters for imaging are 
entered. Such parameters are the speed of the stages, the distance they travel at each step, the 
sampling rate of the data acquisition and the number of samples recorded at each axial-scan. 
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Figure B.2: A screen capture of the LabView blockdiagram of the code controlling the stages and 
DAQ 
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