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ABSTRACT

An important goal in medical imaging is the assessment of image quality in a way
that relates to clinical efficacy. An objective approach to this goal is to evaluate the
performance of diagnosis for specific tasks, using receiver-operating-characteristic {ROC)
analysis. We shall concentrate in this work on classification tasks. Many factors may
confine the performance achieved for these tasks, but we shall concentrate on two main
limiting factors : imaging bias due to the form of the point spread function (PSF) and
object variability.

Psychophysical studies followed by ROC analysis are widely used for system
assessment, but it is of great practical interest to be able to predict the outcome of
psychophysical studies, especially for system design and optimization. The ideal observer is
often chosen as a standard of comparison for the human observer since, at least for simple
tasks, its performance can be readily calculated using statistical decision theory. We already
know, however, of cases reported in the literature where the human observer performs far
below ideal, and one of the purposes of this dissertation is to determine whether there are
other practical circumstances where human and ideal performances diverge. Moreover,
when the complexity of the task increases, the ideal observer becomes quickly intractable,
and other observers such as the Hotelling and the nonprewhitening (npw) ideal observers
may be used in the process of looking for good predictors of human performance.

A practical problem where our intuition tells us that the ideal ohserver may fail o
predict human performance occurs with imaging devices that are characterized by a PSF
having long spatial tails. The investigation of the impact of long-tailed PSFs on detection is

of great interest since they are commonly encountered in medical imaging and even more
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generally in image science. We shall show that the ideal observer is a poor predictor of
human performance for a simple two-hypothesis detection task and that linear filtering of
the images does indeed help the human observer.,

Another practical problem of high interest is the effect of background
nonuniformity on detectability. This study is of considerable interest because it is one more
step towards assessing image quality for real clinical images. When the background is
known exactly, the Hotelling and the npw ideal observers predict that detection is optimal
for an infinite aperture; a spatially varying background results in an optimum aperture size
that matches very closely the size of the signal. Moreover, given a fixed aperture size and a
background known exactly, an increase in exposure time is highly beneficial for both
observers. For spatially varying backgrounds, on the other hand, the Hotelling observer
benefits from an increases in exposure time, while the performance of the npw ideal
observer quickly saturates as the exposure time increases. In terms of human performance,
results show a good agreement with the Hotelling-observer predictions, while the

performance disagrees strongly with the npw ideal observer.
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CHAPTER 1

INTRODUCTION

Medical imaging is the art of using the interaction of radiation with the natural
elements within the body (soft tissue, bones, air, trace elements) to produce a functional or
morphological visualisation of its different parameters. The basic clinical imaging
techniques are the measurement of x-ray and ultrasound attenuation through the body, the
number of gamma rays emitted by radioactive tracers which have been injected in the body,
and the spatial density of spins using nuclear magnetic resonance imaging (MRI). Any
imaging technique may be conceived of as a two-stage process: a data-acquisition stage and
a processing and display stage. The acquisition stage usually involves a radiation source, an
object to be imaged, an imaging system, and a detection device. The radiation source may
be external to the object as in x-ray, ultrasound imaging, and MRI, or internal to the object
as in nuclear medicine where a pharmaceatical, tagged with a radioactive label, is injected
into the patient to bind with or accumulate at certain sites within the body. The quality of
the images depends on the design and level of optimization of the imaging device and on the
complexity of the object to be imaged.

Although we shall focus in this work on problems encountered in radionuclide
imaging or most commonly referred to as nuclear medicine, the concepts developed towards
assessing image quality can be applied to other imaging modalities as well, A typical
imaging system used in conventional nuclear medicine is an Anger camera, which consists of
a collimator, a scintillation crystal, and some electronics to estimate and record the position
of the detected gamma rays. To vield high resolution, the collimator must be very selective,

which usually implies very low collection efficiency. Because of the low number of counts
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recorded at the image plane, the images present a grainy appearance due to quantum or
Poisson noise. To lessen this effect, we may increase the collimator bore diameter or
decrease its length, but those measures lead to a loss in resolution. To capture more photons,
we may also think about increasing the dose in the patient or the counting time, but both of
these solutions are unacceptable to the patients, since increased dosage may only be at the
expense of tissue damage, while longer exposure times cannot be used for most patients, not
only because of their critical states of disease, but also because the acquisition mechanism is
not immune to patient motion. Patient motion is surely more likely to occur with increased
exposure times and would cause blurring of the images. Because of these restrictions in
dosage and exposure time and the necessity to work at high resolutions, nuclear medicine
images are always strongly corrupted by Poisson noise,

Medical images are always taken to fulfill a precise purpose or task, and the
quality of the images is a reflection of how well this task is performed. One example is the
simple classification task, where the physician is asked to classif y images as normal or
abnormal and, within the abnormal images, the type of the abnormality (for example,
pneumonitis, emphysema or chronic bronchitis for lung diseases). To make a diagnosis, the
physician uses different sources of information, such as previous studies performed on the
patient as well as the personal and family history of the patient. Even then, due to
limitations inherent in the imaging process or inherent to the object itself, viz., Poisson
noise, blur due to the imaging aperture and the detector, and object variability, t0 name the
most common ones, it is sometimes difficult for the physician to make a correct diagnosis.
The purpose of medical imaging is therefore to increase the probability of making a correct
diagnosis.

Before exploring ways to increase the performance of diagnosis, we need to define

a meaningful evaluation process. Receiver-operating-characteristic (ROC) analysis has been
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widely accepted in the medical community as being the way to evaluate accuracy of
diagnosis (Swets 1986). Many of the concepts on ROC analysis can be found in a special
issue of Seminars in Nuclear Medicine edited by Patton (1978), and some of them are
pointed out here. If we assume that, to classify each image of a set, we can compute a
number that we shall refer to as the test statistic, the discriminatic;n between normals and
abnormals is done by comparing the value of this number to a threshold. A key point in
ROC analysis is that the threshold value is made a variable. We define the ratio of the
number of abnormal images for which the test statistic is greater than the threshold to the
total number of abnormal images to be the true positive fraction (TPF) at the given
threshold, and similarly, the ratio of the number of normal images for which the test
statistic is greater than the threshold to the total number of normal images, the false positive
fraction (FPF) at the given threshold. The ROC curve is then a plot of the TPF versus the
FPF as the threshold is varied from a strict to a lax value. Some parameters, such as the
area under the ROC curve or the detectability index, can then be estimated from the ROC
curve to get a single number as a measure of diagnostic performance. ROC analysis is
commonly performed to find out which imaging device yields the best performance of
diagnosis, in other words to assess image quality in the clinic. Two approaches may be
taken in. this respect: either carry out psychophysical studies and analyze the data using ROC
or define and compute a test statistic that is useful to the assessment of image quality in the
clinic before performing ROC analysis.

Psychophysical studies, very useful in an early stage of image quality assessment,
are also very tedious and become largely impractical when dealing with system design and
optimization since the performance must be evaluated for each value of the parameters that
are being optimized for. This is why an alternative solution is investigated here, and we

shall try to find, for each specific task, a useful figure of merit to assess image quality. To



17
be a useful metric, a figure of merit should be a scalar such that all the tradeoffs between
the different parameters of the imaging process are accounted for automatically. It should,
of course, be calculable, and, because we direct our efforts in system assessment towards
assisting physicians in their diagnosis, the figure of merit should correlate well with human
performance. In some particular cases, where there is, for example, a lack of physican
experts to diagnose the images and where the cost of diagnosis becomes quite high,
excluding an important part of the population from being tested, one can imagine ignoring
this correlation and designing an expert system, calibrated using some training sets, that will
diagnose the images automatically (Bibbo et al. 1983), This is a totally different problem
from what we are looking at, but worth mentioning since one might ask why not use only
mathematical observers if their ability to perform is higher than the human. Our research is
directed towards working side by side with physicians and assisting them in making their
diagnoses by providing them with better imaging systems. The correlation between the
theoretical observer and the human observer is, therefore, of primary interest to us.
Moreover, we intend to use mathematical observers not to substitute for physicians but as a
means to optimize the imaging system during the design stage.

Assuming the use of ROC analysis to evalvate performance of diagnosis, we shall
now discuss ways to increase the performance . Given an object and an imaging modality,
the first step to undertake is to optimize the imaging process, such as the aperture geometry,
the distance from the object to the aperture, and the distance from the aperture to the
detector. Besides the limitations due to the imaging modality, the presence of overlapping
structures in the images is often a significant limiting factor as well, Historically, the
recognition of overlapping structures as a limiting factor has been the motivation for the
development of computed tomography, where one may reduce overlapping structures by

imaging slices of a 3D object instead of the object as a whole. We propose here to study the
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effect of background nonuniformity on detection and discrimination and investigate their
impact on the optimization process. Another way of increasing the performance of
diagnosis is to explore the benefit of image enhancement on image quality, as a way to
extract some specific information from the images and make it visually accessible to the
observer, The enhancement may include, among other things, greylevel manipulation, high-
pass filtering and noise smoothing. An important point about image enhancement is that,
while an image may subjectively look more pleasing to our eyes, it may not help the
physician in making a better diagnosis. Therefore, image enhancement should always be
thought of in terms of the task to be performed. Since we are interested in the objective
assessment of image quality, psychophysical studies are carried out to ascertain the
usefulness of the enhancement technique applied, while the performances of statistical
observers are computed to look for a substitute for psychophysical studies.

The goal of this dissertation is to make new contributions to the assessment of
image quality in medical imaging, and our approach here is to study the impact of some
imaging factors such as resolution and time exposure on the ability of human observers to
perform well specified tasks that present unusual complexities. In the process of this study,
we shall compare the performance of the human observer with several mathematical
observers and point out several discrepancies that we found. Chapter 2 presents a review of
the assessment of image quality in medical imaging. We review the use of statistical decision
theory as a means to define computable figures of merit to be compared with human
performance evaluated through psychophysical studies. Chapter 3 first discusses the general
importance of long-tailed PSFs. Long-tailed PSFs are described as tha sum of a3 sharp
central response that characterizes the intrinsic resolution of the systern and a broad response
that models, for example, scatter in the patient’s body or septal penetration in the collimator;

the performance of several statistical observers using long-tailed PSFs are then derived.
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Experimental techniques and psychophysical studies, to compare human performance with
theoretical predictions using long-tailed PSFs, are presented in chapter 4, where problems
involving the display of the computer-simulated images and their impact on performance
are investigated. Chapter 5 allows for the study of randomness in the background of the
object to be imaged. The effects of the size and the shape of the aperture and the effect of
the exposure time on the performance of two statistical observers are presented. The
methods and results of two psychophysical studies carried out using "lumpy” backgrounds to
study the correlation of the human observer performance with either the Hotelling or the
npw ideal observers are given in Chapter 6. Chapter 7 concludes this work with a
discussion of the impact of more realistic models of imaging systems on human observer

performance and some suggestions for further investigations.
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CHAPTER 2

ASSESSMENT OF IMAGE QUALITY IN MEDICAL IMAGING

The ability of medical experts to detect lesions depends to a great extent on their
degree of expertise, but even the skilled expert will fail to perform accurately if the images
available for observation are of poor quality. This chapter reviews different ways to assess
image quality in medical imaging and the convergence of those paths to a common goal,
finding a figure of merit that may be used not only to choose the best imaging modality but
also to optimize it properly -~ in other words, to yield images of higher quality to the expert
eye.

General Considerations

Evaluation of medical imaging systems faces a long-standing problem of how to
assess image quality, While contemplating a Picasso, a group of people may express very
different opinions ranging from great appreciation to total rejection. This type of quality
assessment is purely subjective, a strong function of the observers involved, and has a fuzzy
correlation with the object under observation. In medical imaging we are interested in the
objective assessment of image quality, since the acquired images can be very pleasing to the
eye but not show some of the features which are important to the physicians who are
making the diagnosis. Despite the fact that image quality has been an elusive point to
define, one thing is certain : it must be defined in terms of the task to be performed.

The purpose of medical imaging is to assist physicians in making a correct
diagnosis on the state of disease of a patient, and how well this purpose is fulfilled is a
measure of the quality achieved. Generally, the task to be performed may be conceived of

as either a classification or an estimation task, and often a combination of the two (Barrett
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1990). Classical examples of classification are detection of, say, lesions as in brain imaging,
nodules in chest radiographs, stenosis as in blood flow studies, and abnormal-tissue texture
as in lung imaging or liver scans. Examples of estimation may be the determination of the
size of a lesion, the degree of stenosis for abnormal coronary blood flow, or the ejection
fraction as in cardiac imaging. The specification of the task is therefore the first step to
undertake when trying to define image quality. We shall focus in this dissertation on one
form of classification task, the two-hypothesis or binary discrimination task, of which the
detection task is a simple but important case, All the concepts and results formulated for
the binary problem may, however, be generalized to an M-class problem by dividing the M-
class problem into a sequence of two-class problems. In a binary discrimination task, one
must decide between the presence of a signal s, under hypothesis H, or the presence of a
signal s, under hypothesis H,. In the case of a binary detection task, the hypothesis that
there is no signal present is called the null hypothesis and is often denoted as H,. To
standardize the notations, however, we shall denote as H, the hypothesis that no signal is
present and as H, the hypothesis that there is a signal present.

The next step in assessing image quality is to find a means to rank imaging
systems. Physical measurements such as the modulation transfer function, noise power
spectrum, signal-to-noise ratio (SNR) and resolution have been commonly used as indices of
image quality to assess imaging systems (Shosa and Kaufman 1981). The problem with
physical measurements is that it is quite unclear, in general, what their relationship to
clinical efficacy is. The efficacy of diagnosis is defined here as the extent to which an
observer can di imaging
procedure. A solution to this problem is to define a scalar figure of merit that is calculated
in such a way that all the trade-offs of image quality, resulting from an increase of the

values of some physical measurements while others decrease, are automatically taken into
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account (Wagner et al. 1985). Moreover, to be at the same time meaningful to the clinic,
this figure of merit must correlate well with the performance of the human observer, viz.,
the physician. The most common approaches are detailed clinical evaluation or the use of
physical phantoms and each, with its own advantages and disadvantages, have been
investigated in the medical community to try to solve this problem. All these approaches
stress a common important peint, however, that image quality of an isolated image has no
meaning in itself because of the random nature of the imaging process. Thus, we must
always, while addressing the problem of image quality, consider an ensemble of images.

Detailed clinical evaluation is the first approach that comes to mind. This
approach consists of collecting a set of similar and well verified clinical cases that must be
carefully matched for any comparison of two systems (Ker et al. 1988). The advantage of
such a procedure is that it directly relates to clinical efficacy. The pitfalls are the fact that
the procedure must be repeated for each clinical case and for each set of physical parameteis
of the modality under optimization. Moreover, matching cases must be found if two
modalities are to be compared together. Clinical trials are therefore quite difficult in terms
of assessing image quality and totally impractical if dealing with system design and
optimization,

A more flexible approach, which has become very popular, is to use physical
phantoms. Most phantoms are either very crude simulations of a real object or not even a
pretense of one. The advantage of using even crude phantoms is that we now have full
knowledge of the object to be imaged, and certain diseases may be simulated by adding, for
example, tumors at different locations in the chject. It now becomss possible t¢ generate
images for different parameters of the imaging modality in a reasonable amount of time and
alsc to eliminate the nontrivial matching procedures. The main disadvantage is that the

equivalence with clinical images is again often quite unclear, a model of a physical process



23
being only an approximation to reality.

One of the difficulties in assessing image quality in a way that relates to clinical
efficacy comes from the fact that the final element in the analysis of the imaging system is
the human eye-brain system, which is still too poorly understood to be accurately modelled.
This leads to the necessity of carrying out psychophysical studies to take into account the
human observer, This is quite an obstacle, however, when dealing with system design and
optimization because of the length of time required to evaluate the systems over the whole
range of wvalues that the varying parameters are allowed to take. Because of this
inconvenience, we need to explore some alternatives to psychophysical studies.

One alternative has been to consider the visual system as an optimum or
suboptimum detector and to use statistical decision theory in combination with some
physical measurements of the imaging modality to compute the performance of several
mathematical observers (Wagner 1977,1985). These mathematical observers can be used as
standards of comparison for human observers, if they are found to be good predictors of
human performance evaluated through psychophysical studies. In the process of comparing
mathematical and human observers, an important question to be addressed is whether or not,
for the task at hand, any information is being lost or altered at the interface between the
human observers and the cathode ray tube (CRT) monitor used as the display device

(Biberman 1973; Giger 1985, 1986).

Image Formation

adionuclide imaging it a technigue that uses the property of samma rays to
penetrate the body to image regions of interest within the body. The basic imaging process
in nuclear medicine is the projection of a radioactive 3D object on a 2D detector plane by

the use of an aperture between the object and the detector. Gamma rays cannot be focused
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since the index of refraction of any material, which is a function of the energy of the
incoming radiation, becomes 1 for highly energetic radiation. We shall assume in the
following discussion that we are only interested in a thin slice of the object, and therefore
that the object is also a planar radioactive emitter. The images, thus formed from a planar
object to a planar detector, are termed planar images. With the assumption of planar
imaging, we also make the assumption that the imaging systems we shall consider are linear
and shift-invariant. By linearity we mean that the principle of superposition applies in that
an image of a linear sum of objects is equivalent to the sum of the individual images of the
objects. This assumption is valid in nuclear medicine because of the small number of
photons or counts that are collected to form an image, this small number being a
consequence, of course, of the small doses of radiation that are allowed to be injected in the
patient at one time. A factor that would invalidate the linearity assumption would be the
saturation of the detector that may occur if the imaging time is too large or the emissive
source too strong, but this is generally not the case in nuclear medicine. The shift-
invariance property is generally a valid assumption in planar imaging for the type of
imaging aperture we envisage using. In order to image the object with high resolution, we
shall use either a pinhole aperture or a set of long ¢ylindrical holes as the imaging aperture.
In the case of a pinhole aperture, Barrett and Swindell (1981) show that the shape of the
response function to a point source is invariant with the lateral position of the peoint source
as long as the aperture plane is parallel to the detector plane. They also extend this result to
the parallel-hole collimator. In the case of planar objects as assumed, such imaging sytems
are shift-invariant. One factor that would affect the shift-invariance preperty of an
imaging system is the object depth, since the size and shape of the response function
depends strongly upon the distance of the object to the aperture. This factor is not an issue

in planar imaging compared to single-photon emission computed-tomography (SPECT)



25
imaging where slices of the object are imaged and the dependence of the response function
with the location in depth of the slice becomes a predominant factor for large objects.

We describe the emissive object as a function f(r), where r is a two-dimensional
(2D) position vector in the object space. If we denote by d?r the area of a source slement
located at point r, Rr) d?r is the mean number of photons emitted from the elemental area
d2r per unit time into all space. If we now observe the system for a time T, T f(r) d2r
represents the mean number of photons emitted from d*r during T, if ﬁr) is independent of
time. In the same way we described the area of a source element within the object space,
we define an area element d2r” in the image plane, where r” is a 2D position vector in the
image plane. If we denote by dQ the solid angle subtended by the detector element from a
point in the object space and if there were no absorbing material in the space between the
object and the image plane, the detector element would intercept a fraction dQ/4r of the
radiation emitted from any source element since the source emits into 47 steradians. The
mean number of counts emitted by d?r and intercepted by d?r” during the time T is then

given by

o df o cos¥(f(x, ")) .
op i _ 2 2
T f(r) d2r 4 I {(r) d2r e ) lz)z d2r 2.1

where d, and d, are the distances from source to aperture and from aperture to detector,
respectively, and #r,r”) is the angle between the normal to the detector surface and the line
of sight from source to detector (see Figure 2.1). If we now take into account the
transmitting aperture located between the object and the detector, we shall have a complete
description of our image formation system. The principle of image formatiion is that a
photon emitted by the emissive object at location r in the object space and detected at

location r” in the image space must have passed through the aperture plane at location r’. If
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Fig. 2.1. Diagram for solid-angle calculation. The aperture located between the source

plane and the detector plane is omitted for clarity.
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we denote by t(r') the transmittance of the aperture at location r’, the fraction of the
incident photons that passes through the aperture is t(r’) itself. Moreover, the mean number
of photons g(r”") d2r”, intercepted by d2r” in the image plane, may come from any location
in the object plane and, therefore, an integration over the object space is required. The

expression for g(r”) d?r” is then given by

a(r) d2r” = 41r(le—+dz)2 dzr” J d2r cos3(8(r, 1)) £(x) t(r’) . (2.2)

We shall make the additional assumption that the distance d,+ d, is large compared to |r|
and |r”|, so that the angle 6(r,r”) may be approximated by 0. The vector r’ can also be
expressed as a function of r and r”, and equation (2.2} reduces to {see Barrett and Swindell

1981)

— i z 4 = T 2 »r 2 r. ’
g(r”) d2r —41r(d1+d2)3 dar d2r f(r) t{ar”+br) , (2.3)

where a and b are relative spacings defined by

a=— and b= 32— . (2.4)

by their projections on the image plane, I we denote by n(r”) the scaled version of #{r"),

and if we assume that d, = d, = d then, b/a = 1, and f(r”) is also the scaled version of f(r).

The expression for g(r”) then becomes
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Iy s — T - ] s = e e " i
g(l’ )_ 47r(d1+d2)2 f(r )* p(r ) |||C'Tf(r ) p(l' ) b} (2'5)
with

£ = 1/(16nd2) (2.6)

The parameter « will often be referred to as an efficiency factor since it depends only upon
the geometry of the imaging system. The variable r”” in equation (2.5) is a dummy variable,
and we shall substitute r”* by r to describe the spatial variation of any function,

An actual measured image g(r) can always be written as g(r) + n{r) , n(r) being
the noise of the system and ar) the mean count density. Over an ensemble of images,
however, we shall distinguish, in general, between two types of noise : uncorrelated Poisson
noise, n{r), that is inherent to the quantum nature of the emitted and detected photon
stream, and background noise that is a function of the statistical nature of the background
inhomogeneity and is responsible for the statistical nature of the object f{r). If we consider
a two-hypotheses detection task, for example, we shall call background noise or stuctured
noise all the anatomical features in the image that are not the signal to be sought. The term
structured noise was given to background noise by Revesz et al. (1974) to differentiate it
clearly from quantum noise.

Since we are working with digital images, let us define g(i) = g(r;) €2 , 1; being the
location of the ith pixel and €2 its area. The set of, let us say, N numbers g(i) defines an N-
dimensional data vector, g, by lexicographically ordering the elements. Boldface type will
be used io denoie mairices, a vecior being a particular case, while normal iype will represent
scalars. In our simulations the object is a discrete representation of a 2D function f(r),

whose pixel values are lexicographically ordered to form an Mx1 column vector f. We can
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represent the imaging system by an NxM linear operator H, where M is the number of
sample points in the object plane and N is the number of detector elements. We can

therefore write the imaging equation as
g=Hf +n (2.7

In component form, the imaging equation becomes

M
gld) = Z H(, j) () + n(i) . (2.8)
j=1

The system operator H contains the aperture transmission function p(r), the efficiency

factor «, and the exposure time T.

Statistical Decision Theory

Choosing statistical decision theory to assess image quality is a way to recognize
that objective decisions must be based on numbers, not on personal opinions. In a binary
decision problem, the decision reduces to the classification of the data at hand into two
regions within a so-called feature space.

The first features we may think of are the pixel values of the images themselves,
and in that case the feature space is simply the image data space. More generally, however,
some other features may be selected to map an N-dimensional data space into a lower
dimensional space, allowing for a reduction the dimensionality of the working space. This
reduction of the dimensionality of the working space offers, among others, the advantages

of faster computations and smaller storage requirements. Feature selection is most often
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used, however, to show class separability more effectively. Class separability, however, is
not only a function of the selected features, but also of the classifier itself. To resolve this
ambiguity, one can decide first of all on a classifier to be used, and then proceed to the
selection of the features, given the classifier. In practice, feature selection and classifier
design are not so different operations since the classifier may also be conceived of as a
feature selector that maps the selected features to a single feature. This single feature will
always be referred to as the test statistic and denoted as A. A summary of the state-of-the-
art in discriminant analysis and clustering is given in a Panel on Discriminant Analysis,
Classification, and Clustering (1989).

In a binary decision task, we may visualize the two regions to be defined as
separated by a boundary such that A = A_, where )  is a constant, is the equation of the
boundary between the two regions of interest. Thus, the decision process consists of
calculating a test statistic A for each image of the observation set and comparing if to a
threshold A.. If hypothesis H, being true yields, on average, greater values for A than H,,
then g is said to belong to class 2 if A > A, and to class I otherwise. We shall now look at
how to form the test statistic and how to set the threshold A to define the two regions.

The test statistic is a function of the data g and of the object and imaging
parameters, as well as the nocise and object statistics. To form the test statistic, we make the
assumption that X is a linear function of the data. One reason for considering linear test
statistics is that they are easy to implement. Another reason is that linear operations on the

data may be a good approximation to what the human can do (Fiete et al. 1987), though this

ED
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, by any means, proven, The general {

assertion h

A =atg | (2.9)
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where t denotes the transpose operation and a is the feature operator. Equation (2.9) shows
that X is a function of several random variables, and therefore it is itself a random variable.
In the common case where A is normally distributed, a general figure of merit is the so-
called index of detectability d, (Simpson and Fitter 1973). The index d, is defined as

[y - AP

P, [o,2+P, [02]2 ’ (2.10)

[ =

where A_k = (A|Hg), [ox 2 = (> - A_k)z), with the angle brackets indicating the ensemble
average over the elements of the k' class (k=1,2), and P, and P, are the a priori
probabilities of occurrence of class 1 and 2, respectively, satisfying P, +P,=1. In the
particular case where o, = 0, = 0y, d, reduces to the index of detectability known as &’

(Tanner and Birdsall 1958; and Goodenough et al. 1973) given by

[A; - A,

T (2.11)

@y =

Figure 2.2 shows two possible distributions of the outputs A from the decision device when

signal s, is present, on the left hand side, and when signal s, is present on the right hand

side of the decision axis. The indices d, and d’ are measures of the overlap of the two

distributions, or in other words of the inherent inability of the system to discriminate signal
s, from signal s,.

The concept of a decision threshold is basic to signal detection theory. The choice

of a decision threshold allows for the classification of the images and alss for the

determination of the percent correct within each class. Historically, the performance or

accuracy of diagnostic systems was measured by the total percent correct of diagnostic
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decisions. This information is important to the evaluation but incomplete since the percent
correct is a strong function of disease prevalence, This point is quite important for
understanding the necessity of using ROC analysis, and the following case is often chosen as
an illustrative example. If only 5% of the patients in a population have a particular disease,
then a system may be 95% accurate simply by diagnosing those 5% to be normal patients.
Stated more generally, the percent correct is a relative measure of true-positive and true-
negative decisions in the tested population, but does not give any information on the
proportion of those decisions within each subclass (normal and abnormal) separately. Better
indices of performance are, therefore, the TPF and the FPF defined earlier in chapter 1, so
that the error of diagnosis for diseased and healthy patients can be measured separately.
Two more indices, known as the true-negative fraction (TNF) and the false-negative
fraction (FNF), can also be used beside the TPF and FPF. Let us define the TNF as the
ratio of the number of normal images for which the test statistic is lower than the threshold
to the total number of normal images. Similarly, the FNF is defined as the ratio of the
number of abnormal images for which the test statistic is lower than the threshold to the
total number of abnormal images. Abnormal and normal images are also termed positive
a’nd negative images, respectively, positive (negative) to indicate that the disease is present
(absent). With this terminology, hypothesis H, can also be termed the positive hypothesis
while H, refers to the negative hypothesis. The four indices, TPF, FPF, TNF, and FNF are
related as FNF=1-TPF and FPF=1-TNF, and all the relevant information with regard to
accuracy can be captured by recording one member of each of the complementary pairs of
ratios. The usual choice is the TPF and the FPF, also called the "hits" and "false alarms",

defined in integral forms as
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(& 4)
TPF = J p(A|H,) dx (2.12)
At:
and
oo
PPF=J' p(A|H) dx (2.13)

c

respectively. Due to the inherent inability of a system to completely discriminate between
two signals because of the overlap of the probability densities of the test statistic under the
two hypotheses, any system, unless perfect, will vield nonzero values of the FNF and FPF.
Moreover, to discriminate between positive and negative cases, physicians usually choose
different decision thresholds, and the performance of the diagnostic system becomes a strong
function of the observers who read the images. Allowing this threshold to vary is allowing
for the trading between the fraction of true positive and false positive decisions. By varying
the decision threshold, the resulting TPF and FPF will trace the receiver operating
characteristic (ROC) curve (Green and Swets 1966; Swets and Pickett 1982), The ensemble
of pairs (TPF, FPF) resulting from varying the threshold can be chosen as a measure of the
performance since they do not depend on either the prior probability of positive and
negative events or the decision threshold. For example, we do not want the performance of
a diagnostic system for detecting lesions to be specific to the relative frequency of lesions in
the specimens chosen for the test sample.

The ROC curve came out of the developments of radar during world war II (Van
Meter and Middleton 1954; Peterson et al. [954; and Grettenberg 1963), but was intensively
used in psychology and psychophysics starting in the 1960s before its integration in medical

diagnosis by Lusted (1960). Lusted applied ROC analysis to previously published data on
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the detection of pulmonary tuberculosis to show that apparent differences in performance
were due to the use of different operating points on the ROC curve, each point
corresponding to different values of TPF and FPF. A good review on the application of
ROC analysis in radiology has been given in a paper by Metz (1986). The idea behind using
ROC analysis is to extract a single number from the ROC curve to provide a measure of
performance. The now preferred measure is the proportion of the area of the entire graph
that lies beneath the curve (Hanley and Neil 1982, Swets 1988). One is then faced with the
task of fitting a continous ROC curve to the data points lying on the curve. A
nonparametric estimate of the area under the ROC curve can be obtained by connecting the
successive ROC points by lines and using the trapezoidal rule to measure the area beneath
the connected points (Green and Swets 1966). A parametric approach to solving this
problem is to assume some functional form for the ROC. The most popular functional form
in medical imaging is the binormal form where each ROC curve is assumed to have the
same functional form as that implied by two normally distributed decision variables with
generally different means and variances {Green and Swets 1966; Egan 1975; Swets 1979,
1986). A binormal functional form has the interesting property that all ROC curves are
transformed into straight lines if they are plotted on "normal-deviate" axes. If we make the
change of variable z = ()\—,l\_l)/c:r1 , and if we denote as ¥(z) the cumulative standard normal

distribution defined by

z
W(z) = \/LZ_W J dx e™x%/2 | (2.14)

=00

then instead of graphing the TPF as a function of the FPF as in conventional ROC plots,
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“normal-deviate" plots show zypp as a function of zgpp, where zppp and zppp are defined

by
TPF = ‘I’(ZTPF) and FPF = ‘IJ(ZFPF) . (2.15)

A binormal ROC curve can be interpreted in terms of an effective decision variable )

arising from two Gaussian density distributions such that

POJH) = = exp(-3/2) (2.16)
and
p(A|H,) = \/—12_; exp(-(a-bX)2/2) . (2.17)

In this interpretation, p(/\]Hl) has zero mean and unit standard deviation, while p(,\|H2) has
a mean of a/b and standard deviation of 1/b. On normal deviates, any binormal ROC plots
as a straight line of the form zppp = a + b zppyp with ordinal intercept a and slope b. A
maximum-likelihood algorithm is then used to estimate the slope and intercept of the fitted
line, as well as the area under the ROC curve, denoted as A,, where the subscript z serves
as a reminder that the measure was obtained from a binormal graph (Dorfman and Alf
1969; Swets and Pickett 1982; Metz 1986). The justification for this binormal assumption is
that even when the probability densities are not Gaussians, there may be a monotonic
transformation that can transform the distributions into Gaussians (Metz 1986). The ROC
itseff stays unchanged by any linear transformation even though the probability densities
themselves may be changed.

A conventional ROC curve and its equivalent normal-deviate graph are plotted in

Figure 2.3. For the conventional plot, the closer the curve to the upper left corner, the
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higher the inherent discriminability, since for the same FPF, it yields a higher TPF. Points
along the main diagonal will be obtained when the two probability densities perfectly
overlap. In general, ROC curves must be specified by two parameters a and b if a full
description of the shape of binormal ROC curve is required. In practice, however, we are
not so much interested in the shape of the ROC curve, but rather in assigning a single index
of performance to the system. This is the case, for example, when one is interested in
ranking several diagnostic systems. I we assume that we are in this latter case, figures of
merit such as A, , d°, d, or d, will be used instead (Whalen 1971; Lusted 1971). For ROC
curves with binormal forms, however, the indices of detectability may be calculated from
the values estimated for a2 and b. The expression for d, is given by

(A_z_’\_l)z 2a?

0= o= e (2.18)

The index of detectability d, is different from d, by the fact that it uses the average
standard deviation instead of the average variance. Thus, d, is defined by
(’\_z‘)‘_ﬂz 4a?

AT = o o) = by (2.19)

If g,= 0,= 0, then b=1 and both d_ and d, reduce to the figure of merit d’ related to a by

L

AT (2.20)

4T =

The area under the ROC curve itself can be expressed as a function of the appropriate index

of detectabilty d, where d denotes here d, or d’, as
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A, =T(d/V2) (2.21)

which is most often expressed as
A, = % (1+erf(d/2) |, (2.22)

where erf(z) is the error function defined as

Zz
- 2 -
erf(z) = 7 J'O dx exp(-x2) , (2.23)
and erf(z) and ¥(z) are related by
Wz) = %( 1 +erf(z/v3) . (2.24)

We shall now define mathematical observers that are commonly used for image
quality assessment, that are calculable for the type of task that we are looking at, and give
expressions for the test statistics that they use. We choose to review the ideal, the
nonprewhitening (npw) ideal, the channelized ideal, and the Hotelling observers, which we
shall define as we encounter them below. We shall show that for each observer much
insight may be gained by studying the expression of the test statistic itself. As we stressed
earlier, a mathematical figure of merit is only useful if it is a good predictor of human
performance, therefore, we shall discuss as well the motivations for considering those figures

of merit in relation to human performance.



40

The Ideal Observer
The ideal Bayesian observer is a mathematical observer whose strategy is to base its
decision on the likelihood ratio. The likelihood ratio is defined as the ratio of the
probability of the data given hypothesis H, to the probability of the data given an

alternative hypothesis H,,
_ plg|H,)

L= el (2.25)

The output of an ideal observer device is thus simply a number. To be able to compute this
number, however, the observer must know the probability densities of the data under each
hypothesis. The knowledge of the probability densities requires the knowledge of the
statistics of the object to be imaged, the imaging system, and the noise statistics. Under the
assumption that the likelihood ratio can be computed, it is then compared to a decision
threshold to decide whether hypothesis 1 or 2 is true.

The motivation for using the ideal observer as a standard of comparison to predict
the performance of the human observer comes from the fact that the ideal observer has been
found to be a good predictor of human performance for well defined and simple tasks such
as the detection of a signal known-exactly (SKE) in white Gaussian noise (Barlow 1957,
1958, 1962; Burgess et al. 1979, 1981, 1982; Watson 1983; Judy et al. 1987; Legge et al.
1987, Wagner and Brown 1982). On an absolute scale, however, real observers are much less
sensitive than ideal observers. A quantitative measurement of this loss in sensitivity is the
iciency factor, defined as the squared ratio of the detectability of the human Opuman 10
the detectability of the ideal observer d,g.,, (Tanner and Birdsall 1958; Barlow 1978).

Efficiencies in the range of 25% to 75% for the human observer relative to the ideal
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observer have been reported by Burgess in most of his experiments, under optimal display
conditions (Burgess et al. 1981, 1982 ). We could argue that a 25% efficiency is already in
itself a counterargument for using the ideal observer as a standard of comparison for human
performance, but there are stronger counterarguments against using the ideal observer. The
first of them is that cases of severe discrepancies between human and ideal performances
have been demonstrated. Among others, Barlow (1958) showed that the predicted relations
between threshold energy and background intensity (the so-called square-root or de Vries-
Rose law), target area (Piper’s law) and target duration (Pieron’s law) hold over limited
ranges of those variables. Some of these results are summarized in a review article by
Geisler (1989) where many other psychophysical experiments with actual human data
compared to the ideal observer predictions can also be found. Another more recent example
of discrepancy between the human and the ideal observer is the detection of signals in
correlated noise. It is now well established that humans fall far below ideal in correlated
noise experiments, as suggested by Hanson (1979) and shown later on by Myers et al, (1985).
Another counterargument against using the ideal observer is that the tasks that may be
considered have to be quite simple, and thus their relevance to clinical efficacy is not always
clear.

These observations on the ideal observer have led to the use of other constructs for
optimal detection, such as the npw ideal observer, the channelized ideal observer, and the
Hotelling observer. On the other hand, to consider the visual system as an optimum or
quasi-optimum detector or equivalently to compare its performance to an optimum observer

tells us how far from perfect detection the human stands.

Example 2.1. Detection of A Signal in White Gaussian Noise.

A classical example is the detection of a low-contrast, exactly known signal
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superimposed on a constant background and embedded in white Gaussian noise. The
likelihood ratio is now the probability that the data are due to the presence of the signal (in
noise) divided by the probability that the data are due to the noise alone (Van Trees 1968).
If N is the number of pixels, the probability density of g given hypothesis H, D(ngk) , 18

a multivariate Gaussian distribution given by
p(g|F) = (@m [Ky[)7/2 exp [ 3 (&8 Kit (g—g_k)] : (2.26)

where g, = (g|H,) = He(D)[H ... (80| Hy ),.., 8N)[H )TF, K is the N x N covariance
matrix under hypothesis k, with k=1,2, given by {(g-g,) (g-g)t|H), and |K, | is the
determinant of K. Any monotonic transformation of the test statistic will yield the same
performance; therefore, because of the exponential form of the probability density given by

equation (2.26), we shall work with the log-likelihood ratio defined as

p(g|H,)

= In @H—l) , (227)

where In is the natural logarithm. By substituting p(g[Hk) given by equation (2.26) into

equation (2.27), the expression for the log-likelihood ratio becomes
L = - % (g-g;_)t K,* (g—t;,;) + % (g—gﬂ_l)t K,™! (g—g_l) + terms independent of g. (2.28)

Since we assumed signal-independent noise, K, =K, =K, and £ can be written as
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i

L = 5 gt K1 (g—z-g_l) + % (é;-g;)t K™! g + terms independent of g. (2.29)
Since the covariance matrix is symmetric, its inverse is symmetric, and if we denote by Ag

the difference of the mean images g, - g, , then

(Ag) K-t g = gt K1 Ag (2.30)
and £ simplifies to

£ =(Ag) K1g (2.31)

where we have dropped the terms independent of g. The test statistic is found to be linear
with the data. Thus, the ideal-observer discriminant is not only the optimum discriminant
but also the optimum linear discriminant for the detection of a signal in signal~-independent
white Gaussian noise.

The covariance matrix K being positive definite, if the inverse K-! of the
covariance matrix exists then K~1/2 exists, and we can gain more insight into the expression

for £ by writing equation (2.31) as
¢=(K-Y/2ag)t (K-V2g) (2.32)

This expression shows that the data are first filtered by the inverse of the square root of the
covariance matrix, an operation known as prewhitening. The ideal Baysesian observer
performs, then, a matched-filtering operation, correlating the prewhitened received data
K-V 2g with the expected signal Ag_seen through the prewhitening filter. For this reason
this ideal observer is often referred to as the prewhitening matched-filter. A scheme of the

ideal observer, as just defined, is given in Figure 2.4. By identification of equation (2.9)
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and (2.31), the feature operator for the ideal observer is given by

a=K-1Ag , {2.33)

and for the two-hypotheses detection task, the detectability index d, given by equation
{2.10) becomes

£, - £
P [0, +P, [0, ~

[d, ]2 = (2.34)

where [0 1 = [{(£-£,)?|H,) with k=1,2, and ¢ = {¢JH,). For signal-independent noise, o,
=0, = 0y, and the variance reduces to a single term. If we denote ((€[H,}-(¢|H,)) as AZ,

then Af and og may be calculated using the expression for the test statistic given by

equation (2.31). The results are

AL = (fH,) - (¢H,)
= ((Ag) K 1g|H,)- ((Ag)¢ K 1g|H, )
= (88 )t K1 (glH,) - (Ag)t K- (g[H, )
= (Ag ' K-t Ag (2.35)
[og = ((¢-£,)2|H, )

(((Ag )t K-1g - (Ag)t K- (g]H,))? [H, )
((Ag )t K1 (g-g,) (g-g,)* K™t Ag [H, )

- (AF) K (g

(Ag )P K-1K K1 Ag

(Ag )t K-t Ag (2.36)
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Equations (2.35) and (2.36) show that [07]? equal AZ  This equality results from the
assumption that the noise is signal independent. For the ideal observer, d, will be denoted

as digeal» and the substitution of A¢and oy into equation (2.34) leads to
[digea]? = (Ag)t K-1Ag | (2.37)

Example 2.2 Detection of a Signal Embedded in Uncorrelated Poisson Noise.

The probability density of the data g given hypothesis Hy (k=1,2) is now given by
a multivariate Poisson distribution. Because of the uncorrelated nature of Poisson noise, the
multivariate probability density is simply the product over the pixel values of Poisson

probability densities. It can be expressed as

i) _
p(g|H) = ﬂ gkg((ll’), exp( - 21(0) ) (2.38)

‘The likelihood ratio is then given by

p(g|H,)

£ =1In
p(g|H,)

N N
Z g(i) { == ; } + terms independent of g(i) . (2.39)
g,(i

i=1

In the low-contrast approximation we can write g_z(i) = E;(i) + Ag—, with Ag_« 1, and the

expression for £ becomes
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N _
Z —Bil"_
i=1 8,()
= (Ag)t Kjlg (2.40)

since for uncorrelated Poisson noise the covariance matrices K, (k=1,2) are diagonal and

their elements may be-written as
Ki(,j) = 3_k(1) &; - (2.41)
Moreover, in the low-contrast approximation, K, =K, = K, and equation (2.40) becomes
= (Ag)t K1g (242)

which is also the expression for the test statistic given by equation (2.31) that we found for
the case of signal-independent white Gaussian noise. The detectability index associated with

¢ is then again given by

digeat = (Ag)* K7t Ag

N
Z @ﬁgﬁ . (2.43)
1
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The Nonprewhitening Ideal Observer

The npw ideal observer and the ideal observer differ in their ability to take into

account noise correlations. The npw ideal observer, also referred to as the quasi-ideal
observer (Wagner et al. 1985), is a suboptimal observer which assumes white uncorreiated
noise. The assumption of uncorrelated noise is not sufficient since the noise may be
uncorrelated but not white. The strategy of the npw ideal observer, while performing a
discrimination task, is to apply a mask or template on the image in order to perform a cross-

correlation of the expected signal with the image data. The test statistic is then given by
A= (Mg) g, (2.44)

where Ag is the expected signal or template laid on the image data g. This tempiate-
matching strategy, described in the space domain by equation (2.44), may also be performed
in the Fourier domain. In the Fourier domain, the data transform is multiplied by a
matched filter, that is the complex conjugate of the transform of the expected signal. We
shall represent the discrete Fourier operator by F. We use F to map the expected signal into
the Fourier domain as follows

FAg = AF , (2.45)

where Agfm) is the Fourier amplitude of Aé”_ at frequency p_ . Note that the Fourier
operator, as we have defined it, maps a lexicographically ordered vector from the space
domain to a lexicographically ordered vector in the Fourier domain. The test statistic,

expressed in the Fourier domain and denoted as Ap, is then given by
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dp o= (AT §

=(AE) § (2.46)

and since Ag is real, the transpose conjugate denoted by the dagger symbol + becomes
simply the transpose, Moreover, we note that, according to Parseval’s theorem (Gaskill
1978), Xp given by equation (2.46) equals X given by equation (2.44). This equality follows

since F is a unitary operator satisfying the equation

FIF =1 |, (2.47)

where I is the identity matrix.

The npw ideal observer is said to be suboptimal because it treats the noise as if it
were white. For white noise, K = o2 I, and the npw ideal observer becomes equivalent to
the ideal observer.

The npw ideal observer is of great importance since human performance has been
interpreted using its strategy in two cases. The first case was for the detection of signals
known exactly embedded in signal-independent, white, Gaussian noise (Barnard 1972;
Burgess 1979; Wagner 1985), while the second case was presented by Myers et al. (1985)
who showed that for signals embedded in correlated noise, the performance of the human
observer could be interpreted in terms of the npw ideal observer rather than the ideal
observer. They also showed that the npw ideal observer was equivalent to the channelized

ideal observer.

The Channelized Ideal Observer

The concept of the channelized ideal observer comes from findings in the
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psychophysics and the physiology of human vision. We shall review some of the
experimental results that show that retinal images are decomposed into several frequency
channels at the visual cortex level.

The existence of frequency channels in human vision has been demonstrated by
the pioneer works of Campbell and Robson (1968). Their experiments to prove the
existence of channels were done in parallel with other experiments to measure the contrast
sensitivity function of the human observer {(DePalma and Lowry 1962; Campbell and Green
1965; Campbell et al. 1969; Kulikowski and King-Smith 1973). Both sets of experiments
used vertical sinusoidal gratings of different spatial frequencies w as the stimuli, The
contrast sensitivity function is defined as the inverse of the contrast threshold, which is the
minimum contrast of the grating necessary to detect it on a uniform background. The
outcome of those experiments was that the contrast sensitivity drops at high frequencies of
the grating due to the finite resolution set by the eye, as well as at very low frequencies
where the drop could be explained by some inhibition process taking place at the neural
level. This inhibition process, also referred to as the brightness-contrast effect (Ratliff
1965), will prove to be of great interest to us as we study the impact of long-tailed PSFs on
human detectability.

These observed variations in performance of the human observer due to different
frequencies of the stimuli led to some further experiments based on adaptation techniques.
If a stimulus of frequency w, is shown to an observer for a prolonged time, the contrast
sensitivity decreases. This is the adaptation process, Campbell and Robson (1968) showed
that this adaptation process holds for any stimulus whose frequency is in a frequency band
around w,, but that outside this band the sensitivity is not affected. Further experiments
were then presented by Sachs, Nachmias and Robson (1971) using compound gratings. They

found that, for a two-frequency grating, the two frequencies were detected separately unless
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they differ by less than a certain amount. The results from these different experiments
demonstrate that at some stage in the visual process the visual information is processed
separately in different frequency bands. To model this process, Campbell and Rbbson
assumed that the retinal image is decomposed through independent band-pass linear filters.
These band-pass filters are now referred to as frequency channels.

Some other groups of researchers (Georgeson 1975; Nachmias and Weber 1975)
have further characterized these channels by showing that the bandwidth of these filters is
around an octave, which yields filters of constant bandwith on a logarithmic scale. On the
other hand, earlier research by Hubel and Wiesel (1962) had been carried out on cells
belonging to the visual cortex of cats and monkeys who have a visual cortex similar to the
human. They discovered a class of cells, called simple cells, whose response is a function of
the frequency of the visual stimuli. Their responses have been shown by Maffei and
Fiorentini (i976) to be linear. The observed linearity allows them to model these cells as
linear filters. Finally, Andrew and Pollen (1979), Maffei et al. (1979), and De Valois et al,
(1979) showed that the bandwidth of simple cells ranges from 0.6 to 2.0 octaves with an
average value of 1.3 octaves, findings that agree with those found by Georgeson (1975) and
Nachmias and Weber (1975). The findings of channels in the human vision process seem to
indicate that the low-level processing of the visual cortex can be modeled by multiple
frequency channels.

The idea behind the channelized ideal observer is to add frequency-selective
channels to the ideal-observer construct. The modification of the ideal-observer calculations
to implement the concept of channels has been investigated by Myers et al. (1987). As for
the ideal observer, one can compute the likelihood ratio of the data given two hypotheses,
but now the likelihood ratio of the data is taken after the data have been processed by the

frequency channels of the observer. A model of the channelized ideal-observer for the case
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of white, Gaussian noise has been derived by Myers et al. (1987), where details on the

implementation can be found.

The Hotelling Observer

The Hotelling observer is a linear classifier, first presented in a classic paper by
Harold Hotelling (1931). This classifier is sometimes better known from the work of Fisher
(1936). We shall review the two-class problem relevant to the studies presented in this
work; the generalization to M classes may be found in texts on statisticai pattern recognition
such as that by Fukunaga (1972). The use of the Hotelling observer as a means to assess
image quality has been demonstrated by Gu and Lee (1984), Barrett et al. (1985, 1986) and
Smith and Barrett (1986). To be a good figure of merit, the Hotelling observer must
correlate with human performance. Some examples of this correlation have been presented
by Fiete et al. (1987) and White et al. (1989), who have shown a high correlation between
the human and Hotelling observer for detection of tumors, variable in size, contrast, and
position, in simulated liver scans imaged through different collimators.

We shall show that the Hotelling observer is very intuitive and a simpler construct
than the ideal observer since it does not require the knowledge of the probability densities,
but is based, instead, on the so-called scatter matrices, S, and S,, that describe the first-
order and second-order statistics of the two classes. The interclass scatter matrix S;, a

measure of the separation of the class means, is defined as

2
S=ZP[E-E][E—E3* (2.48)
1 k k 0 k 0 s

k=1

where the subscript k and angle brackets indicate the ensemble average over the elements of
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the kth class, Py is the a priori probability of occurrence of class k, and a, is the grand
mean given by

B =P g +P,g, . (2.49)
By substituting equation (2.49) into equation (2.48), S, may also be written as

S, = PP, (g,-8) (g, -8)¢ . (2.50)

The intraclass scatter matrix S,, @ measure of the scatter of samples around their class

means, is the average covariance matrix given by

2
S, = Z P, K, |, (2.51)
k=1

where K is the covariance matrix for class k, defined as
Ke=([gg 1[gg 1) . (2.52)

In order to formulate an index of classification, we define the Hotelling trace criterion

(HTC) as
I=tr (8;18,) , (2.53)

where tr (A) denotes the trace (sum of the diagonal elements) of the matrix A. The beauty
of the HTC is that it requires the knowledge of only S, and 8, to calculate how separable

the classes are, while the Bayesian ideal-observer approach requires the knowledge of the
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probability densities, Moreover, the value of J increases as the class means get farther apart,
which corresponds to larger values of S,, and (or) the individual classes cluster tighter to
their mean values, which corresponds to smaller values of §, .

Given the Hotelling classifier, we must find the feature or test statistic Aot that
maximizes J. We assume that we select Afoi DY applying a 1xN transformation matrix at to
the data vector g,

Mot = a8 g . (2.54)

To simplify the notation we shall refer to ) instead of Auot- The scatter matrices in the

feature space, denoted as S,, and S,» are in fact 1x] matrices and are given by

2
S1A = ZPI:[A_I:'AG]{XI‘{“AQP

]
P
MN .!f..

Pe [ X - A, I2 (2.55)
k=1

Sy = P ([ 22 T[22 TF)

Mm

=
H

1

P ([A-x ) (2.56)

Mw

-
]
—

where X, = P, X, + P, &, . By using equations (2.56), (2.55), (2.54), (2.51), (2.52), and

(2.48), it can be shown that S,, and S, are related to 8, and §, by

Sy =a" S a ad S, =a8§ a . (2.57)
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Let o, .4, (p=1,..,P) be the eigenvalues and eigenvectors of 8;1S,, respectively. The trace

may then be expressed as a function of the eigenvahues o, as

P
J=tr(§,"18,) = Z . (2.58)
p=1

Since we showed that S, can be written as y y* (see equation (2.50)), the rank of
S, is one and a single eigenvalue is nonzero. The sum over the eigenvalues given by
equation (2.58) reduces then to @;. On the other hand in feature space, since 5,5 and 8,

are 1x1 matrices, the Hotelling trace denoted as J s is a scalar, and we shall write
JA = SZTXI SIA = ﬁl . (259)

Since S, and S, are Hermitian matrices, 5718, is also an Hermitian matrix, and the
eigenvectors in feature space form a complete orthogonal basis set. Therefore, the feature

operator can be expressed as a linear combination of the eigenvectors of S;18, as

a =

P
To b (2.60)
=1

P

and we shall now show that a = $, leads to a maximum value for Jy. By substituting
equation (2.60) into the expressions for S, and S,, given by equation (2.57), we can write

J/\as
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I e @t S, 4,
I'A

-
]

Zve T B0t S, 4,
£,p

I !XIWI

(0. @) (2.61)

L

where the parentheses denote the scalar product of two vectors, and x and w are defined as

X =17, 8,12 ¢ (2.62)

w= Z SRR YR (2.63)
2

If for £ =1, v =7, =landfor £# 1, 4 =0, then w = x and J, = J. In any other
cases, x # w but (x,w) is always equal to (x,x) since the eigenvectors of an orthogonal
eigenvector basis set are orthogonal if their associated eigenvalues are different, as is the

case for ¢, and the other eigenvectors of the basis set. Equation (2.61) then becomes

I, =17 f—%H;g I (2.64)

We have then shown that a = ¢, maximizes J,. The eigenvalue a, (or J) may then

be computed by using equation (2.58) as
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@, = tr (S;18))
=tr (31 {P,P, (&, - 8,) (5, - 8)* } )
PP, tr (85! (g, -8,) (g, - )¢ )

=PP, (2,-8)¢ S;! (5,-38,) . (2.65)

and the feature operator is then given by

a= S;i(g,-g,) . (2.66)

The validity of the expression for a can be shown by substituting equations (2.50)

and (2.66) into the eigenvalue equation for S;18,,

S;'8,a = a
S, PP, (8,78,) (8,-8))° §;%(8,-8,) = PP, (8,-8,) S;% (g,-8,) a

S;'(g,-g) =a , (2.67)

and, by combining equations (2.54) and (2.67), the test statistic then becomes
Mot = [8,-8,1° S5 g . (2.68)
The test statistic given by equation (2.68) is, in fact, a seneralization of the
prewhitening matched filter. The presence of S;1 in the expression for A means that the

Hotelling observer takes into account not only the randomness due to the presence of noise

in the data but also the randomness due to ob ject variability. For no randomness in the
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object itself and in the low-contrast approximation, S, reduces to K, the noise covariance
matrix introduced in equation (2.52). The test statistic A, despite its analogy to the log-
likelihood ratio, is suboptimal because Ay, is linear with the data, while the log-likelihood
ratio is usually non-linear.

We shall now show that the HTC is also closely related to the detectability index d,

defined by equation (2.34). Since we saw that J = J,, we may write J as

J = 8,518, . (2.69)

and in the case where the probability densities of A for each class of objects are (Gaussians,
we get
PI(A_J. - Al + Pz(}‘_z - )

R AT NN : (2.70)

If we substitute ), by Pl)\_1 + Pz)\_2 and use P, +P,=1 then,

J= P1Pz ('X1 - )‘z)z

=5 [0,F + B, [o,F ° (2.71)

or

J=PP,[dF . (2.72)
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CHAPTER3
LONG-TAILED POINT SPREAD FUNCTIONS

A perfect imaging system would give, as an image of a point source, a point image
identical to the point source. This is, however, idealistic, and in reality many factors
contribute to the degradation of a point image, in other words to the mislocation of the
detected photons. A measure of this degradation is given by the point spread function
(PSF), which is defined as the average spatial distribution of a very large number of
detected photons emitted by a single point-like object. Ideally, the PSF is symmetric and
centered around its expected location defined geometrically by the point object and the
center of the aperture. Moreover, it is sharply peaked for high-resolution systems. For real
systems, however, the PSF can be altered in several ways; its center of symmetry can be
shifted from its expected value, while its peak can become broader and assymmetric.

In conventional radionuclide imaging, the imaging device is usually an Anger-type
camera, which consists of a collimator, a scintillation crystal, a set of photomultiplier tubes
sealed to a glass window, and some analog circuitry used to record the position of the
gamma-ray events that are being detected. A collimator placed between the object and the
detector serves as the imaging device. Thé bores of the collimator, usually made of lead
alloy, should be small in diameter and extend over an appreciable length of material to be
able to tranform the nondirectional incoming radiation into multiple, highly directional
photon beams which permit high resolution. A gain in reso]utibn is always, however,
accompanied by a loss in sensitivity of the deieciion device, that is, a longer exposure time
is now required to reach equivalent number of detected photons. This loss in sensitivity can

be, however, compensated for by increasing the strengh of the emitted source, but only up
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to the maximum dose of radiation allowed to be injected into the patient’s body. Thus, in
practice, the size and the length of the bores are chosen to satisfy the best trade-off between
resolution and sensitivity, and the resulting loss in resolution often leads to some broadening
of the central peak of the PSF. Moreover, physical processes, such as Compton scattering in
the body, can cause even further broadening of the PSF, adding long spatial tails to its
compact central peak. We refer to such PSFs as long-tailed. Long-tailed PSFs can also arise
due to veiling glare in image intensifiers, or due to septal penetration in nuclear imaging,
and are commonly encountered in image science where they frequently constitute an
important source of contrast reduction and resolution loss.

We are interested in investigating the effect that this type of PSF has on human
detection and whether any improvement in performance can be gained by deconvolving the
tails of the PSF. We shall find out what figures of merit are useful for characterizing
human performance by comparing the performance of the human observer evaluated
through psychophysical studies with the performance of statistical.observers derived from
statistical decision theory. Thus, we shall also refer to these statistical observers as standards
of comparison. For the ideal observer, we shall show that the performance is independent
of any linear, invertible deconvolution filter. The question then arises whether the ideal
observer is a good predictor of human performance, and we shall investigate its
performance, as well as the performances of the npw ideal and the Hotelling observers,
before and after deconvolution. We shall also investigate the performance of new statistical
observers; we shall define the no-low-frequency (nIf) ideal observer, which is a pseudoideal
observer that filters out some of the low-frequency components of the image before
performing the detection task, We shall also introduce a combination of the npw ideal

observer with the n!f ideal observer, referred to as the nip ideal observer.
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Image Simulations

The nuclear imaging system shown schematically in Figure 3.1 (a) consists of a
radiating object, an image-forming element and a detector. Let us describe the object f(r)
as the superposition of a mean background b(r) and a low-contrast signal s(r), where r
denotes a 2D position vector. The overall imaging system may be characterized by a PSF
p,(r), which we take to be the sum of a sharply peaked function, also referred to as the core
c(r} of the PSF, and an extended tail t(r). The subcript "1" on p,(r) refers to the primary or
imaging PSF, since we shall introduce later another PSF p,(1) related to the filtering process.
If f(r) is the mean number of counts emitted per unit area and per unit time from the object
plane, the mean number of photons detected per unit area during the imaging time T would
be, for a perfect imaging system, k& T f(r), where « is an efficiency factor taking into
account the geometry of the system. An expression for x was derived in chapter 2
(equations 2.1 - 2.6) for the case of a pinhole aperture. I the imaging system is not perfect,
the PSF departs from a deita function, and the number of photons detected per unit area
during the imaging time T can be evaluated, using equation (2.6), by the following

expression

(&£ T)(f(r) « py(r) ) + n(r)
(& T)(Is(r) + B(D)] » [e(r) + ((0)] ) + n(r)

g(r)

i

(& T [S(r) = c(r) ] + [b(D) = o(r) T+ Is(r) » t(r) 1+ [b(r) « tryj) + n(r)y. 3.1

To investigate the impact that long-tailed PSFs have on the detectabilities achievable by
different observers, we vary the extent of the tail of the PSF by choosing ten different

widths of the tail of the PSF for a fixed value of the contrast of the core of the PSE relative
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Image-forming (a) displayed image
Object ——2¢  Element

mir) o

Uncerrelated
Paisson Noise

Filter ; .
) {b) displayed image

Fig. 3.1. Model of the imaging system used to génerate computer-simulated images, (a)

volved with the psf py(r) and Poisson noise is added to the data,

function f, (r) serves as a high-pass filter to deconvolve the
images.
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to the tail. Thus, we generate ten different sets of images, each corresponding to different
parameters of the long-tailed PSF. FEach PSF is expressed as the sum of two Gaussians, as
suggested, for example, by Tsui et al. ( 1978), to model the core and the tail of the PSF,

respectively. Their expression is given by

pr) = a, exp(-r2/r.2) + a; exp(-rz/r,2) , (3.2)

where a, and a, are the amplitudes of the core and the tail of the PSF, respectively, and r,
and r; are the half widths at 1/e of the peak intensity of their respective distributions. The
width of the core of the PSF is held constant across the ten sets of images, so that the
degradation from one set to the next is essentially due to the broadening of the PSF resulting

from adding tails to the core. For the same reason, the contrast of the PSF, defined as

A (3.3)

Cpsf = g: |3

is held constant across the ten sets of images. The area under the PSF, defined as the
integral over the space domain of p,(r), is given by x re2a. + w2 a; and is set to 1 mm?
for normalization purposes. Therefore, given 1, and r, , a, and a, can be determined by

solving the system of two equations with two unknowns, given by

w(rczac+rtzat } = 1 mm? (3.4)
and
a,
éti = Cpo . (3.5

For mathematical convenience, we also model the signal s{r) and the background
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b(r) as 2D Gaussian distributions, so that each term in equation (3.1) involving a convolution

operation takes on a very simple form. The object f(r) is then described as

f(r) = 5 exp(-1¥/r,?) + Wart;zexp(—-rz/rbz) : (3.6)
g

where a; and a, are now the integrals under the signal and the background distributions
respectively, and r, and ry, are the half widths at 1/e of the peak intensity of their respective
distributions. With such conventions, we can show that the analytical expression of each of
the first four terms of equation (3.1) is a 2D Gaussian distribution itself. For example, the
convolution of the background b(r) with the core of the PSF ¢(r) vields a 2D Gaussian
distribution given by

b(r) « ¢(r) = a ) exp (-r2/(ry, 2+ r.2)) . (3.7)

S
b % (1,24 1,
Finally, we define the contrast of the signal on the background to be

— as/rsz
Co= 25 (3.8)

and givenr, , 1, , and C, , we can solve for a, and a,, using

(£T)(ay+a,) = Ny (3.9)
and
& _ o L?
ab - Cg rbz 3 (3.10)
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where Ny, is the total number of counts detected. Note that we used the normalization
condition given by equation (3.4) to derive equation (3.9) and that « must be in mm~2 for
the units on each side of equation (3.9) to be consistent.

To determine a set of parameters that characterizes the object and the PSFs, we
assume that the images are sampled on a 128x128-pixel grid. This grid size yields a
maximum value for the modulus of the position vector, denoted as r,,., of 90.5 pixels.
This modulus constitutes the radius of reference that is used to adjust the widths of the four
Gaussian distributions. The width of the background is taken to be the widest, with
Tmax/Tp = 1 , while the signal is chosen to be 8 pixels in dizmeter at 1/e of the peak
intensity. The core of the PSF is quite sharp, with r, = 1.5 pixels, and the values of Iy,
which are varying from one set of images to the next, starting at set number 1 and ending at
set number 10, are such that r, . 2/r,2 = N + 2 where N is the set number. The
progression of the extent of the tail of the PSFs from set number I (PSF,) to 10 (PSF,,) is
represented in Figure 3.2. The radius of the outer circle corresponds to the value of r, for
set number 1 while the radius of the inner circle corresponds to the value of ry for set
number 10. The intermediary circles correspond to set number 3, 5 and & from the outer to
the inner circle, respectively, Given the r, values and a value for Cpsf , we can solve
equations (3.4) and (3.5) for 2, and a.. The parameters describing the ten PSFs are given in
Table 3.1 for C,¢ = 11, where the values of r, are given in pixels and a, and a, are
dimensionless. The ratio (r,? a,)/(r.2 a,) is a measure of the integral under the tail of the
PSF relative to the integral under the core, or the relative strength of the tail with respect to
the core of the PSF. To illustrate the relative strengths of the tails of the PSFs across the ten
experiments, four different PSFs corresponding to image-set numbers 1, 4, 7, and 10 are
plotted on Figure 3.3.(a), (b), (c), and (d), respectively. By looking at Table 3.1, we note

that
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Fig. 3.2. Scheme of the extent of the tail of the PSFs from set number 1 to set number 10.
Each circle is centered at the origin of the 128x128-pixel array and has a radius
ry that satisfies [r.,]%/[r;]? = N + 2, where N is the set number and r,,,, = 90.5
pixels.
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POINT SPREAD FUNCTION
PARAMETERS
Set Iy a, a. a
Number

1 523 1.1E-03 1.3E-02 110 J
2 45.3 1.5E-03 1.7E-02 83 |
3 40.5 1.9E-03 2.1E-02 66

4 37.0 2.3E-03 2.5E-02 55

5 342 2.7E-03 2.9E-02 47

6 320 3.0E-03 3.3E-02 41

7 30.2 3.4E-03 3.7E-02 37

8 28.6 3.8E-03 4.2E-02 33 .
9 27.3 4.1E-03 4,6E-02 30
10 26.1 4.5E-03 5.0E-02 28

Table 3.1. Point-spread-function parameters: the extent, r., of the tail of the PSF and the
amplitudes of the two Gaussians representing the tail and the core of the PSF,
a, and a,, respectively. The parameter o i a measure of the ratio

(a, r;%)/(a, 1 2).
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the ratios (r,2 a;)/(r. 2 a.) are greater than !, which is due to the small value of 11 given to
Cpst - Though it is, in general, quite unlikely that we shall encounter ratios greater than 10
in medical practice (Wagner 1977), the study of these extreme cases will lead to a deeper
understanding of several statistical observers, and more especially the ideal observer, as we
shall see. The object parameters are adjusted by setting C, = 3 and by adjusting the
exposure time such that the noise variance at the peak value of the mean image, denoted as
Opeak s is 7% of the peak value, my..x. Moreover, the noise variance is related to the mean
pixel value through Poisson statistics, at each point in the image. Thus the noise variance at

the peak value of the mean image has to satisfy two conditions

Upeak = 0.07 mpeak (3.11)
and

Theak = [ Mpeak ]1/2 3 ‘ (3.12)

which yields a value of 204.82 counts/pixel for My, For the peak value of the mean
image to be 204.82 counts/pixel as we let the PSE vary, the exposure time, or equivalently
the total number of counts N, ., has to be adjusted for each set of images; the resulting
values for N; . are given in Table 3.2 along with the corresponding values T. Note that,
while the total number of counts varies from one set of images to the next as shown in
Table 3.2, the contrast of the signal before imaging is held constant across the ten sets of
images. A plot of the object profile is given in Figure 3.4, before and after imaging using a
long-tailed PSF. The contrast of the object after imaging, denoted as C,.. ranges from 5.4%
corresponding to set number 1 to 17% corresponding to set number 10 as shown in Table
3.2,

We shall now derive the test statistics for several statistical observers and compute



EXPOSURE TIME
VALUES
Set T Niot Cy %
Number
! 666 6.7E06 5.4
2 617 6.2E06 6.8
3 584 5.8E06 8.1
4 562 5.6E06 9.4
5 544 5.4E06 10.7
6 529 3.3E06 12.0
7 517 5.2E06 133
8 506 5.1E06 14.6
9 496 5.0E06 15.8
10 487 4 9E06 17.1
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Table 3.2. Values of the exposure time T across the ten sets of images as well as the total
The contrast of the signal after imaging through the

number of counts, Ny, .
ten PSFs is given by C,,.
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their performances by using the values of the object and PSF parameters given in Tables 3.1

and 3.2,

Performance of Standard Observers Before Deconvolution

Given the specific task of detecting the low-contrast signal s(r) (when present) on
the background b(r), one can determine the optimum detectability by making best possible
use of the information in the image. Bayesian theory tells us that this is accomplished by

applying the strategy of the ideal observer, which was described in detail in chapter 2.

The Ideal Observer
If we call H, and H, the hypotheses that the signal is absent or present,
respectively, we can define the mean images g_l(r) and E;(r) under H, and H,, respectively,

as

(s T) [ b(r) + (¢ + t)(r) ] ' (3.13)

g,(r)

8(0) = («T[(b+)D) s c+t)Xr)] | (3.14)
where the operator symbol + represents a 2D convolution, and c(r) and t(r) the core and the
tail of the PSF, respectively. The only random variable in this problem is the noise of the
system, the signal and the background being known exactly (SKE/BKE). Working with
digitized images, we substitute the actual image g(r) by a set of numbers g(i) that defines a
vector g.

The noise is strictly uncorrelated Poisson noise, so the probability densities p(g]Hk)
are multivariate Poissons given by equation (2.38). We showed in chapter 2 that the

substitution of equation (2.38) into the expression for the log-likelihood ratio given by
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equation (2.27) led to equation (2.40), given by

N
Z g(i) , (3.15)

i=1

i EE!

where Agi) is the difference of the mean images under the two hypotheses, (g_z(i) - g_l(i)).
If we now compare equation (3.15) with equation (2.9), the ratio Aai)/g—l(i) is the itk
component of the feature operator a. To increase our insight into the ideal-observer
construct, we show in Figure 3.5 the profile of the feature operator in the space domain and
in the Fourier domain. By comparing Figure 3.4 (a)} and 3.5 (a), we note that the ideal
observer tries to match the whole region in the image where the signal is located. If we now
look at the feature operator in the Fourier domain, we see that the ideal observer behaves
mainly as a low-pass filter for the long-tailed PSF problem. In other words, the ideal
observer looks where the maximum energy is.

The detectability index d;g.,;, which is simply the signal-to-noise ratio associated

with the log-likelihood ratio, was shown to be given by equation (2.43) as

N _
[digeal I = Z LELH_%(;) 2. (3.16)
. 1

This expression for d4., can be explicitly written as a function of s(r), b(r), c(r), and i(r)

by using equations (3.13) and (3.14) to yield
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_ [ (sxc)(d) + (s+)(i) PP
[digea 12 = (& T) [0+ (00D ] - (3.17)

1=

The performance of the ideal observer can now be evaluated for each set of images, and the

results are presented in Table 3.3.

The Nonprewhitening Ideal Observer

The npw ideal observer performs a simple matched-template operation, and the

test statistic is given by
dpw = (Bg)t g, (3.18)

where Ag_is the difference in the expected means under hypothesis H, and H,. The general

expression for the index of detectability index d,pw 18 given by equation (2.11) as

[y o = B2 (3.19)

(U)\ »

By substitution of equation (3.18) into (3.19), equation (3.19) becomes

[dnpwlz - L@M . (3.20)

(Ag)t K, Ag

where K is the covariance matrix given by equaiion {2.41). The expression for Appw

expressed in terms of s(r), b(r), c(r), and t(r), is then given by



Table 3.3.

THEORETICAL DETECTABILITIES
BEFORE DECONVOLUTION
Set Ideal Npw Nif Nlp
Number
1 22.38 22.37 2.32 2.34
2 24.15 24.18 2.86 2.90
3 25.70 25.719 3.39 345
4 27.14 27.28 3.91 3.99
5 28.48 28.69 442 4.52
6 29.75 30.01 4.92 5.04
7 30.96 31.28 5.40 5.55
8 32.10 32.49 5.88 6.05
9 33.20 33.64 6.35 6.54
10 34.24 34.75 6.80 7.03
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Theoretical values of detectability computed before deconvolution for 4
statistical observers and 10 sets of images.
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N 2
T 10 + (500) T
L N ! . (3.21)
D (0D + (6 OO [Br i) + (be 1))

i=1

The values of d, .. across the ten experiments are given in Table 3.3. We note, as expected,
that the performance of the npw ideal and the ideal observers are about the same, although
the expressions for digen; and dppw given by equations (3.17 and 3.21), respectively, are
somewhat different. The similarity in performance is a result of the fact that the noise,

although not white, is uncorrelated.

The Hotelling Observer
We shall show that the Hotelling observer is equivalent to the ideal observer for a
simple two-hypotheses SKE/BKE detection task. The performance of the Hotelling

observer may be evaluated using the HTC given by

T =tr(s;ts,) (3.22)

where 8, and S, are the two scatter matrices given by equations (2.48) and (2.51),

respectively. We also saw that J may be expressed as a function of the test statistic Ay, by

PP [ Mg P

(o P (3.23)

with

Aot = [(8), - (8),1F S;t g . (3.24)
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Equations (3.23) and (3.24) lead to an expression for J given by

J = P P, (Ag)t §;1 Ag | (3.25)

If we now use the result from appendix A, where we show that S, can be generally
expressed as the sum of two terms, one being the contribution of the quantum noise to the
covariance matrix while the second term shows the contribution of the background noise to
the covariance matrix, we find that, if the background is known exactly, the matrix S,
reduces to the noise covariance matrix K. We have therefore demonstrated that J and Uigeal

are related, for the background-known-exactly case, as

V=P P, [dgal . (3.26)

Under the assumption that the probabilities of occurrences of the two classes are equal with

P, =P,=1/2, then J becomes

N

21 _ 1 [ {s+e)d) + (s« 1)(i) 12
P= g Mewl = 3T 21 [ + (0D ] - (3.27)
I=

No—Low-Frequency Ideal Observer
Let us now explore the predictions of some new statistical observers that use
specific information about long-tailed PSFs. Referring back to the brightness-contrast
effect introduced in chapter 2, we know that the human observer cannot use an absolute
brightness level as a useful piece of information when performing a detection task; instead

the human observer is essentially sensitive to contrasts in brightness. This property was also
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part of the channelized ideal-observer construct that suppressed the lowest-frequency
channel in its model. For the long-tailed PSF problem, the term (s« t)(r) itself, appearing in
the numerator of equation (3.17), is a broad, slowly varying term that contains mainly low
spatial-frequencies. The idea, then, is to test the hypothesis that the human observer does
not use this loW—frequency information when performing the detection task. To test this
hypothesis, we shall collect human-observer data and compare human performance with a

pseudo ideal-observer performance that is derived from a test statistic Ane defined as
dip = (Ag)t Kt g (3.28)

where the subscript nif refers to Do low-frequency and A"g_(r) =& T (s =c)(r) instead of «
T [(s+c) + (s+t))r) used by the ideal observer. The mean values of the data under the two

hypotheses H, and H, are then given by

g,(0)= (& T) b(r) « (c(r) + t(r)) (3.29)

8(r) = (5 T ) b(r) + (c(r) + (1)) + 5(r) ofr) (3.30)
and the detectability index associated with the test statistic is expressed as

(Ag)t K-t Ag
N —
)

g,(1)

[dpyeJ?

i

b

N
(5 ) [ (o0 P
L (e + (001 ]

(3.31)

i
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The denominator in equation (3.31) is the same as in equation (3.17) since
uncorrelated noise is rich in high spatial frequencies, and the deletion of low frequencies
does not significantly affect the noise variance. The exact function of the nlf ideal observer
is to suppress only the term (s«t)(r), but since the support of (s+c)(r) is much smaller than
(s+t)(r), we can also approximate the feature operator of the nlf ideal-observer by the
feature operator of the ideal observer multiplied in the Fourier domain by a high-pass filter
that takes the value O over the support of (s.t)(p) and 1 elsewhere, as shown in Figure 3.6,

where p is the 2D spatial frequency vector conjugate to r.

The Nlp Ideal Observer
The same strategy used with the ideal observer to derive the nlf ideal observer can
be applied to the npw ideal observer. A new observer, referred to as the nlp ideal observer,
where nlp stands for no-low-frequency and non-prewhitening, can be derived. The

expression for the test statistic Ay, is given by
)‘nlp = (Afg:-)15 g (3.32)

where Ag(r) can be computed from equations (3.29) and (3.30) and is given by « T (s=¢)(r).
The detectability index associated with the test statistic is thus given by

N 2
| Y [P

i=1
= . (3.33)

N
Z 5+ QDI [(brc)G) + (bst)(D)]

i=1
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Fig. 3.6. Profile, in the Fourier domain, of the nlf ideal-observer feature operator superim-
posed on the ideal-observer feature operator. The high-pass filter represented by
a dashed line shows how the nlf ideal-observer feature operator can be approxi-
mated by the ideal-observer feature operator multiplied by a high-pass filter that
takes the value 0 over the support of S(p) t(p) and the value of 1 otherwise.
Note that the high-pass filter has been scaled on the figure by a factor of 100 for

clarity.
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The predicted values of detectabilities of the nlp ideal observer are also given in Table 3.3,

Performance of Standard Observers after Linear Deconvolution

One concrete prediction of the ideal-observer construct is that linear filtering of an
image cannot improve performance; if filtering is desirable, the ideal observer can do it
internally as part of the decision strategy. Thus the question arises as to whether or not the
human observer performance will improve with linear filtering. High-pass filtering is
commonly applied to suppress low-frequency components in an image, generally enhancing
at the same time high frequencies. Among others, Jaszczak et al. (1984), Clough (1986),
Msaki et al. (1987), Seibert and Boone (1988), Yanch et al. (1988), Heuscher and Brunnett
(1989), and Fahimi and Macovski (1989) have expended considerable effort in filtering
radiographic images to remove scatter. They showed that the removal of scattered radiation
led to the enhancement of the contrast in the image. For the types of images that we are
looking at, which have a highly grainy structure due to the small number of counts, high-
pass filtering will not only remove some low-frequency components in the image but also
boost the noise, possibly nullifying the advantage of deconvolution (Kennett and Prestwich
1979). Furthermore, the filtering will introduce noise correlations, which are known to
interfere with the performance of human observers as shown by Myers et al. (1985).
Although it is unclear if any improvements can be achieved, the intuitive feeling persists
that sharper images should somehow be better images. In particular, the author’s intuition
suggests that filtering to remove scattering from radiographs should improve their quality, at
least for the human observer.

A schematic of the imaging process is given in Figure 3.1. (b), where the images
are convolved by a filter function before display. We want to filter the images to correct

for the degradation resulting when the PSF departs from a sharply peaked function. One
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can invert the convolution process by multiplying the Fourier transform of the image by the
reciprocal of the Fourier transform of the PSF, provided this Fourier transform is nonzero
over the range of frequencies of interest (Bracewell 1986; Goodman 1988). Such an
operation is called deconvolution. If we denote by F n(p) the filter used to deconvolve the
images, where the subscript h specifies the high-pass nature of the filter, we design the
appropriate filter for each set of images as depicted in Figure 3.7. The Fourier transform of
the long-tailed PSF, p,(r), represented in the top-left quadrant, is first performed to yield
the transfer function 51(,0) plotted in the top-right quadrant. We then superimpose on the
same graph the desired transfer function Ez(p) that would have yielded high-resolution
images, if it had been used in the first place instead of El(p). A plot of the Fourier
transform of 52(17) is shown in the bottom right quadrant of Figure 3.7 to show its sharpness.
We can then design the appropriate filter in the Fourier domain by dividing 52(9) by 51(9),

and the filter expression is then given by

_ Dy(p) _ (re?a_+ 1.2 ay) exp (-n2)p|2r,2)
O T e R s e e (R G
1

where |p] is the modulus of the 2D frequency vector p. An inverse Fourier tranform is
then performed on the filtered images to take us back in the space domain. The nature of
the filtering operation is high-pass as shown in Figure 3.8, where an example of the four

filters designed to deconvolve the images from set numbers 1, 4, 7, and 10 is given,

The Ideal Observer
Since we stated earlier that linear filtering does not affect the performance of the

ideal observer, we propose to show now that it is the case. Given a data set g satisfying the
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imaging equation (2.7), if we denote by F, the matrix operator associated with the filtering

operation, the filtered data set gf is given by

The covariance matrix of the filtered data gf under hypothesis H is then given by

((gf - &) (gf - g)t[H, )

((th)(Fh n)t]Hk)

Kf,

Fp (nnt|H, ) F,t

Il

F, K, F,t . (3.36)

To avoid cumbersome notation, we shall consider the low-contrast case where K,=K, =K.
We then have Kf1 = Kf , = KIf, and the detectability index associated with the filtered data-

set, denoted as df4,.; , where the superscript f is used to specify "filtered", is given by

[dfigea]? (Agf )t Kf "t Ag

(F, Ag)t (F, K, Fyt )™t (F, Ag)

(Ag)* Fyt (Fit)=t K -1 (F, )1 F, Ag

(Ag)t K"t Ag

= [digea? (3.37)

which demonstrates the invariance of the ideal-observer performance under linear filtering
for the low-contrast case. Since we are now familiar with the mathematics involved in

calculating the ideal-observer performance, we see that this result can be easily generalized
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to any contrast. Instead of calculating the variance contribution to the detectability as a

single term, we would need to consider a term with K, and a term with K,.

The Nonprewhitening Ideal Observer
Let us now look at the effect of linear filtering on the performance of the npw

ideal observer. The test statistic is now given by

dopw = bt gf (3.38)

where gl is the filtered data set and b the feature operator for the filtered data. If we
define as f, (r) the inverse Fourier transform of T n{p) given by equation (3.34), the feature
operator for the npw ideal observer ig simply the expected signal seen through the
equivalent imaging device of response function p,(r), where p,(r) equal py(r)sfy(r). By

using equation (3.35), we can rewrite the test statistic as

Dt
1

bt F, g

npw

at g | (3.39)
where a is now the feature operator associated with the unfiltered data. Moreover, with Af
being the difference object under the two hypotheses and H, the system operator associated
with p,(r), b= H, Af , and the feature operator a becomes

at = (H, Af)t F, . (3.40)

In the case of the two-hypotheses SKE/BKE detection task, Af is simply the signal s to be
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detected, and equation (3.39) yields

Anpw = st H, F, g . (3.41)

The detectability index dppw 18 given by the ratio of Ad o 10 Thnpw with

[
>~
I

npw (Anpw,Hz ) - (’\npw'Hl >
s* H,' Fy, ((g]H, ) - {g[H, )

st ' Fy Ag (3.42)

[UA Eo= % [( ()‘npw - (Anplez >)2,H2 ) + (()‘npw - ()\npw,Hl >)2'H1 >]

npw
" SIS H B @ B) 1)+ ([ Hyt By (g - 5) o)

2
-4 Z [s* P Fy (8 - 8 (e - g)t ) (Fyt H, 5))
k=1
2
- é Z s* Hf F, K Fpt H, s, (3:43)
k=1

where Ky is the unfiltered noise covariance matrix for class k. For the case of uncorrelated

Poisson noise, and in the low-contrast approximation, equation (3.43) yields

O = S B Fy K Byt 1, 5 | (340

npw

and the detectability index dppyw becomes



[s* H,t F, AgP

[dypw 12 = _— :

2
ZZZ s(i) Hy(i, j) Fy (3, k) Ag(k)
i j k

90

zZZXZZ S() Hy(i, §) Fy (G, k) K(K,1) Fy (1, m) H,(m, n) s(n)
i j k I m n

2

ZZZ s(D) Hy(i, j) ¥, (j, k) Aglk)
Lok

Z A(K) g, (k) A(k)
k

2

Z Ak) Agk)

ok
Z [AGK)P? 8,(k)
k

where A(k) is given by

(3.45)

(3.46)
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We can write dnpw @S @ continuous integral in the space domain by taking the limit of the
sum when the area of the sampling element tends to zero and by undoing the lexicographic
ordering to transform the 1D sums into 2D integrals as
12

J. dir A(r) Agr)
oo

L0 . AD O
(&,(8) + [A@P) (0)

[dnpw]z =
J dxr [A(D] g,(r)
(o o]

where (0) means that the convolution is evaluated at zero shift. Once d,pw 15 expressed as a
ratio of convolution operations, it is straightforward to evaluate both the numerator and the
denominator in the Fourier domain, a convolution in space domain being transformed into a
simple product in Fourier domain. We shall, as an example, translate the numerator of

equation (3.47) into its Fourier expression. It can be written as

[Ag(r) « A(D)] (0)

N N
Z Ag(i) AG) = Z AFG) Ad)
i=1 i=]

N
Z & T (56) ) GG + T @)

i=1

s() | B,G) |2
() + ()

N
D RTIEOP 15,0 . (3.48)

i=1

A similar exercise can be performed on the denominator. The results of the computation of
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dnpw are given in Table 3.4,
it 15 quite interesting to look at the shape of the feature operator a for the npw
ideal observer after deconvolution, The profile of the feature operator given by equation
(3.39) is plotted in Figures 3.9 and 3.10. In the space domain, the feature operator first
calculates the contribution of the iocal background surrounding the expected signal-location
and substract it from the signal-plus-background contribution. This is very different from
the feature operator associated with the ideal observer that was shown to be equivalent to a

low-pass filter.

The Hotelling Observer
We have aiready shown that, before deconvolution, the Hotelling observer is
equivalent to the ideal observer, and we have also shown that the ideal observer is invariant

under filtering. Therefore, the Hotelling observer is also invariant under linear filtering.



THEORETICAL DETECTABILITIES
AFTER DECONVOLUTION
Set Ideal NIf Npw
Number

1 22.38 2.32 1.67
2 24.15 2.86 2.16
3 25.70 3.39 2.65
4 27.14 3.91 3.13
5 28.48 442 3.61
6 29.75 492 4.09
7 30.96 5.40 4.57
3 32,10 5.88 5.04
9 33.20 6.35 5.52
10 34.24 6.80 5.99
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Table 3.4. Theoretical values of detectability computed after deconvolution across the ten
sets of images for 3 statistical observers, the ideal, the nlf ideal, and the npw

ideal observers.



94

7.85+004 5

§5.BE+004

6.0E+004

sty

5.2E+004

sl aaal s

A AE+Q04

3.6E+004

AMPUTUDE

2.BE+C004
2.08+004

1.2E+004

sabas gl v ndaaales

4.0E4C03 4

T r—— e
T T

=4, 0E+003 o

LN L BN B B B T T
~85-55-45-35-25—15 =5 g 1I5 25 3i5 45 55 &5
FIXELS

@)

4E+006+

4E+006
3E+006

IEHALES

2E+006-

AMPLITUDE

2E+006
1E4006

5E+005

=-0.50 -0.38 -0.14Q [4R 1))
CYCLES/PIXELS

(b)

Q30

Fig. 3.9. The npw ideal-observer feature operator after deconvolution using p,(r) defined
for set number 1 (a) in the space domain (b) in the Fourier domain.
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CHAPTERA4

EXPERIMENTAL METHODS AND RESULTS FOR LONG-TAILED PSES

For the detectability predicted by any statistical observer to be a good figure of
merit, it must not only correlate with the human observer performance, but also yield
sufficient efficiency. Since efficiency depends strongly on the amount of training that the
human observers undertake, it is in some ways difficult to define what sufficient efficiency
means. However, if we assume that, prior to the experiments, the human observers were
familiarized with the types of images to be viewed and trained to perform the task
according to the experimental procedure, we can define as an acceptable range of
efficiencies any value between 10% and 50%. Below 10% efficiency, however, we shall
conclude that the human observer is somehow either not using ali the information available
or using it improperly when compared to the statistical observer. In this research, because
we are interested in comparing the performance of different statistical observers with the
performance of the human observer, we are not so much concerned with working at 50%
efficiency; rather we set our expectations around 20% and focus on the relative differences
between the different figures of merit when compared to the human performance.

We shall now investigate the effect that long-tailed PSFs have on human visual
detection and whether any improvement in performance can be gained by deconvolving the

tails of the PSF.
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Methods and Results before Deconvolution

Experimental Methods

To investigate the human cbserver performance, 10 psychophysical experiments
using the ten sets of images described in chapter 3 were designed. Within each experiment
50 images were generated; 25 images simulated a bright tumor, located in the center of the
picture and superimposed on a smooth background, while the tumor was absent in the other
25 images. The numerical values assigned to the different parameters and given in chapter 3
represent one possible set of parameters that gives, once Poisson noise is introduced, a
visually measured detectability, dyyman, in the range 0.5 to 3.0, where small changes in
detectability can be detected using ROC analysis. Contrast-detail diagrams were used to
select an appropriate set of parameters to design the experiments, but only as a working tool,
and were not used in any ways to evaluate performance.

The computer-simulated images, generated as described in chapter 3, were
displayed using the eight bits of available greylevels. They were then displayed as
128x128-pixel arrays using the creylevel-to-brightness transfer curve shown in Figure 4.1.
The procedure followed to measure the output brightness vs. the displayed greylevels will be
described in detail later, as we study the impact of the shape of the transfer curve on the
performance. One image covered 5.5 cm x 4.5 ¢cm on the display, and each pixel measured
0.43 x 0.35 mm2. The light in the room was dimmed down to the same value for ail the
observers. The contrast and brightness levels of the display monitor were fixed during the
study, and the observers werg not allowed to vary them to optimize their performance.
Fach subject viewed the images binocularly at a comfortable distance chosen by the
observer, and the observers were required to wear their usual correction lenses.

Six observers ran the study, each performing all 10 experiments. The observers

first viewed sample images to ascertain the shape, size and location of the signal. They did
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imaging board controlled by the VAX.
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not have any information on the number of occurrences of the signal. The images were
displayed in a random order, and the 10 experiments were also performed in a randomized
order for each observer. The observer was presented a single stimulus on each trial, either
the signal on a noisy background or a noisy background alone. An example of the simuli
presented to the human cobserver, with the signal present, is shown in Figure 4.2. The
observers were instructed to rate their certainty on a six-point scale (Green and Swets 1966)
given in Table 4.1, and their responses were recorded and analysed using a computer
program written by Seeley et al. (1982).

From the rating-scale data, an ROC curve was generated for each observer and
each experiment (Swets 1979; Swets and Pickett 1982). Five points on a curve were
obtained for each observer. All statistics describing the data were derived from non-
parametric estimates of the ROC curves generated for each observer and then averaged over
all observers (Hanley and Mc Neil 1982; Metz 1989). We used the estimated value of the
area under the ROC curve to compute the detectability index d, using Equation (2.22),

where standard Tables of the erf(x) function were used to invert the Equation.

Results
The results of the experiments are given in column 2 of Table 4.2. We note first
that the detectability values achieved by the human observer, which we shall denote as
dpymans range from 0.4 to 3 as we expected since the parameters used to design the
experiments were chosen such that the performance would fall within this range. Such a
range of values is favorable since 0.4 corresponds to an area under the ROC curve of 0.610
while 3 corresponds to an area under the ROC curve of 0.983, and even small variations in

performance can usually be observed when working within this range. To picture the

performance of the human observer relative to any statistical observer, we plot the
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S

Fig. 4.2. (a) An example of the stimuli presented to the human observer during the psy-
chophysical studies: here, we show 2 simulus where the signal, located in the
center of the image, is present.

0 Relatively certain that no signal is present

Relatively certain that no signal is present
Just guessing that no signal is present
Just guessing that signal is present
Relatively certain that signal is present
Absolutely certain that signal is present

L L I &

Table 4.1. Rating scale




EXPERIMENTAL RESULTS
BEFORE DECONVOLUTION
Experiment Ahuman n(ideal)% n(nlf)%
Number
i 0.41 0.03 3.12
2 0.72 0.09 6.34
3 0.74 0.08 4,78
4 1.16 0.18 8.30
5 1.41 0.25 10.18
6 1.46 0.24 3.81
7 1.93 0.39 12.77
8 2.03 0.40 11.92
9 2.79 0.71 19.30
10 3.04 0.79 15.99

AVERAGE

EFFICIENCY 0.3% 10.8%

SLOPE 0.21 0.57

INTERCEPT -4.50 -1.06

CORRELATION 0.56 0.98

COEFFICIENT
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Table 4.2. Results of the psychophysical study carried out to investigate the impact of long-
tailed PSFs on human performance using 10 experiments numbered in column i,

where the tail of the PSF is decreasing from experiment 1 to 10.

For each

experiment, the performance is given in column 2 in terms of the detectability
value associated with the human observer, and in column 3 to 5 in terms of the
efficiency of the human observer relative to 3 statistical observers and calculated
using the theoretical values of detectability given in table 3.3. The slopes and
intercepts of the regression lines that fit the pair of points given by the
experimental data points and the theoretical values are also given, as well as their

correlation coefficients.
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detectability of the human observer versus the predicted theoretical wvalues., The
performance of the human observer versus the ideal observer and the nlf ideal observer is
plotted Figure 4.3. A linear regression is performed to fit the experimental data values
plotted versus the theoretical values. Results show a correlation of the human observer
relative to the ideal observer of 0.96 and relative to the nif ideal observer of (.98 (see Table
4.2). Despite of the high correlation of the data with both figures of merit, Figure 4.3
shows a strong difference in performance between the detectability values that the human
observer and the ideal observer are operating on. We shall quantify this discrepancy by
computing the efficiency of the human observer relative to the statistical observers.

By analogy with Barlow’s definition of statistical efficiency (Barlow 1978), which
is defined as the squared ratio of dy . to diy..; 2nd which we shall denote n(ideal), we
define a pseudo-efficiency n(nif) as the squared ratio of Qhuman @ dge. The values of
n(ideal) and n(nlf), computed by using the experimental detectability values given in column
2 of Table 4.2 and the theoretical detectability values given in columns 2 and 3 of Table 3.3,
are given in Table 4.2, columns 3 and 4. From these values, the average efficiency over the
ten experiments is calculated and is given in Table 4.2. Results show an average efficiency
n(ideal) of only 0.3% for the human observer with respect to the ideal observer. This low
efficiency value shows that the ideal observer greatly overestimates the performance of the
human observer. If we now look at the performance of the human observer relative to the
nlf idea! observer, results show an efficiency of the human observer relative to the nlf ideal
observer of 10.8% which is a factor 36 greater than relative to the ideal observer. These
efficiency values are the quantification with a single number of the fact that the values of
dhuman @Te in better agreement with the values of d_; than with the values of igear-

Another way of looking at the performance is to compare the performance of the

ideal, the nif ideal, and the human observers with respect to the contrast of the signal after
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EXPERIMENTAL RESULTS
AFTER DECONVOLUTION
Experiment Ahuman n(ideal)o, n{nlf)e; n(npw)ey
Number
1 0.65 0.08 7.85 15,15
2 1.05 0.19 13.48 23.85
3 1.23 0.23 13.16 21.87
4 1.70 0.39 18.90 30.07
5 2.00 0.49 20.48 31.39
6 2.15 0.52 19.10 28.32
7 2.48 0.64 21.09 30.37
8 2.32 0.77 23.00 3233
9 3.59 1.17 31.96 43.87
10 3.43 1.00 25.44 34.03
AVERAGE
* EFFICIENCY 0.6 % 19.5% 29.1%
SLOPE 0.24 0.65 0.65
INTERCEPT -4.82 -0.88 -0.5
CORRELATION 0.98 0.99 0.99
COEFFICIENT
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Table 4.3. Results of the psychophysical study carried out to investigate the impact of
deconvolution on human performance using 10 experiments.
experiment the performance is given in column 2 in terms of the detectability
values associated with the human observer, and in column 3 to 5 in terms of the
efficiency of the human observer relative to 3 statistical observers and calculated
using the theoretical values of detectability given in table 3.4. The slopes and
intercepts of the regression lines that fit the pair of points given by the
experimental data points and the theoretical values are also given, as well as their

correlation coeffici

ents.

For each
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imaging. The contrast of the signal after imaging, denoted as Cig, 1s calculated as follows

o _ (8ve)0) + (s« t)(D)
B (b«c)(0) + (b+1)(0)

4.1)

and the values of C;, are given in Table 3.2 across the ten sets of images. A plot of the
detectabilities predicted by the ideal and the nif ideal observers is given in Figure 4.4 where
the values corresponding to the ten experiments (Cj between 5.4% and 17%) are plotted as
well as some lower values of the contrast to betier demonstrate the behavior of the ideal
observer performance. To reach lower contrast values, the extent of the tail of the PSF is
simply increased. This plot first shows that the ideal observer performance is highly non-
linear as a function of C,, for Cis below 5.4%, but can be approximated by a linear function
of C; for C, greater than 5.4% that includes the range over which the images for our
psychophysical experiments were generated. This non-linear behavior of the ideal observer
performance can be explained by the fact that, as we increase the extent of the tail of the
PSF, the term (s«t)(r) extends beyong the finite dimensions of the image that results in a
truncation of the computation of digeat given by Equation (3.17).  The detectability
predicted by the nif ideal observer, on the other hand, increases linearly as the contrast of
the signal increases since the term (sxt) (1) is being now ignored in Equation (3.32). Finally
we can extract a minimum contrast perceived by the human observer of 4.5%, which is
given by the intercept of the regression line Ghuman V8- Cig with the x-axis.

We conclude, then, that the results of the experiments indicate that the nlf ideal
observer better predicts the performance of the human observer than the ideal observer
does. However, the average efficiency of the human observer relative to the nlIf ideal
observer is only 10%, so we shall investigate if contrast enhancement, using high-pass

filtering, would be of any help to the human observer. The main question is whether or not
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Fig. 44. Plot of the detectabilities associated with the ideal, the nlf ideal, and the human
observers vs the contrast of the signal after imaging by a long-tailed PSF. The
contrast of the signal decreases as the extent of the tail of the PSF increases.
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the boost and the correlation in the noise induced by high-pass filtering will nullify the
advantage of deconvolution. We shall now investigate the impact of deconvolution on the

human observer performance.

Methods and Results after Linear Deconvolution

Experimental Methods

We know that the impact of the tail of the PSF is to yield a broéd signal given by
(s« t)(r) superimposed on a sharp signal formed by the core of the PSF and given by (s«c)(r).
In planar imaging, image restoration is a general term to describe a technique that allows the
restitution of the object in its planar original form. We described in chapter 3 the
deconvolution operation used to deblur the images. If no noise were present in the image,
the deconvolution would yield a perfect restoration of the object (s+b)(r). For each width
of the tail of the PSF, as given in Table 3.1, a filter T} (p) was designed using Equation
(3.35) and applied to the computer-simulated images generated for the previous study. An
example of four filters used to perform deconvolution was given in Figure 3.4. In the
Fourier domain, the edges of a 128x128 image correspond to a maximum spatial frequency
of 0.5 cycles/pixel. An example of an image which was presented to the humaﬂ observers
before deconvolution is shown in Figure 4.5 on the left-hand side, while the same image
after deconvolution is shown on the right-hand side.

The experimental protocol was similar to the study before deconvolution. Each
image was displayed using eight bits of greylevels. The images were viewed by the same six
observers using the same certainty scale. Sample images were again displayed to the

observers to clarify the object parameters and location before the study was run.
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Results

The analysis carried out on the data is equivalent to the analysis performed on the
data of the previous study, and results are presented in Table 4.3. By comparing the
detectability values given in column 1 of Table 4.3 with the values given in column 1 of
Table 4.2, we find that the performance of the human observer has improved due to linear
filtering, but is still far below the prediction of the ideal observer, which is invariant under
linear filtering as shown in chapter 3. In fact, the efficiency of the human observer with
respect to the ideal observer is still as low as 0.6% af ter deconvolution. Such an efficiency
again shows that the ideal observer is a rather poor indicator of human observer
performance for the problem at hand, although the correlation is again high.

Let us now look at the performance of the human observer relative to other
statistical observers. If we look at column 3 of Table 4.3, we observe, after deconvolution,
a significant increase in efficiency of the human observer relative to the nlf ideal observer
across the ten experiments. The average efficiency over the ten experiments of the human
observer with respect to the nif ideal observer has increased from about 11% before
deconvolution to about 20% after deconvolution. A plot of the performance of the nif ideal
observer versus the human observer shown in Figure 4.6 shows that deconvolution does help
the human observer, while the nif ideal-observer performance remains constant as shown by
the vertical shift of the points after deconvolution. We can now compare this result with the
performance that would result from applying a simple matched filter on the deconvolved
images. The construct of the npw ideal observer applied to the long-tailed PSF problem was
given in chapter 3, and an illustration of the feature operator was shown in Figures 3.9 and
3.10. The results, given in Table 4.3, show a high correlation of the human observer with
the npw ideal observer with a value of 0.99 and also an eff iciency of 29%. The

performance of the human observer relative to the niIf and the npw ideal observers is
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graphed in Figure 4,7, We note that the regression lines are almost parallel, and that the
increase in efficiency from the nlf ideal observer to the npw ideal observer is shown by an

upward shift of the regression line.

Discussion

The study of the impact of long-tailed PSEs on detection before deconvolution led
to the important result that both the ideal observer and the npw ideal observer are poor
figures of merit for the problem at hand, the efficiencies taking values of less than 1%. We
found that the nif ideal observer seems to better predict human performance, leading to an
average efficiency of 11% over the set of ten experiments. Such a high discrepancy between
the ideal or the npw ideal observers and the nlf ideal observer seems to indicate that the
human observer cannot use the signal information encoded in the low-frequency component
(s« t)(r).

We then showed that linear deconvolution does help the human observer in the
detection task, but that the improvement is such that the efficiency of the human relative to
the ideal observer increases only from 0.3 to 0.6%. This small increase indicates that the
ideal observer is certainly not the appropriate figure of merit to describe the problem of
long-tailed PSFs, not only before deconvolution but after deconvolution as well. The fact
that the ideal observer does not predict human performance after deconvolution is not so
surprising if we recall the work of Myers et al. (1985). They found very low efficiencies
for the human observer with respect to the ideal observer when images with negative noise
correlations were considered and showed that the human observer is unable to prewhiten the
noise. The negative correlations in the noise resulted from filtering the images using high-
pass filters, that is similar to our study where we also use high-pass filters to deconvolve our

images. They accepted the npw ideal observer as a better figure of merit to predict human-
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observer performance. We also find that the npw ideal observer yields good efficiencies
when compared to the performance of the human observer using the deconvolved images.
We thus ask whether this increase in performance of the human observer is due to
deconvolution or is simply a result of displaying the images in a more efficient way
{Cormack 1980), or both. Thus, to show unambiguously that deconvolution does help the
human observer in the detection task, we shall investigate the impact of the display process

on the performance achieved.

Display Mappings and Human Performance

We already stressed the point that an imaging process may be conceived of as a
two-stage process, a detection stage encompassing the acquisition and the recording of the
data, and a processing and display stage where the data are displayed in the form of an
image to a human observer. The former stage of imaging has been described in detail using
statistical decision theory, while one aspect of image processing, high-pass filtering, was also
investigated. We want to address now an important question, which is to find what is the
impact of the CRT-display factors on human-observer performance. We shall be looking
more specifically at two main factors: the utilization of the available grey-scale levels and
the photometric linearization of the greylevel-to-brightness transfer curve.

We shall show an example where the utilization of the full scale of available
greylevels is beneficial to the human observer, at least for a nonlinear grey-scale transfer
curve. We shall also show that linearization of this curve, despite its importance in
comparing displays, leads to a significant loss in human observer efficiency for the problem

at hand.
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Utilization of the Available Grey-Scale Levels

To prove that deconvolution did help the human observer in the detection task, we
investigated the effect that linear grey-scale mappings have on human observer performance
for the processed and unprocessed images,

To study this effect we first carried out a psychophysical study with the computer-
generated images, before and after deconvolution, and displaved the images without
greylevel manipulation. In fact, the values of the unprocessed images, as generated, ranged
within the greylevel values of 0 to 255 and could therefore be displayed without scaling
using the default CRT greylevel-to-brightness transfer curve that was given in Figure 4.1,
For the processed images, on the other hand, their range of greylevel values fell outside of
the 0 to 255 greylevel range, and the images had to be scaled--without any stretch--before
display. To perform this operation of scaling without stretching, we looked, among all the
images, for the image with the highest range of values and derived the appropriate scaling
factor, common to all the images, to multiply each image of the set by, before display.

The results of these studies are presented in Figure 4.8, where we plot the
detectabilities of the human observer, calculated using ROC analysis, vs. the detectabilities
predicted by the nif ideal observer. The two lower regression lines correspond to the
performance, before and after deconvolution, for the images displayed without stretch, The
observed increase in slope from 0.49 to 0.57 shows an improvement in performance due to
deconvolution apart from the Improvement that would follow contrast stretching. The
images were then stretched over the full range of available greylevels. The resnite are given
by the two upper regression lines plotted in Figure 4.8. Results show an increase in slope
for both processed images (from 0.49 to 0.57) and unprocessed images (from 0.57 to 0.65).

An additional upward shift in intercept results for the processed images after stretch. The
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overlap of the two central lines tells us that by performing either deconvolution or linear
stretch on the images, the performance is increased by about the same amount. However, if
we now apply deconvolution and stretch sequentially, the performance is greatly improved.
From these results, we see that deconvolution plus stretch leads to the highest performance
of those just described for the observer/display system, but also that deconvolution alone
does help the human observer in the detection task.

Questions still remain however. Will further stretch on the images improve
performance, and what is the impact of the shape of the greylevel-to-brightness transfer
curve on the performance? We shall answer the first question by looking at the effect of
further greylevel windowing. We performed a more extensive stretch by applying a
greylevel window to the image before deconvolution. The greylevel window used in the
study consisted of keeping half of the full range of the actual greylevel values in the images,
without altering the signal. The results are presented in Figure 4.9, They show that the
performance achieved with this windowing technique is essentially equivalent to the
performance achieved when deconvolution and stretch were applied sequentially. To get an
idea of the different types of images, that is before deconvolution, after deconvolution,
stretched images, and windowed images, Figure 4.10 shows on the top left an example of an
image before deconvolution and stretch, and on the top right, the same image after
deconvolution. The bottom right image represents the effect of deconvolution and stretch
using 256 greylevels, while the bottom left image illustrates the greylevel windowing

technique on the unprocessed image.

Linearization of Grey-Scale Transfer Function
There is still another concern with the display of the images. We need to

understand the effect of the shape of the greylevel-to-brightness transfer curve on the



Fig. 49,

117

4.00 80800 Deconvolution plus streteh
) *eses g deconvolution; windowing

[
£
3
_C2.OO
o
O.OO|JII!IJ§II;I1i7I|III3|[li—ililllllllllilm
C.0C 2.00 4.00 6.0C 8.00
d nlf

Comparison of the performance of the human observer v the nlf ideal observer
after deconvolution or grey-leve] windowing, An exam
the human observers after d

corner of figure 4.10, while
windowing is shown in the lo



118
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performance, before and after deconvolution. It was suggested by Burgess (1988) that we
verify that the increase in performance resulting from deconvolution is not simply due to a
different location of the signal on the greylevel scale. If we look, in fact, at the transfer
curve given in Figure 4.1, we observe different regions of increase in brightness along the
curve due to different local slopes of the transfer curve, with a maximum magnification in
the linear part of the curve. To clarify the effect of deconvolution on the images, apart
from the role of the display characteristic curve, Burgess suggested linearizing the greylevel-
to-brightness transfer curve and repeating the study of deconvolution. We shall now
describe the procedure used to linearize the display photometrically and present the results
of the experiments. This procedure of linearization is not to be confused with perceptual
linearization as described by Pizer 1981,

Because of the need to increase the control over the display parameters and the
experimental conditions associated with the psychophysical studies, we decided that for any
following studies we would drive our display monitor with a PCvision board. This decision
aliowed us to have a System especially for the purpose of psychophysical studies, such that
the control over the experimental conditions, viz. the contrast and brightness of the CRT
display, and the environmental setup in general, could be facilitated. Since the previous
studies were run using an imaging board controlled by the VAX, we measured the transfer
curves of our CRT (Sierra Scientific Corporation) for the two boards, the board controlled
by the VAX and the PCvision board.

To photometrically linearize a CRT display, we first needed to measure the
transfer charateristic-curve of the CRT, that is the relation between the input grevievel and
the corresponding displayed brightness value at the CRT screen. CRT displays have been
characterized accurately, for example, by Hans Roehrig et al. (1989), who considered,

among other factors, the nonuniformity in brightness across the CRT screen and the
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existence of scatter within the phosphor of the screen. Because we wanted to make
measurements as accurate as possible, we decided to control for both of these effects even
though they were small. We chose to measure brightness within only a 16x16 array at the
center of the screen; we called this array our measurement area,

For precise control of these measurements, we needed to account for the ambient
light and two types of scatter: light scattered in the imaging lens and light scattered from
activated phosphor surrounding the measurement area. We first created a dark-room
environment and then imaged the 16x16 array onto the sensitive area of a photodiode such
that the photodiode only saw the light coming from the measurement area. While the first
type of scatter always needs to be eliminated, the second type of scatter must, on the other
hand, be included as part of the measurements because this type of scatter is part of the
interactive process that takes place jn all CRTs. Any one pixel’s brightness is affected by
the scatter within the CRT screen from surrounding bright pixels. Thus if we want an
accurate measure of a displayed greylevel, we must allow for the scatter from the
surrounding area. To account for the scatter from surrounding areas and its effect on the
measured greylevel brightness, we set a 128x128-pixel area around the 16x16 array to a
greylevel of 128 during the whole measurement sequence. A greylevel value of 128 was
used because this was the average mean value of the images used in the phychophysical
studies.

The measurements of brightness were made using a 55 mm camera lens as the
imaging device and a photodiode of 95 mm? sensitive area as the detection device. The
16x16 array was displayed in the center of the CRT screen and imaged by the lens on ithe
photodiode. The greylevel values assigned to the suround were 0, 128, and 255. A value of
I28 was used to simulate the mean value of the images that were used for psychophysical

studies, while the values 0 and 255 were used during calibration of the imaging system. The
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calibration sequence of the imaging system was as follows. We first proceeded to an
alignment of the system to form a focused image of the 16x16 square array on the
photodiode. To bring the object into sharp focus, the easiest way was to display a
computer-simulated fine grid on the CRT screen and to form its image on the photodiode.
The grid was brought into focus by opening the lens to F/2.8 and translating the imaging
system (lens and detector) on its xyz translation table. We then displayed a 16x16 area
centered in a 128x128 surround of greylevel 255 while the value of the 16x16 array was set
to zero. We verified that the photodiode saw only the central area, and not the surround, by
scanning transversely the image formed on the photodiode with a 5 mm § ield stop positioned
at the photodiode plane. The results of the scan, presented in Figure 4.11, show a
significant flat plateau in the center of the scan that corresponds to the detector seing only
the greylevel value of zero. The rising edges, on the other hand, correspond to a field of
view that includes more and more suround, up to the second plateau at the edges of the
scan, which occurs when the photodiode saw only the surround of greylevel value 255. This
calibration step was to ascertain that the scanning aperture was of the apropriate size to
capture most of the 16x16 array but none of the surround. The last step in the calibration
was to prevent any light emitted by the surround from reaching the detection area due to its
scattering in the imaging lens. To avoid this scatter, we first stopped down the aperture of
the camera to F/16. We then measured the residual scatter by superimposing a black piece
of material of density greater than 4 on the 16x16 array already set to zero and measured the
amount of light reaching the detector. Since we still measured some residual scatter
occuring in the lens after closing it down to its smallest aperture size, we used a 10 mm
circular aperture positioned at the entrance plane of the camera lens to serve as a baffle.
The size of this aperture was found to be sufficient to make the systein immune to scatter.

We then set the surround to a greylevel value of 128 to simulate the display of a
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Fig. 4.11. Plot of the profile of the relative brightness accross an image of a 16x16-pixel
array of grey-level value zero centered in a 128x128-pixel array of grey-level
value 255. The image was formed on a photodiode by a 55 mm camera lens, and
the relative brightness was measured as a voltage as indicated on the figure. The
image was scanned using a 5 mm field stop positioned as close as possible to the
photodiode. In the central flat plateau the scanning apertire overlapped only
with the 16x16-pixel array. It overlapped part of the 128x128-pixel array and
part of the 16x16-pixel array for the rising portion of the curve. Finally it
overlapped only the 128x128-pixel array for the two highest plateaux at the edges
of the profile. '
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real image. If the mean level of an image is 128, as it is generally the case in our
psychophysical studies, we assume that the scatter reaching one pixel from its surrounding
pixels would be in average the same as the scatter caused by a constant surrounding assigned
to this mean greylevel value. The greylevel value of the measurement area varied from 0 to
255 in steps of 16. Figure 4.12 shows the results of the measurements when the displayed
greylevels were driven either by the VAX board or the PCvision board, respectively. These
measured data points were then fit to a polynomial of degree 7, and the fitted curve was
used to derive a lookup table (LUT) needed to linearize the greylevel-to-brightness transfer
curve.

We found a change in the shape of the transfer curve of the same CRT monitor
when driven by a PCvision board instead of the display board on our VAX 8600 as shown
in Figure 4.12. We postulate that this difference in shape of the two transfer curves is due
to the different voltage levels of the video signal at the output of the two boards as shown
Figure 4.13. No significant difference was found, however, due to the setting of the
surround to a greylevel value of 0 instead of 128 as showﬁ in Figure 4.12 (b) by the
superposition of the two curves for those two values of the surround. To verify that the
LUT provided a good photometric linearization of the transfer curve, we repeated the
measurements using the LUT. The linear measured curves are shown in Figure 4.12 as

straight lines.

Stretch and Linearity
We carried out two psychophysical studies to investigate the effect of wusing
different boards to drive the CRT display and the effect of linearization of the CRT on
human performance. For each study, we ran 5 of the 10 experiments designed to study the

effect of deconvolution for the long-tailed PSFs images. We ran experiments 1, 3,5, 7, and
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Fig. 4.12. Plots of the measured relative brightness vs the displayed grey-levels at the CRT
screen. The measurements were done with a photodiode/55 mm camera assembly
looking at a 16x16-pixel array of grey-level values ranging from O to 255. The
16x16~-pixel array was centered in a 128x128-pixel array of grey-level value 0 or
128 and referred to as the surround. The display monitor was driven by either
{a) a VAX board or {(b) a PCvision board. The measurements were repeated
after photometric linearization of the display and the results are shown on the
same plots as straight lines. :
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Fig. 4.13. Plot of the voltages of the video signals generated from the numerical values of
the displayed grey-levels for two driving boards, a VAX board and a PCvision
board. This difference in values explains the difference in the shape of the
transfer curves for the two boards as shown in figure 4.12. The display monitor

. was the same for the two driving boards.
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9 with the images displayed using eight bits of greylevels. The images covered 5.4 x 5.4 cm
on the screen and each pixel measured 0.42 x 0.42 mm?2. The light in the room was dimmed
down to the same value for all the observers. The contrast and brightness levels of the
display monitor were fixed during the study and the observers were not allowed to vary
them during the study. Each subject viewed the images binocularly at a comfortable
distance chosen by the observer, and the observers were required to wear their usual
correction lenses.

Six observers ran the study, each performing all 5 experiments. The observers first
viewed sample images to ascertain the shape, size and location of the signal to detect. They
did not have any information on the number of occurrences of the signal. The images were
displayed in a random order either with the non-linearized transfer curve of the display at
fixed contrast and brightness levels, or using the LUT derived to photometrically linearize
the display. The 5 experiments were also performed in a randomized order for each
observer. The observer was then presented a single stimulus on each trial, either the signal
on a noisy background or the noisy background alone. The observer was instructed to rate
his certainty of seing the signal on a six-point scale, and the responses were recorded and
then analysed using ROC analysis.

The first psychophysical study compared detection using two different boards to
drive the same CRT monitor. We found that the shape of the transfer curve, found when
the monitor was driven with the PCvision board, led to a loss in efficiency compared to the
performance resulting from driving the monitor with the VAX board as shown in Figure
4.14 (a) and (b). The loss in efficiency when going from 10% to 6.5% and 19% to 13% was
3.5/10 x100 ~ 35% and 6/19 x100 ~ 32% before and after deconvolution, respectively. This
difference in performance shows how a difference in shape of the greylevel-to-brightness

transfer curve can strongly affect human observer performance.
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Fig. 4.14. Plots of the detectabilities obtained from the psychophysical studies using
linearized and non-linearized displays vs the detectabilities predicted by the nif
ideal observer: (a) before deconvolution, but with stretch (b) after deconvolution
and stretch.
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The second psychophysical study investigated the effect of linearization of the

transfer characteristic curve on perception. Because of ease of control we used the PCvision
board to run this study. The results, also given in Figure 4.14, show a loss in efficiency of
about 77% and 46% before and after deconvolution, respectively. The results of the
linearization of the display are summarized in Figure 4.15 for the PCvision board before and
after deconvolution, It is interesting to see that the measured performance of the human
observer is about the same for the images before deconvolution and lingarization than after

deconvolution and linearization as shown by the two overlapping central regression lines.

Discussion

First, we have shown that setting the window and the level of the displayed images
does affect the performance of the human observer when performing the detection task.
Second, after linearization of the greylevel-to-brightness transfer curve, the performance of
the human observer has decreased significantly.

To discuss the first finding, let us again consider Figure 4.10 which displays some
examples of images containing a signal. First, note that both the signal and the noise
become more visible after either deconvolution followed by stretch or simple greylevel
windowing before deconvolution. We expected the performance of the human observer to
remain constant after processing, however, unless the contrast of the signal was below the
contrast threshold of the eye before processing (Blackwell 1946; Barlow 1957; Nagaraja
1964; Goodenough et al, 1975; Judy and Swensson 1985; Seltzer et al. 1988).

Several factors can be the source of 2 reduction in human effictency: first, the
inefficient filtering that occurs, for example, if the human observer systematically cross-~
correlates the images with a larger or a smaller template, or if the diameter of the disc signal

to detect is larger than about 1 degree of visual angle (Burgess 1986). In our experiments,
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for linearized and non-linearized displays, before and after deconvolution.
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the fact that the signal was seen under about 0.6 degree of visual angle (the signal being
about 5 mm wide and the viewing distance about 50cm), implies that this type of error was
not the limiting factor. Another factor is the uncertainty within the observer about the
given signal information, which has been discussed in great detail in an excellent paper by
Pelli (1985), but which has also been discussed by Swensson and Judy (1981), and Hanson
(1983); and more recently by Wagner and Barrett (1987), Brown and Insana (1988), Myers
and Wagner (1988), Wagner et al. (1989), and Wagner et al. (1990). We should expect this
type of error to remain the same before and after processing of the images, however. The
third factor is the intrinsic source of variability within the human observer’s eye-brain
system, commonly referred to as internal noise, which can explain the observed contrast
threshold of the eye. We shall distinguish between two sources of variability, one
component, referred to as constant internal noise, does not depend on the image noise level,
but is a function of the mean luminance in the image (Cattell 1893; Griffiths and Nagaraja
1963; Wickelgren 1968). The other component, referred to as induced internal noise, is a
function of the amount of noise in the image and dominates when the noise is easily visible
in the image (Burgess 1986).

Ishida et al. (1984) showed in a quite convincing paper how the improvement in
detectability due to contrast enhancement using a windowing procedure can be explained by
taking into account the constant internal noise level in the theoretical performance. They
showed that, although the windowing technique increases both the signal contrast and the
image noise by the same factor, the relative magnitude of internal noise with respect to the
perceived noise in the image is reduced by image contrast enhancement, and detectability is
therefore improved. These results seem to agree with our findings since the noise clearly
became more visible after processing in our experiments. Moreover, as the perceived noise

in the image increases after processing, the contribution of the constant internal noise to the
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total noise decreases, and Ishida et al. showed that the performance reaches a plateau where
no further improvement can be achieved. This result may also explain the result that we
found with the greylevel windowing or clipping operation, where we found that the
performance was as good as for the deconvolution plus stretch, but not better in spite of the
the maximum contrast stretching applied. We shall note, however, that, although it was
interesting to explore the effect of clipping part of the image that was outside of the signal
region and to stretch the remaining portion of the image, this technique cannot usually be
applied unless the exact location of the signal is known, while deconvolution of the images
can be applied in any case as long as we know the parameters of the PSF of the imaging
system.

The second finding, that is the decrease in detection following the linearization
procedure, can be explained by the reduction in slope of the transfer curve in the greylevel
region in which the signal resided. It should be noted that, although the transfer curve
depicted in Figures 4.12 (a) and (b) are commonly encountered in a large range of displays,
other transfer curves are possible, and some of them would certainly lead to different
effects. For example, if linearization has the effect of increasing the slope of the transfer
curve in the range of greylevels in which the signal resides, then detection would be most
likely increased. However, for the range of displays that our transfer curves represent,
photometric linearization is obviously not a good candidate to be used to evaluate human
performance, since the displayed information can be increased when using a different
transfer curve. Moreover, for the task at hand, the efficiencies we were working with
before linearization were well below 50% as often reported, for example, by Burgess in his
experiments (Burgess 1984 and 1985). We expect that linearization would have a stronger
effect on the performance for those low efficiencies. This reduction in performance might

have been more subtle if we were to work between 25% and 50% efficiencies, but our study
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demonstrates how important it is to control for the display parameters, to report the shape of
the display transfer curve in parallel with the psychophysical results, so that more unity

among different groups of research can be achieved comparative studies carried out.
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CHAPTERS
NONUNIFORM BACKGROUNDS

We have encountered cases where the performance of statistical observers could be
easily calculated when both the signal and the background were known exactly. The
performances of these observers were then compared to human performance to determine if
they could be used as a basis for system assessment and optimization. It was implicitly
assumed in this approach that a system optimized for a model observer and an exactly
specified task would also be optimal not _only for the human observer, but also for more
realistic tasks. To verify the validy of this assumption, we propose to increase the
complexity of the task by relaxing the property of an exactly specified background. The
main objective of this study is to provide some starting points towards assessing image
quality for more realistic images. The realisation of this objective should directly lead to a
better understanding of the trade-off between resolution and sensitivity, as specified by the
imaging aperture size. We shall start to motivate the interest in studying background
uncertainty by showing, by the means of a simple example, a paradox between statistical
decision theory and clinical experience. We shall then review some of the pioneer works
that strongly triggered our interest to study the problem of background uncertainty as well,

If we consider the problem of aperture design when the task is the detection of a
completely _s,pecified signal s(r) in an infinite, uniform background of known strength B,,
we shail show that the ideal-observer strategy leads to an optimum aperture that is infinite

in spatial extent. Let us describe the signal by a 2D Gaussian function of the form
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s(r} =

ﬂ::z exp ( - [r|2/r,2) , (5.1)
where 1 is a 2D position vector, r, is the half width at | /e of the peak intensity, and a,
represents the total energy under the signal. In a two-hypotheses detection task, the mean
object f(r) can be described by either a constant background of strength B, under hypothesis
H,, or as the signal s(r) superimposed on the constant background of strength B, under
hypothesis H,. For a task where the object is specified completely, f‘(r) and f(r) are
equivalent, and we shall then refer to the mean object as f(r). If we follow the formalism
of image formation described in chapter 2 (see equation (2.6)), a mean image wg;(r) is then

given by
g0 =T (f(r)«p(r)) (5.2)

where « is an efficiency factor describing the geometry of the imaging system, p(r) is the
transmittance of the aperture when projected onto the image plane, and T is the exposure

time. Let us describe the imaging aperture as a Gaussian pinhole of the form
p(r) = €Xp ( - lrlz/rpz ) 3 (5‘3)

where I is the half width at 1/e of the peak transmittance measured in the image plane.
We derived in chapter 2 an expression for the detectability index d,g,, in the form of a
discrete sum of the ratio of the squared difference of the expected signal to the mean
background as shown by equation (2.43). As the area of the sampling element approaches

zero, equation (2.43) can be rewritten in integral form as,
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[digeat P = J dzr [Ag(n)P . (5.4)

g,(r)
with
Agr) = £ T (s(r) « p(r))
=A:Tza2'%9~z—zexp[—§l—i%} , (5.5)
and '
g,(r) = By p(r) = TA,B, , (5.6)

with A, equal to mr, %, the aperture area. By substituting equations (5.5) and (5.6) into

equation (5.4), the expression for digen becomes

el = [dor | kT P2t o[ |rf2 1
ideal rr .2 r2 412 & Trr,? B,

= kT asz I'p4 d2r exp __ZJLLZ_
(tp2 + 1,2)2 (m r,% By) r? +r,2

2 2
- kT a, 'y 2 szr exp[_il_r.lz_]

2B, (r,2 +1,%) T (1,2 +r,2) 2+ 1,2

_ &1 a’lr? .
- 2B0 (rp2+r82) * (5.7)
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Equation (5.7) shows that, for a given imaging time T, the detectability is optimal for I,
infinite and tends to the asymptotic value « T a 2 / 2 B,. In other words, for the task at
hand, resolution seems to be useless from the ideal-observer point of view. Equation (5.7)
also shows that, for an aperture of a given size 1, , the detectability increases linearly with
exposure time and tends to infinity as T tends to infinity.
In a generalization of the above task, Tsui et al. (1978) calculated the performance
of three model observers as a function of aperture size for the problem of detection of a
spherical tumor in a finite uniform background of unknown strength. The realism of the
problem was increased further by assuming a finite detector area. One observer model in
the Tsui paper closely approximated the Bayesian strategy for the task. Because the flat
background was known only in a statistical sense, the observer had to make an estimate of
the background in an annular region about the signal and compare this estimate to an
estimate of the activity level at the location of the expected signal. The authors optimized
the integration areas of the two regions of estimation for each aperture size they considered,
The uncertainty in the flat background level together with the finite image field resulted in
a finite optimum aperture size for maximum observer detectability. In other words, spatial
resolution was an important system design parameter for this task.
More recently, an interesting problem was presented by Wagner et al. (1981).
They considered a high-contrast Rayleigh task in which the ideal observer was asked to
determine whether a noisy scene was the image of a single or double Gaussian signal. The
Rayleigh discrimination task was first suggested as a useful test of imaging system
performance by Harris (1964), Wagner et al., considered a SKE/BKE task jn that the width
of the sources and the separation of the pair were known, as was the strength of the
uniform background on which they were superimposed. Both the background and the

detector were assumed to have infinite spatial extent. Since the only randomness in the task
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was due to Poisson statistics, the formulation of the Bayesian decision strategy was
straightforward. Using a signal-detection framework, the authors determined how ideal
observer performance varied as a function of source width and separation for three
apertures: a simple pinhole, a large open aperture (twenty times the pinhole width), and a
coded aperture known as the uniformly redundant array (URA). The authors found that
the ideal observer performance was much better for the URA than for the small pinhole
when the signal had high contrast. The ranking of the code and the large aperture depended
on the source width and separation, with the large aperture outperforming the code for
coarse tasks. The surprising conclusion of Wagner et al. was that the large aperture
outperformed the simple pinhole for all source widths and separations.

We have just described studies of certain tasks that imply that a large open
aperture is much better than a small pinhole, according to the calculated performance of the
ideal observer. Yet, this conclusion does not seem to agree with current experimental
practice in radionuclide imaging. For example, in the field of nuclear medicine, spatial
resolution in the displayed image in the neighborhood of 1 cm seems to give the best
subjective image quality. It is the purpose of our study to further understand the source of
this paradox.

The detection and Rayleigh studies that found superior performance for large
apertures have two common features. One is the complete specification of the background
and signal, and the other is the infinite size of the detector area. To resolve the apparent
contradiction between the results of these studies and current experimental practice, we shall
investigate tasks in which the signal is still known exactly but the background is allowed to
vary randomly from image to image and have a spatially varying ("lumpy”) character. We
shall show that even in the circumstance of infinite background and detector extent, a

spatially varying background drives an imaging system to finite optimum resolution. Before
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elaborating on performance calculations, we shall proceed to the description of two types of
nonuniform or lumpy backgrounds which will be used in our computer-simulated images

and in the calculation of statistical observers performance.

Lumpy Background Simulations

The increase in complexity due to the relaxation of the certainty in the
background can be achieved in many different ways, but only certain models will lead to a
description that is mathematically tractable. The mathematics involved in the formulation of
a statistical observer performance require either the full knowledge of the probability
densities of the images under the two hypotheses, as shown for the ideal observer in chapter
2, or the first- and second-order statistics as for the npw ideal and the Hotelling observers.
In the case of the lumpy backgrounds, we may want to stay away from computing the ideal-
observer performance since the full knowledge of the probability densities under the two
hypotheses is generally difficult to derive or éven to estimate as the complexity of the task
increases. Rather, we shall consider less demanding statistical observers such as the
Hotelling and the npw ideal observers. Some further assumptions can also be made to allow
for the simplification of the mathematics involved. To compute the classification
performance of these two statistical observers, we make the following assumptions: the first
assumption is wide-sense stationarity, where the autocorrelation f unction is only a function
of the shift variable r. The second assumption is that the background autocorrelation
function is a Gaussian function of the form

Re(r) = "% exp (-|r]2/2r,2) | (5.8)
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where 1y, is the correlation length of the autocorrelation function and W;(0) the value of the
power spectrum at zero frequency. The subscript f here emphasis the fact that the
autocorrelation function refers to the object f rather than the image g. After imaging, we
shall refer instead to R, and W . The notation W;(0) comes from the notations used for the
pbower spectrum since, for stationary statistics, the power spectrum W;:(p) can be defined as

the Fourier transform of the autocorrelation function, so that

Welp) = We(0) exp (- 2 x2 n? |pl|?) (5.9

where p is the 2D frequency variable in the Fourier domain conjugate to r. We shall now
proceed to a description of two simulation schemes that yield stationary statistics and

Gaussian autocorrelation f unctions.

Lumpy Backgrounds of Type I

The first approach to lumpy backgrounds is to simulate uncertainty in the
background by randomly superimposing Gaussian functions on a constant background of
strength B, over the object space. We shall often refer to these Gaussian functions as
Gaussian blobs or simply blobs. To keep the mathematics as simple as possible, we assume
here that the Gausian blobs are of constant amplitude by/a1y,2 and constant width r,. One
image formed with these Gaussian blobs can be described mathematically as the convolution
of a set of delta functions of equal amplitudes and randomly located in the object space with
a Gaussian function of constant strength and width, If we denote by b(r) the lumpy

component of the background, the expression for b(r) is then given by
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where r; is a random variable uniformly distributed over the object area, and K is the
number of biobs in the background. The object area should be understood here as the
projection of the actual object space onto the image plane such that the magnification
between the object and the image planes is automatically taken into account. A detailed
description of image formation was given for the case of a pinhole aperture in chapter 2.

The description of a nonuniform background as given by equation (5.10) is not
sufficient, however, to yield a Gaussian autocorrelation function. The calculations of the
autocorrelation function, presented in detail in appendix B, shows that the number of blobs
K must be itself a random variable and more specifically it must be Poisson distributed.
This can be seen clearly by simple inspection of equation (B14), where the expression for R;
reduces to a Gaussian function if the last two terms cancel out. The expression for R; (or
W:) given by equations (B15) (or (B16) and (B17)) is an expression for the second-order
statistics of the lumpy backgrounds of type I thus generated. The derivations given in
appendix B lead to 2 measure of lumpiness given by equation (B17) as

We(0) = K pp2

Ag (5.11)

El

where E/Ad is the mean number of blobs per mm? and b, is the strengh of the blobs and is
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in units of counts per sec. The lumpiness is then expressed in units of counts?/(sec? mm?2),
The first-order statistics can be expressed as the expected value of the background
over the ensemble of images. The mean level B in the object is the sum of two terms, and

its expression is given by
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where we assumed that Ag tends to infinity to derive line number 4. Note that B, is in

units of counts/(sec mm?2), IZ/Ad i In units of counts/mm?, and b, in units of counts/sec,
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The mean background B is then expressed as a number of counts/(sec mm?2),

Lumpy Backgrounds of Type IT
The second approach to lumpy backgrounds with a Gaussian autocorrelation
function is to filter uncorrelated Gaussian noise. If the filter function is chosen to be a
Gaussian function of correlation length Ty, & mathematical description of the background

b(r) generated from filtered uncorrelated Gaussian noise is best given in the discrete form

b(r;) = Za(ri) -i%:)g— exp ( - |r;-r;|2/r,2 )

i

= HO N oy exp (-|r;-r|2/mn,2) | (5.13)

Ty, 2
i

where a(r;) is a random variable normally distributed with mean value A, and standard
deviation o, with i specifying the ith blob located at the jth pixel, and r; is the location of
the jth pixel in the background. Note that b(r;) is obtained by performing a sum over all
the pixels, r; being a nonrandom variable, and that the randomness resides in the amplitude
of the Gaussian blobs. This is a quite different approach from the lumpy backgrounds of
type I where the location of the blobs was then the random variable, their amplitude being
constant and nonrandom.

The first- and second-order statistics of these lumpy backgrounds b(r) of type II,

are derived in appendix C. A measure of lumpiness is now given by equation {C4) as
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W:(0) = W(0) [H(0)]2 . (5.14)

The expression for R; is derived in appendix C and is given by equation (C5). For
stationary processes, the mean of the random process b(r) can be evaluated by taking the
ensemble average over the random variable,which is, in this case, the amplitude of the noise

impulses at each pixel location in the image, We find

B = (b(r)),

= H(O) alry) exp (- |5-r|2/m2) ),

Ty
1

= ;'_Irgz Z ( a(ri) )a exp —"rj..riIZ/rbz)
1

H(0
= ;lr;%: Z A, exp ( - ]rj-rilz/rbz)
i

I
= FHO) A, : (5.15)

where €2 is the pixel area, and B has the same units as A, that is counts/(sec mm?2),

Task Specification

Our studies are based on two classification tasks: the detection task, in which an
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observer must determine whether or not there is 3 known signal in the center of the image,
and the Rayleigh task, where the observer must decide if an image contains a single or a
double signal centered in the image. For both tasks, the signal is known exactly and is
centered in the image. The uncertainty in the background js described by the
autocorrelation function of the background, which is always Gaussian. The two models of
lumpiness that were described in the previous section are two examples of lumpy

backgrounds satisfying stationary statistics and a Gaussian autocorrelation function,

Detection Task

In the first study, the signal to be detected is a discretized version of the 2D
Gaussian function s(r) given by equation (5.1). Under the nuil hypothesis H,, the signal is
absent and the object f(r) is an inhomogeneous lumpy background as described in the
preceding section, | Under hypothesis H,, the object f(r) is the signal s(r) superimposed on
the lumpy background. The width of the Gaussian blobs 1, is chosen to be three times the
width of the signal I, to allow for discrimination. I 1, is less than 3 times r, , the
background looks as if it js formed of multiple signals, and the discrimination of the signal
from the background becomes very difficult even if we know the exact location of the
signal in the image. Moreover, if we were to consider a random location of the signal in the

image, the task of discriminating the signal from a lump would become even more difficult,

chapter 6 to illustrate this point.  We should aiso keep in mind that the detection of the
signal is done at the detection plane and that both the signal and the background have to be
imaged through the imaging system. For the problem at hand, we shall consider as an
imaging system a pinhole gamma-ray camera forming a single projection of an object onto

the detector plane. We shall look for an optimum aperture size to discriminate a signal of
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size r, superimposed on a lumpy background of correlation length r,. Given the optimum
aperture size, we shall then look at the dependence of the performance on the exposure

time,

Rayleigh Discrimination Task

The second task involves the discrimination between images with a single,
centered, Gaussian signal and images with two Gaussian signals separated by a distance 2d
and whose mid-point is centered in the image. Under hypothesis H, the signal is a single
Gaussian of known amplitude ag and half width r, as described in equation (5.1). Under
hypothesis H, the signal is a double Gaussian, where the amplitude of each Gaussian in the
pair is half that of the single Gaussian, the widths are the same ag the width of the single,
and the separation and orientation are known, The object under either hypothesis is the
appropriate signal added to an inhomogeneous background characterized in the same manner
as for the detection task. As for the detection task, we shall look for the optimal aperture
size that will optimize the discrimination between the two types of signals and at the

dependence of the performance on the exposure time,

Performance of Statistical Observers

We shall now investigate the performance of two statistical observers, the npw

ideal and the Hotelling observers,

The Nonprewhitening Ideal Observer
The strategy of the npw ideal observer is to apply a simple template matched to
the expected difference signal to form a test statistic, which is given, as shown in chapter 2,

by
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Anpw = (HAs)tg | (5.16)

and the SNR associated with the test statistic, or detectability index, is given in the low-

contrast approximation by

[dppw 2 = [BAL (5.17)

[0,

where the mean and variance are found by averaging over both the Poisson noise and the
object variability due to the nonuniform background. Let us consider the numerator first,

The mean of A when hypothesis k is true is

Me={{x Pulf Mpe - (5.18)

We find the average for the class by performing an average over the Poisson noise
for a particular object in the class, followed by an average over all objects from the class. If

we use the expression for the test statistic in equation (5.16), we find that
X =Ast Ht ( (g it g = AstHtg, | (5.19}

where

Be=(8h = (8 ) = ((g Inle de - (5.20)

If we denote as Ag the difference in the means of g under the two hypotheses, the

difference in the means of ) under the two hypotheses is then
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AX= Ast Ht Ag . (5.21)

Moreover, since the background has equal statistics under each hypothesis, the difference in

overall class mean Ag_ is simply the image of the difference signal,

Ag=H(f,-T)=Has |, (5.22)

so that,

AX = Ast Ht H As (5.23)

We calculate the variance of the test statistic by cascading averages over noise and

objects in a similar manner. Under the low-contrast assumpﬁon, the definition of the

variance of 1 is

[O31 = { { (A= 202 e ) {5.24)

If we add and subtract the mean of X, averaged over Poisson noise given a particular object,

and denoted A_f, equation (5.24) becomes

[UA]?“—‘((Q"/\_f"‘)Tf‘/\—)z)njf)f

== 2002 e d + (O - )2 bufe ) + cross term, (5.25)

A quick inspection will show that the cross-term is equal to zero and so we are left
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with two terms to evaluate. We evaluate the first term to find:

(LO=200 b )y = (( (A8t HE g - Ast HE 5, )2 Yot )t
=<(ASth(g_g_f)(g“g_f)tHAS)nlf)f

= AsCHY (( (8 - 8¢ NE - B ) ) ) H As

=As* H' M, H As (5.26)

where the diagonal matrix M, characterizes the contribution of the Poisson noise to the

variance and is shown in appendix A {equations (A9) and (A10)) to be given by

M, =cTA,BI , (5.27)

where & is the efficiency factor and I is the identity matrix. The second term in equation

(5.25) is given by

({0 -2 In e = (((Ast Bt g; - Ast Ht )2 dnle )t

= AP HE (( (8 -8)E; - 8)° )y )¢ H As

= Ast It R, HAs | (5.28)
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where R is the autocorrelation function of the nonuniform background in the image plane.

We can now combine the expressions for the mean and variance to write Grpw 8S

(As* H' H As)” (5.29)
As* H' (s T A,, B 1+R,) H As

[dnpw ]2 =

where R, is proportional to T2, while H is proportional to T. This expression may be
simplified by performing the calculation in the Fourier domain. We use the discrete Fourier
operator F defined by equation (2.45) to map the difference signal As into the Fourier

domain as follows,

FAs = As (5.30)

where As (m) is the Fourier amplitude of As at frequency Pm . As discussed in chapter 2,
the Fourier operator F is a unitary operator, so that FFT=F1F=I, where I is the identity
matrix and the dagger represents the conjugate transpose of a matrix or vector. Since the

difference signal is real, we find that

Ast = (FAs)t = AstFt | (5.31)

The system matrix H of a shift-invariant imaging system is approximately block

circulant, and therefore it is diagonalizable using the discrete Fourier operator.

We can now write an equivalent expression for dppw in the Fourier domain by

inserting Fourier operators as shown
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[Ast (Ft F) Ht (Ft F) H (Ft F) As®
Ast (Ft F) H* (Ft F)k T A,, BT+ R.] (Ft F) H (Ft F) As

_ [(As*F1) (FHEF?) (FHEY) (FAs)]
(AstFty (FHUFt) [£ T A, B (FIFT) + FR_Fi] (FHF!) (FAs)

ST R A2

AsTHN 8T A,, BT +w, 1HAS

For clarity, we shall now carry out the calculation in 1D and then generalize the

result to the 2D problem. In 1D, the Fourier transform of H is then given by
FHFt = H (5.33)
with

H(Lj) = HG) 5 . (5.34)

We have written the diagonal matrix H in component form as a function of a single index
that runs along the matrix diagonal. In the Fourier domain the covariance matrix K

becomes
FKFt =K |, (5.35)
which we can write in component form, using equation (A4), as

K(L,j) = (We()) + T A, B) g

[ HOP WD)+ T Ap Bl . (5.36)
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Note that W, is the power spectrum of the nonuniform background in the image
plane, while Wy is the power spectrum of the nonuniform background in the object plane.

If we write out the summations represented implicitly in the matrix notation, we find that

2
Z A (B
i

-

npw

Z [AS@|* [H()|* [= T Ay, B+ W, ()]
i

2
Z |As(1)]? [F)|?
i

= (5.37)
Z |ASG)|* [FD)|® [s T Ay, B+ [HG)|® We(i)]
i
2
= 11_ , (5.38)
T Aa‘p B L+
where
I = Z |as()]? [H)|? (5.39)
i
and
I, = Z las@®)® |HG)|* WG . (5.40)
i

This result can now be generalized to the 2D problem. Moreover, in the limit

where the area of the sampling element approaches zero, the discrete sums approximate
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integrals and equations (5.39) and (5.40) become
. 2 ~ 2 11 2
I = J d2p |AS(p)|* [Fi(p)| (5.41)
o0
and
I, =J d2p (A5 (p)|* [THp)|* We(p) (5.42)
o0

where p is the 2D spatial-frequency vector. This Fourier representation is valid only in the

low-contrast limit where stationary statistics apply.

The Hotelling Observer
To determine a figure of merit for the Hotelling observer, we must first determine
the first- and second-order statistics on the data that lead to the scatter matrices S, and §,.
If the two classes are equally likely, the interclass scatter matrix (see equation (2.51)) is

given by

7]
o,
|

= (B8, 5"

It

3 (A2)(ag)

i (HAs)(HAs)t | (5.43)

where we used equation (5.22) to derive line 3.



153

The covariance matrix of the k* class is defined from equation (2.52) as

Ky = { { (g-gi)NE-gy)" dnif Mpe - (5.44)

Since the object inhomogeneity is the same under both classes, the covariance
matrices are approximately equal in the low-contrast limit (K,~K,~K). Thus, for our low-
contrast SKE problem, we see from equation {2.52) that S, is simply equal to K. Appendix
A gives the derivation of the covariance matrix K in the general case where the data present
both quantum noise and structured noise. We find the value in the ith row and jth column

to be

K(i,j) =R (L,)+xTA, B & , (5.45)

where R is the autocorrelation of the data due to the nonuniform background and Agp 18
the area of the aperture. We see that the covariance matrix is a sum of two matrices, one
containing the randomness of the object due to the lumpy background, Rg, and the other a
diagonal matrix containing the variance associated with the Poisson nature of the detected
data.

If we substitute K for S, in the expression for the Hotelling observer test statistic

given by equation {2.64), we find that

Taet
1l
e
e
Uh
e

AgtK-lg = (HAs)I K-lg . (5.46)
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The detectability index dp,, is related to the Hotelling trace J by equation (2.69) as

[duoel? = 43 = 44[S,7,]
= tr[K-X(HAS)(HAS)!]

= AstH'K -1HAs . (5.47)

The full expression for the Hotelling observer’s detectability for linear, shift-invariant
systems and stationary covariance matrices can also be given as an integral over the Fourier

domain by inserting the Fourier operator as shown

[dot )2 = AstHEK -THAs
= Ast (FIF) Ht (FIF) K- (FIF) H (F'F) As
= (AstFt) (FHtFt) (FK*Ft) (FHF') (FAs)

= As tHIK1H1As . (5.48)

If we again consider the 1D problem, equation (5.48) becomes in component form,

[dgos]? = ZZZZ AS Q) H* (1, H K1, k) Hk, £AS (8)
i k 2

L

- Z A E (DR 1) H()AS ()
i

e las @ [

=/ — e 2 .
T kT A, B+ [HG| W]

) (5.49)

where the raised asterisk denotes the complex conjugate and we have made use of the delta
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functions in the diagonal matrices to reduce the multiple sum to a sum over a single index.
We can generalize this result to the 2D problem, Moreover, by taking the limit of
the sum for a large number of fine samples, we can write dyy, as a continuous integral in

the Fourier domain as

[ 2 = J d2(p) — 85 @) [’ . (5.50)
o0 [6 T Ay, B+ [H(p)|® Wy(p)]

where a tilde above a function signifies its Fourier transform. Thus H(p) is the system
transfer function, and As (p) is the Fourier spectrum of the difference signal As(r).

The integrand in Eq. (5.50) may be regarded as a generalization of the frequency-
dependent noise-equivalent quanta (NEQ) for the lumpy-background discrimination
problem. The NEQ concept, introduced by Shaw and reviewed in Dainty and Shaw (1974)
and Shaw (1978), has also been extensively used, among others, by Wagner (1983) and
Wagner and Brown (1985) for SKE discrimination tasks. The generalized NEQ, first

introduced by Barrett et al. (1989), is given by

E 2
NEQ(p) = ATi(e) 2 . (5.51)
i« T A,, B+ |H(p)|* Ws(p)]

The usual expression for NEQ(p) for the flat-background problem is recovered from this
form by setting W;(p) to zero and recognizing that « T Aup B is the Poisson noise power
spectral density for that case.

In order to calculate the detectabilities of the npw ideal and the Hotelling observers

given by equations (5.38), (5.41), (5.42), and (5.50), respectively, we must assign numerical
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values to the signal and the imaging system parameters. The Gaussian signals had a width I,
of 14.1 mm and a contrast relative to the mean background level B of 5%. This contrast
value is a realistic, albeit challenging, value for nuclear medicine applications. To achieve
this contrast figure, the background level B was set equal to 610 counts/{sec mm?2), which
then sets the signal parameter a, to 1.9x10¢ counts/sec. The correlation length of the hampy
background was set equal to 42.4 mm, so that r,= 3 ry. The background level B was chosen
to give 107 disintegrations in the given imaging time and in a 1282 mm? object, so that one
could detect 10° counts with a perfect photon collection system. For all studies the exposure
time T was set to 1 sec unless otherwise specified and « was a constant set equal to 1073

mm~2,

Example 5.1 Detection Task for Gaussian and Rectangular Apertures

The performance of the npw ideal and the Hotelling observers can be evaluated by
substituting the appropriate expressions for As(p), H(p), We(p) and A,p into equations
(5.38), (5.41), (5.42) and (5.50), respectively. For the simple two-hypotheses detection task,
the expression for As(p) is simply the expression for 5(p), which can be derived from

equation (5.1), to yield

s(p)=1a, exp( - 7212 |p]|?) . (5.52)
The expression for W;(p) is given by equation (5.9), while the expression for H(p) takes the
form

Hp)=xTn .2 exp(- 12 1,2 [p]?) (5.53)

in the case of a Gaussian aperture. For a rectangular aperture,
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sin(rL¢, ) sin{wL¢,)
'NL‘fx TrLgy ’

H(p)=xT12 (5.54)
where &, and &, denote the components of the vector p such that p2=¢, 2+¢,%. Note that the
parameter A, was replaced either by mr,® for a Gaussian aperture or L2 for the rectangular
aperture. A numerical integration of equations (3.38) and (5.50) yields the expression for
the npw ideal and the Hotelling observers, respectively.

Figure 5.1 (a) is a plot of dy, 2 for the low-contrast detection task as a function of
Gaussian aperture radius r,, for increasing levels of the background parameter W(0). Figure
5.1 (b) is a similar plot for the npw ideal observer. The upper curve in both figures
corresponds to a uniform background, in which both observers reduce to the ideal observer.
Note that, in the uniform-background case where the observer performance is purely
quantum-limited, the aperture should be as large as possible to collect as many photons as
possible. This result is consistent with the finding of Tsui et al. (1978).

In the presence of z lumpy background the performances of both observers
demonstrate a clear optimum size. We have normalized the abscissa by the signal size r, in
all figures to clarify the relationship between the optimum aperture size and the size of the
signal. For all values of W;(0), we find that the optimum aperture size is generally the same
size as the signal. The npw ideal observer is seen to experience a greater performance
penalty than the Hotelling observer as the aperture size is increased beyond the optimum
value.

Figure 5.2 repeats the calculations of Figure 5.1, when the Gaussian aperture is
replaced by a square aperture of area L2, Little difference between the (Gaussian aperture
and square aperture for the npw ideal observer can be observed. However, there is a

marked difference in the performance of the Hotelling observer for the square aperture, for
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Fig. 5.1. (a) Family of Hotelling [dy,, ]? curves as a function of the ratio of the Gaussian
aperture width to the signal width for a detection task. The plots show the
effect of increasing the value of the power spectral density at all frequencies by
increasing the value of W;(0) expressed in counts?/(sec? mm?2). Signal width is
10 mm, the width of the autocorrelation function of the background is 30 mm,
and the exposure time is 1 sec. The signal contrast is 5%. (b) Plot of the npw
ideal observer [d,., }* as a function of the Gaussian aperture width to the signal
width for the same detection task as in (a).
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Fig. 5.2. (a) Plot of the Hotelling [dpot)? for the detection task with a square aperture of
length L on a side. The abscissa is the ratio of the squar aperture length to the
signal width. Signal width is 10 mm, the width of the autocorrelation f unction
of the background is 30 mm, and the exposure time is 1 sec. The signal con-
trast is 5%. (b) Plot of _the npw ideal observer [dnpw I? as a function of the ratio
of the side length of the square aperture to the signal width, Signal and back-
ground parameters are the same as for (a).
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we now find oscillations in the dy,; graph. Some intuition regarding the presence of these
oscillations can be ascertained from a frequency-domain point of view, where the Fourier
transform of the square aperture becomes an oscillatory function in the integral of equation
(5.50). As the square size L increases, its sinc function in the Fourier picture narrows and
oscillatory lobes in the transfer function move toward zero frequency. Certain ranges of L
beyond the optimum size evidently result in particular positions of the maxima and minima
of the sinc that result in local improvements in the discriminability between signal and

background, resulting in small oscillations in dp,.

Example 5.2 Rayleigh Task for Gaussian and Square Apertures

The only change in computation from the detection to the Rayleigh task resides in
substituting a different expression for AS(p) in the expression for dypw and dy,,. A simple
calculation of the substraction of the Fourier transform of a double Ganssian signal from the

Fourier transform of a single Gaussian signal leads to an expression for As(p) given by

AS(p) = a, (1-cos(2rde)) exp( - 72 1,2 [p]2) (5.55)

where 2d is the seperation of the two Gaussian signals forming the double Gaussian signal.
Figures 5.3 exhibits representative results for the Hotelling observer for the
Rayleigh discrimination task for d = 10 mm. In this case the optimum aperture size is
comparable to the size of the signal even without background inhomogeneity. The figures
show that onlty a very small performance degradation cccurs for the Hotelling observer whei
a lumpy background is introduced for either Gaussian or square apertures. The differencing

operation performed by the Hotelling observer is quite effective at distinguishing

background from signal for this task, partly because the double signal does not effectively
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Fig. 5.3. (a) Plot of the Hotelling [dy., ] for the Rayleigh discrimination task for Gaussian
apertures of varying size T,. Source width is 10 mm, the pair separation is 20
mm, and the exposure time is 1 sec. Same contrast, background parameters as
in Fig. 5.2. (b) Plot of the Hotelling [dy., 12 for the Rayleigh discrimination
task for square apertures of varying length L on a side. Source width is 10 mm,
the pair separation is 20 mm, and the exposure time is 1 sec. Same contrast,
background parameters as in Fig. 5.2,
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mimic the symmetry of the background “lumps.” We see some evidence of oscillations in
the curves for the square aperture and the Hotelling observer, again due to the effect of an
oscillatory function in the Fourier-domain integral.

Finally, Figure 5.4 shows the Rayleigh discrimination ability of the npw ideal
observer for {(a) Gaussian and (b) square apertures, respectively. We see that the large
apertures are much more strongly affected by the presence of the lumpy background than

the smaller ones regardless of aperture shape.

Example 5.3 Variation of Performance with Exposure Time

The two previous examples showed the result of aperture size on the performance
of the npw ideal and the Hotelling observers. We shall now look at the effect of longer
exposure time on the performance for a fixed resolution. In the case of a Gaussian
aperture, 1, is set to r,, while L is set to 2 r, in the case of a rectangular aperture.

A striking difference between the Hotelling and the npw ideal observers is found
by plotting the detection performance of each observer as a function of exposure time T.
These plots are given in Figure 5.5 for increasing values of the background spectral density
level W;(0). When W(0) is zero, the background is uniform and both observers reduce to
the ideal observer, whose performance increases linearly with exposure time. Figure 5.5 (a)
shows a power-law increase in dy, as a function of T for all non-zero values of W, (0),
with the slope approximately equal to 2/3. No evidence of saturation of the Hotelling-
observer performance can be observed in the plot. Figure 5.5 (b) demonstrates a hard
saturation in the performance of the npw ideal observer for the same set of tasks. The
behavior of the npw ideal observer is predicted from the expression for the dnpw given by

equations (5.38), (5.41), and (5.42). Since each system operator (and its Fourier transform)
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(a) Plot of [d, .12 for the npw ideal observer for the Rayleigh resclution task
with a Gaussian aperture as described in Fig. 5.3. (b) Plot of [dppw I* for the

npw ideal observer for the Rayleigh resolution task with a square aperture as
described in Fig. 5.3.
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carries along the time parameter T, the numerator in the [dopw]? and the background
variance term are both proportional T4, while the Poisson variance term is proportional to

T2, This leads to

(5.56)

As T becomes large, [dnpw 12 g0es to a constant for any aperture size. Since the magnitude
of the '7T4 term increases rapidly with increasing aperture size since it goes as A,p4, the
conspicuity limit sets in earlier for larger apertures.

It is difficult to get a similar expression for the Hotelling detectability as a
function of exposure time, because the numerator and denominator are interacting within
the same integral, but we shall discuss in the next session how to look at the Hotelling

behavior.

Discussion

In all cases we have considered, plots of d? versus aperture size have initial slope
equal to 2. This is the regime of negligible blur, so that the counts collected from the
unblurred signal region just go up with the aperture area. When the blur due to the
aperture becomes appreciable, the convolution operation of the imaging equation means that
each elemental area of the aperture "throws" a representation of the signal onto the detector
plane. Without lumpiness (W{0)=0), the Holelling and npw ideal observers both reduce to
the ideal observer. The ideal observer is a matched filter that knows where to look for the

signal counts that are spread out by the aperture and gather them all up again. Thus, with
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sizable blur, the counts from the signal region on the detector plane collected by the
observer still grow with aperture area Aap. In the uniform background case, the area of the
background that contributes at any one detector element continues to grow as Aap as the
aperture size increases, because we have carried out the calculation ag if the background is
of infinite spatial extent. Since the area over which the ideal observer has to look for the
signal increases by Agp, the background that contributes to the noise in the ideal-observer
test statistic grows as A,p %, and the standard deviation increases as A,,. The performance
of the ideal observer therefore saturates. While the optimum aperture size in the flat
background case is infinite, the ideal observer [dy,, J* or [dnpw 12 asymptotically approaches
C2gT §(A f /2), where C is the contrast (C=s(0)/§) and A, is the area of the signal (e.g.
Gaussian signal area = ml),

If a spatially varying component is then added to the flat background, the slope at
large aperture dimensions for the detection problem decreases further for both the Hotelling
and npw ideal observers, Larger apertures collect more of the lumpy background into each
detector clement, and this extra variation effectively increases the noise in the observer’s test
statistic. We have seen, though, that the Hotelling observer can cope with the lumpiness to a
much greater extent than the npw ideal observer. This can be better understood by looking
at the space- and Fourier-domain pictures of the Hotelling feature operator. Figure 5.6 (a)
is a one-dimensional schematic of the Hotelling feature operator Ay, =K~1HAs in the space
domain for the lumpy-background detection problem with a Gaussian aperture (the two-
dimensional function is rotationally symmetric for this aperture), and Figure 5.6 (b) gives
the Fourier-domain filter function., We see from Figure 5.6 (a) that the Hotelling obseiver’s
strategy in the detection problem in effect is to use the area surrounding the known signal
location to get an estimate of the local background Jevel, The observer subtracts this

background estimate from a measure of the counts in the signal region to determine whether
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Fig. 5.6. (a) Plot of the Hotelling feature operator along a radial axis in space domain for
the detection of a Gaussian signal on a uniform and two nonuniform back-
grounds., "Lumpiness" is equivalent to W;:(0). The mean value of the back-
ground was 610 counts/(sec mm?). The signal width was 10 mm and the back-
ground autocorrelation length 30 mm. (b) Profile of the Fourier tranform of the
feature operator shown in (a).
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the count density in the signal location is high enough to be called "signal present.” This
differencing operation in the space domain is equivalent to a high-pass filter in the
frequency domain, as seen in Figure 5.6 (b). As long as the background autocorrelation
function has a length different from the signal size, the Hotelling observer can "look" in the
Fourier domain for the signal in the frequency channels where the signal and background
differ significantly, For these studies the signal width r, is 1/3 the width of the background
correlation length r,. Thus in the Fourier domain the signal spectrum is wider than the
spectrum of the background. The Hotelling observer makes use of this information by
making the discrimination based on measuring the amount of power in the higher
frequencies. We would expect this correction scheme to falter as the background correlation
length approaches the size of the signal.

The approach of looking at the feature operator can also be used to understand the
difference in behavior between the npw ideal observer and the Hotelling ideal observer as a
function of exposure time. As the exposure time increases, the quality of information in the
high frequencies of the data improves, and the Hotelling performance never saturates. On
the other hand, the npw ideal observer uses a simple template matched to the difference
signal. Even though increasing the exposure time reduces the quantum fluctuations in the
data, the observer is limited by an inability to compensate for the varying background.
Thus, the npw ideal observer becomes "conspicuity limited" in the limit of large exposure
times

The template used by the ideal observer when the background is uniform is simply
the image of the difference signal HAs. In the detection task, the template is therefore just
the image of the Gaussian signal itself. In the Rayleigh task, the feature operator for the
uniform-background case is the image of the double Gaussian subtracted from the image of

the single Gaussian and is shown in Figure 5.7. This feature operator looks much like the
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trast is 5%. (b) Profile of the Fourier tranform of the feature operator shown in
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one shown in Figure 5.6 for the Hotelling observer for detection in the presence of a lumpy
background. The Hotelling observer uses a high-frequency filter to perform both tasks.
The filters for the two problems differ slightly in that the flat-background Rayleigh task
vields a filter that is zero at p=0 (because the mean number of counts in the image gives no
discrimination) while the lumpy-background detection task has a small but nonzero
frequency-domain filter value at zero spatial frequency to attempt to discriminate on the
basis of the signal energy.

In the Rayleigh task at low contrast, the optimum aperture size is comparable to
the size of the signal even without background inhomogeneity. The fact that we find an
optimal aperture for the discrimination task even for uniform backgrounds agrees with the
findings of Tsui et al. (1982). When the background is spatially varying the npw ideal
observer pays an even larger performance penalty for aperture sizes beyond the optimum,
while the Hotelling observer is affected only slightly. Myers et al. (1989), have reported
that at high contrasts the performance of the ideal observer in the flat-background Rayleigh
task apparently does not saturate with increasing aperture size. More investigations into the
transition from the low- to high-contrast regime are needed to explain this further.

For low-contrast tasks, interpretations in the frequency domain are valid and can
give good insight, as we have seen particularly in understanding the strategy of the Hotelling
observer. Caution must be exercised in attempting to extend this insight to the high-
contrast limit, where the frequency-domain picture is not appropriate. At high contrasts a
space-domain calculation must be employed due to the non-stationary nature of the
covariance matrices and the correlations between Fourier compenents that result,

A remaining question is the relationship between these results and the
discrimination ability of the human observer for the same tasks. Tasks that lead to

strikingly different results for the Hotelling and the npw ideal observer, such as the
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exposure-time study, allow us to test to see which observer model is a better predictor of
human performance for that task. Results of psychophysical studies of human performance
on the same tasks as those investigated in this chapter are given in chapter 6 of this work,

This work also has implications for machine readers, that is, computer algorithms
designed to do classification tasks. In cases where there is a great difference in performance
between the two model observers, simple npw templates should be avoided. Instead,
automated algorithms should be designed to incorporate statistics of the background
whenever possible. The Hotelling framework provides a straightforward method for
calculating the best linear template for performing discrimination tasks in a varying

background.
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CHAPTER 6

EXPERIMENTAL METHODS AND RESULTS FOR LUMPY BACKGROUNDS

As strongly stressed in this work, the assessment of image quality in medical
imaging using the predictions of mathematical observers requires the validation of human
observer studies. In this chapter we shall investigate the role of nonuniform or lumpy
backgrounds, as compared to uniform backgrounds, in human detection. More specifically
we shall study the effect of aperture size and exposure time on human performance. This
study will bring some insights into the trade-off between resolution and sensitivity that
comes in play in any imaging procedure.

We shall first show some examples of lumpy backgrounds of type I and type II as
mathematically described in chapter 5. Since these two types of lumpiness are described by
the same Gaussian autocorrelation function, the performance predicted by the Hotelling and
the npw ideal observers for the tasks described in chapter 5 (Detection vs. Rayleigh for both
rectangular and Gaussian aperture), are the same for these two types of lumpiness. To
investigate if the proposed mathematical models can have any validity for the assessment of
image quality in medical imaging, we carried out two psychophysical studies based on lumpy
backgounds of type I. The first study shows the effect of aperture size on human detection
when uniform and nonuniform backgrounds are present, while the second study investigates

the dependence of human performance on exposure time in a detection experiment.

Examples of Computer-Simulated Lumpy Backgrounds

We shall first illustrate the two types of lumpy backgrounds resuiting from the

mathematical descriptions of lumpiness that were given in chapter 5. Figure 6.1 shows some
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simulations of these two types of lumpy backgrounds as a function of increasing lumpiness
W;(0) given a mean background B, as we go from top to bottom, and as a function of
increasing mean background given a value of the lumpiness, as we go from left to right.
Typical histograms of lumpy backgrounds before noise is introduced, are shown in Figure
6.2,

We then illustrate the effect of imaging the object of interest through a pinhole
aperture of size r,. The object can be described as the superposition of a Gaussian signal of
half width 1, at 1/e of the peak intensity and a lumpy background of correlation length Ty,.
Given the signal size, which we set equal to 11.3 pixels in diameter, and an aperture size
that matches in size the signal to be detected, I, = I, = 5.66 pixels, Figure 6.3 shows the
impact of the background correlation length on the appearance of the image. We show with
this image that, if the location of the signal was unknown, it would be difficult to
discriminate the signal from the background lumps when r, was less or equal to twice the
size of the signal. We set r, equal to three times the size of the signal for all of the
computer-simulated images, so that the correlation in the background does not become the
limiting factor in the task to perform.

Other parameters such as the size of the aperture and the exposure time can then
be investigated as well. Given the signal size and the background correlation length, the
impact of aperture size on detection is illustrated in Figure 6.4, where the size of the
aperture, relative to the signal size, increases from left to right as the amount of lumpiness
increases from top to bottom. Finally, we are highly interested in the study of the impact of
the exposure time on human performance in a simple detection task, and thic ic illustrated in
Figure 6.5. The exposure time increases from left to right, while the amount of lumpiness

again increases from top to bottom.
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Fig. 6.1. (a) Lumpy backgrounds of type I the mean background value B increases from
left to right with B equal 384,1664, 3200 counts/(sec pixels) and the lumpiness
W,(0) increases from top to bottom with W¢(0) equal 10%, 105, and 10°
counts?/(sec? pixels). As the lumpiness increases, the strength of the blobs b,
increases with b, equal 1280, 4047.7, and 12800 counts/sec, while the mean
number of blobs is 100. (b) Lumpy backgrounds of type II: the values of B and
W;(0) are the same as described in (a). As the lumpiness increases, the variance
of the noise o increases and o equal 33.33, 105.41, and 333.33 pixels. As B in-
creases, the strengh of the filter takes the values 3, 13, and 25, respectively.
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Fig. 6.2. Typical histograms of lumpy backgrounds of type I and II that were shown in
Figure 6.1 for (a) W (0) equal 10® counts?/(sec? pixels) and B equal 384
counts/(sec pixeis) (b) W;(0) equal 10¢ counis?/(sec® pixels) and B eqgual 3200
counts/(sec pixels). The histograms were generated before Poisson noise was
added to the backgrounds. Each histogram is an average of the histograms of
about 50 images generated using either type I or type 1l lumpy backgrounds.
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Fig. 6.3. This figure shows how detection of a signal decreases as the value of the correla-
tion length of the background relative to the signal to detect decreases. The
signal width 1, is 5.66 pixels, the width of the pinhole aperture 1, equal r, the
mean background B equal 230 counts/(sec pixels), and the contrast of the signal
on the background 50%. The lumpiness is constant for all the images, W;(0) =
1.3x10% counts/(sec? pixels), the strength of the blobs being 6553.6 counts/sec
and the mean number of blobs 50. The exposure time is 3 sec. The correla-
tion length ry, is 0.5 r, in the upper left corner, 1.0 1, in the upper right corner,
2.0 ry in the lower left corner and 3.0 1, in the lower right corner.
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i PUNT

Fig 6.4. Tllustrative images of a signal on various backgrounds. The left column shows
Gaussian-pinhole (rp = 0.4 r,) images/of a Gaussian signal (50% contrast,
r,=14:14 pixels, centered in the object array) superimposed on lumpy back-
grounds with correlation length of 4243 pixels for W;(0) = 0, 1.3x105, 8.2x105
and 3.3x10¢ counts?/(sec? pixels) from top to bottom. The second column
shows the same objects imaged by a Gaussian aperture with r,= 0.8 r,. The
third and fourth columns show the same objects imaged by an aperture size I,
equal 1.6 r, and 3.4 r, respectively.

e
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Fig 6.5. Illustrative images of a signal on various backgrounds and imaged with various
exposure times. The top row shows the signal (r, = 5.66 pixels) that is present
in the images below the signal. The exposure time increases from left to right
with T equal 1, 3, 10, and 50 sec, while the lumpiness increases from top to
bottom with W,(0) equal 0, 1.3x10%, and 8.2x105 counts?/(sec? pixels). In each
image, the mean background is 250 counts/(sec pixels) and the contrast of the
signal on the background is 10%.
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Psychophysical Studies

We shall present two psychophysical studies, one to investigate the importance of
aperture size on human observer performance and a second to look at the effect of
increasing the exposure time. According to the theory of lumpy backgrounds developed in
chapter 5, we have a large choice of parameters to vary, such as the shape and size of the
aperture and the type of task such as detection vs. discrimination. We shall present here the
results of the psychophysical studies carried out for a simple two hypotheses detection task

using a Gaussian aperture as the imaging device.

Parameter Description

In the first study, the signal was known exactly, and the assigned parameter values
were a, = 6x10% counts/sec and r, = 5.66 pixels or 2.4 mm. The background was specified
by a DC level of 3x10% counts/(sec pixels) and the mean number of blobs K, which was
actually the mean of a Poisson random process, was assigned the values 0, 50, and 100 for
W¢(0) equal to 0, 1.2x108, and 2.4 10® counts?/(sec? pixels), respectively. The strength of
the blobs b,, on the other hand, was kept constant and equal to 2x105 counts/sec. The value
of the mean background was then slightly changing with the amount of lumpiness as given
by equation (5.12) as well as the signal contrast which was 19.9%, 16.1%, and 14.1% as W;(0)
increased. The exposure time of the imaging system was set to be 1 sec, while the
efficiency factor x was set to 1073 pixels™.

In the second study, where we studied the exposure time dependence, we assigned
a value of 2.5x10% counts/sec to a, and 2.4 mm to r,. We set the mean number of blobs to
be a constant of value 50 , and the strength of the blobs b, to be the variable parameter
with b, equal 0, 6.5x103, and 1.6x10* counts/sec when W;(0) equal 0, 1.3x105, and 8.2x10%

counts?/(sec? pixels), respectively. The contribution of the dc level to the mean background
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level was 250, 230 and 200 counts/(sec pixels) as the lumpiness increased from O to 8.2x105
counts/(sec? pixels). The mean background level was then constant of value 250 counts/(sec
pixels), and the contrast of the signal on the background was 10% for the three values of

lumpiness.

Protocol

The protocol used to carry out the psychophysical studies and described here is
similar to the protocol described in chapter 3, but presents some new features. We designed
12 and 11 experiments within the first and the second study, respectively. Within each
experiment, 70 images were generated; 35 images simulated a bright tumor, located in the
center of the image, and superimbosed on either a uniform background or a lumpy
background. Among the 70 images of each experimental set, 6 images were extracted to
constitute a training set for the observers., For the first study, the training set was thus
composed of 72 images (12 times 6), while 66 images (11 times 6) were used to train the
observers for the second study, The remaining 64 images within each set were then used as
the test sample to evaluate the human observer performance. For each experiment, we
studied the effect of the aperture size or the exposure time for the case of a uniform
background and two different values of lumpiness. Once Poisson noise was added to the
computer-simulated lumpy images, eight bits of greylevel were used to display the images.
The images were displayed as 128x128-pixel array using the greylevel-to-brightness transfer
curve shown in Figure 4.12 (b) before linearization . One image was displayed at a time and

covered 5.4 cim % 5.4 cm on the display, and each pixel measured 0.42 x 042 mm? The

=

light in the room was dimmed down to the same value for all the observers. The contrast
and brightness levels of the display monitor were fixed during the study, and the observers

were not allowed to vary them to optimize their performance. Each observer viewed the
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images binocularly at a comfortable distance and was required to wear his/her usual
correction lenses.

Ten different observers ran each study, each performing either 11 experiments or
12 experiments according to study I or II, respectively. The observers did not have any
information on the number of occurrences of the signal. Within each study, the images
from the experiments were displayed in a random order. The observer was presented a
single stimulus on each trial, that is a noisy image with or without the signal. The observers
were instructed to rate their certainty on a six-point scale given in Table 4.1, and the

responses were recorded and analysed using ROC analysis.

Results

Variation With Aperture Size

Given the set of parameters described above, we computed the performance of the
Hotelling and the npw ideal observers as a function of the relative pinhole size r, /1y, which
varied from 0.2 to 4. The predictions of these two observers are given in Figure 6.6. The
top curve represents the performance of these two observers for the case of a uniform
background where quantum noise is the limitating factor. The performance of these two
observers is, in the case of a uniform background, equivalent to the performance of the
ideal observer, and therefore the two resulting theoretical curves perfectly overlap as shown.
The two middle curves correspond to the Hotelling performance while the two lower curves
correspond to the npw ideal observer. Given this set of theoretical curves that indicate very
different predictions for the Hotelling and the npw ideal observers, we are interested in
finding if one of these two models is a good predictor of human performance.

The psychophysical study was based on the same set of parameters as described
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Fig. 6.6 Plot ¢f -the detectabilities predicted by the Hotelling and the npw ideal observers
for the detection of a low-contrast signal on uniform (W;(0) =0) and nonuni-
form (W{0) # 0) backgrounds as a function of the size of the pinhole aperture
r,. The width of the signal r,; is 5.66 pixels, and the contrast of the signal is
19.9%, 16.5%, and 14.1% as lumpiness increases, since the dc background level
15 kept constant (3000 counts/(sec pixels)) as we increase lumpiness, but the
mean background Jevel is a funciion of toih the dc background level and the
lumpiness (see equation (5.12)). The mean numbers of blobs are 0, 50 and 100
as W;(0) increases, and the strength of the blobs b, is constant (2x10%
counts/sec).
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above, but with ry, /r, limited to four values, 0.2, 0.8, 1.5, and 3.4. The results of the study
are given in Figure 6.7. The evaluation is reported after performing an average of the
performance of each individual observer, as it has been done for all the studies presented in
this work. Figure 6.7 plots the average detectability index d, vs. the four values of Iy /1g.
The estimated standard deviation at each point is given by the mean rms error between the
observers.

We first note that, for uniform backgrounds, the performance of the human
observer does not saturate as predicted by the ideal observer; rather, it presents an optimum
when 1, is approximately matched to the size of the signal r,. As the lempiness increases,
the performance of the human observer decreases, and the optimum aperture size decreases.
Moreover, if we overlap these experimental results on the theoretical curves with an upward
shift to take into account the efficiency of the human observer, we find a very good
agreement of the data with the Hotelling observer predictions, while the npw ideal observer
strongly fails to predict human performance for the detection of a signal in a nonuniform

background.

Variation With Exposure Time

Given the set of parameters described above for this study, we set the aperture size
r, to 5.66 pixels, so that r, = r,. We then let the counting time or exposure time vary from
1 to 100, and we computed the predictions of our two theoretical observers, the Hotelling
observer and the npw ideal observer. The predictions are reported in Figure 6.8, where we
plot the detectability index d, as a function of exposure time. The predictions show an
increase of the Hotelling performance as a function of time, for both uniform and

nonuniform backgrounds. The predicted values of the slopes are about 0.5 and 0.4 for

uniform and nonuniform backgrounds, respectively. The performance of the npw ideal
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Fig. 6.8 Plot of the detectabilities predicted by the Hotelling and the npw ideal observers
for the detection of a low-contrast signal on uniform (W;(0) = 0) and nonuni-
form (W¢(0) # 0) backgrounds as a function of the exposure time T. The width
of the signal is 5.66 pixels, and the contrast of the signal is 10%. As the
amount of lumpiness increases, the dc background levels are 250, 230, and 200
counts/(sec pixels) such that the mean background level is constant as lumpiness
inceases, B = 250 counts/(sec pixels). The mean number of blobs is 50, and the
strengths of the blobs are 0, 6.55x103, and 1.64x10% counts/sec as W¢(0) incre-
ases.
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observer, on the other hand, is constant with increasing counting time. This indicate that
the performance is conspicuity limited for the chosen values of lumpiness and exposure
times. This fact can be better seen if we refer back to the theoretical curve shown in
chapter 3. Figure 3.2 shows clearly the transition between quantum-limited and
conspicuity-limited performance for W;(0) = 400. In this experiment we would as well see
this transition if we were to start the calculations for smaller values of T such as 1072 sec.

The results of the exposure time study are presented in Figure 6.9. The parameters
chosen to simulate the images were identical to those used in the theoretical predictions just
presented, where the exposure time values were I, 3, 10, and 20 sec for W;(0) = 0; The
values were 1, 3, 10, and 50 for W,(0) equal 1.3x10%, and 1, 3, 10, and 100 for W;(0) equal
8.2x105 counts?/(sec? pixels). Results show an increase in performance as a function of
exposure time regardless of the amount of lumpiness. These results show that the npw ideal
observer does not predict human performance for the detection of a SKE int a nonuniform
background. Moreover, if we overlap the experimental results with the theoretical
predictions of the Hotelling observer, we see that the Hotelling observer is again a good
predictor of human performance within the efficiency factor of the human observer. Given
that we have 30 or 40 data points per regression lines (10 observers with 3 or 4 values of T),
we performed a t-test to test the null hypothesis that the slope of the experimental
regression lines shown in Figure 6.9 are equal to the slopes of the theoretical lines predicted
by the Hotelling observer. We note from Figure 6.9 that, for a given lumpiness value, the
variances at each point on the regression line are different as the time varies., To test our
hypothesis of equality of the slopes of the regression lines using the t-test statistic, we need
to transform the data in such a way that the variances becoeme equal. In a recent paper,
Deaton et al. (1983) proposed several methods to deal with this problem, and one of them

was to divide the values of the data points by the variances s¢ that the data are transformed
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Fig. 6.9 Values of detectabilities obtained from the psychophysical studies for the detec-
tion of a low-contrast signal on uniform (W¢(0) = 0) and nonunifrom (We(0) #
0) backgrounds as a function of the exposure time T. The values of the param-
eters used to generate the computer-simulated images are the same as those
given in Fig. 6.8. Four values of T are chosen, T equal 1, 3, 10, 50, and 100
sec as shown on the graph.
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to unit variances, We then used a standard method to compute the test statistic. The t
values were 2.369, 0.312, and 0.236 for the lumpiness values of 0, 1.3 x 105, and 8.2 x 105
counts?/(sec? pixels), respectively. We can reject the null hypothesis for the nonuniform
backgrounds at a significance level of 6.3%; in other words, 6.3% of the time we reject the
null hypothesis when the null hypothesis is actually true. For the uniform background, on
the other hand, the experimental and theoretical values are further apart; we can reject the

nuli hypothesis at the significant level of 98%.

Discussion

These two psychophysical studies were designed to study the impact of resolution
and sensitivity on human performance when the task is the detection of a known signal in a
nonuniform background. The results of these studies show a good agreement of the
experimental data with the theoretical predictions and thus show that human performance
can be well predicted by the Hotelling observer.

There is, however, one deviation of the experimental data from the theoretical data
obtained in the case of a uniform background. If we refer again to Figure 6.7, the results
show that in a uniform background the performance is optimal when 1, takes a value that is
between roughly 0.8 and 1.5 times the size of the signal. For larger apertures, the
performance starts to decrease slowly instead of saturating as predicted by the Hotelling and
the npw ideal observers, which are then equivalent to the ideal observer (see Figure 6.6).

Such an observation was also pointed out by Tsui et. al. (1982) where the task was
the discrimination between two tumor activity distributions embedded in a uniform
background. For their experimental data to agree with the theoretical predictions of the
ideal observer, Tsui et. al. made the assumption that the efficiency of the human observer

itself was a linear function of the aperture size. They then found good agreement of the
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data with the predicted values by taking inte account this varying efficiency factor. We
could also take such an approach to match our experimental data to the theoretical data in
the case of uniform backgrounds. However, as the complexity in the background increases,
the efficiency of the human observer may be not only a function of the aperture size, but
also a function of the lumpiness in the background, and the problem becomes quite
complex. Note, however, that even under the assumption that the efficiency of the human
observer jis constant as a function of aperture size and as a function of lumpiness in the
background, our experimental results are in very good agreement with the predictions of the
Hotelling observer. A similar drop in efficiency was also reported by White et al. (1989) in
a human performance study designed to select the optimum set of parameters to describe a
collimator. The task that they proposed was the detection of tumors of varying sizes and
locations in computer-simulated liver scans. They found a significant drop in efficiency for
the human observer at large aperture sizes.

According to our experience in the long-tailed PSF problem, we postulate that
such a drop due to the blurring effect resulting from using a large aperture (compared to the
size of the signal to detect) can perhaps be corrected for by processing the images with a
high-pass filter before display.

Another small deviation of the experimental data from the theoretical data was
found when looking at the effect of exposure time on the performance of the human
observer, again for the case of a uniform background. Further investigations should be
carried out to fully understand the reason for this discrepancy. Despite this observation, the
results show a good agreement of the experimental data with the theoretical data predicted

by the Hotelling observer as the exposure time and the lumpiness increase,
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CHAPTER 7

CONCLUSIONS

In this chapter we summarize the main findings reported in this dissertation. We
then highlight several questions that arose from this work and the potential for further

investigations.

Summary

The goal of this research was to contribute to the objective assessment of image
quality in medical imaging. First, for the quality to relate to clinical efficacy, it must be
assessed in terms of the task to perform. Then, given a well-specified task, statistical
decision theory can be used to calculate the performance of some statistical observers, whose
performances should predict the performance of the observer who actually performs the
task, that is the human observer. Throughout the literature, the most commonly used
statistical observer is the ideal observer where the proposed tasks are very stylized as, for
example, the detection of a disc signal superimposed on a uniform background and
embedded in white Gaussian noise. The reason for considering such stylized tasks is to be
able to compute the performance of the ideal observer and gain insight into simple problems
before working with more complex images such as clinical images.

Our contribution to the assessment of image quality was to depart from those
stylized images and assess image quality for more complex images. OQur approach was to
loock at a simple two-hypothesis detection task, where the signal was superimposed on a
nonuniform or lumpy, yet stationary, background instead of a uniform backsround as for

the stylized images. The statistical observers that we considered were the nonprewhitening
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(npw) ideal and the Hotelling observers, since they had proven to predict well human-
observer performance in previous studies carried out within our research group; those
observers were also readily calculable for the task at hand, as defined.

We found a good agreement between the performances of the human and the
Hotelling observers, while we showed unambigously that the npw ideal observer was
inadequate for the lumpy background problem. To go one step further, the npw ideal
observer will certainly be inadequate for the assessment of the quality of most of the clinical
images; the Hotelling observer, on the other hand, has given us promising results for the
lumpy background problem, and we may expect it to predict human performance for most
real clinical images, as well.

In allowing for spatially varying backgrounds, we have also provided new insight
into the problem of system optimization in emission imaging in the presence of both
quantum limitations and conspicuity limitations. We showed that the choice of task is very
important in assessing and optimizing imaging systems. If the task is detection of a known
signal on a known, uniform background, the pinhole size should be as large as possible,
Obviously, this conclusion is not in accord with clinical experience where some degree of
spatial resolution is needed to perform realistic clinical tasks, Stationary nonuniform
backgrounds are more realistic than uniform backgounds and lead to the mtuitively
appealing conclusion that the aperture should be matched to the signals if they are to be
detected or discriminated. If the aperture is substantially smaller than the signal, photon
collection suffers unnecessarily, while if it is much larger, the spatial resolution is
inadequate for reliable discrimination between signal and background.

While we have shown that the Hotelling observer is a very good predictor of
human performance for the detection of a signal in complex background, we have, however,

found a discrepancy between the Hotelling and the human observer when the task was the
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detection of a signal on a smooth background imaged using a long-tailed PSF. In this case,
both the Hotelling and the npw ideal observers reduced to the ideal observer.

Our first motivation for studying the long-tailed PSF problem was that such PSFs
are commonly encountered in medical imaging and more generally in image science when
scatter has not been rejected or effectively corrected. The second motivation for this study
came from the property of the ideal observer, that the ideal observer was invariant under
linear filtering. It was then interesting to find out whether high-pass filtering of the images
would help the human in the detection task, in spite of the quite noisy nature of the
simulated images.

We showed that, in the case of long-tailed PSFs, a pseudoideal observer called the
nlf (no-low-frequency) ideal observer was a better predictor of human performance than
the ideal observer, although human efficiency relative to this observer was still quite low, on
the order of 10% before filtering. The nif ideal observer had the property of suppressing
low frequencies in the image, which was also a feature of the so-called channelized ideal
observer. The nlf ideal observer could, in this respect, be referred to as a two-channel ideal
observer. We also evaluated the performance of the npw ideal observer on the images after
deconvolution; the npw ideal observer was found to vield the best performance of all
observers investigated, while if failed badly to predict human performance using
undeconvolved images.

To show unambigously that deconvolution did help the human observer, we
studied the effect of two display parameters on the images: the use of the full range of
available greylevels to display each image to the human observer and the effect of
photometrically linearizing the greylevel-to brightness transfer curve. Although we found
that the display of the images using eight bits of greylevels or less and using either a linear

or a nonlinear transfer curve had a strong impact on human performance, we also showed
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that deconvolution itself did help the human observer.,

This work has graphically demonstrated the limitations of too narrowly specifying
the task in model calculations of the performance of imaging systems. Systems that work
well, even optimally, on stylized tasks where the background and signal are both known
exactly may fail badly with slightly more realistic tasks that include background variability,

as shown, for example by the use of the npw ideal observer.

Potential for Future Investigations

Although the Hotelling observer performance has proven to predict well human
performance for the detection of a signal in nonuniform backgrounds, it has also failed in
the long-tailed PSF problem. In spite of the fact that the assessment of image quality is a
strong function of the task to perform, and that the figure of merit must be chosen
accordingly, a modified Hotelling observer such as a channelized Hotelling observer could be
defined and its performance investigated to bring about a more unified theory.

By studying the long-tailed PSF problem, we have investigated only a quite
extreme set of parameters to describe the long-tailed PSFs; we suggest that this model be
investigated further starting, for example, with no tails and looking at the degradation
introduced by the tails as they extend farther or increase in amplitude.

The author’s strongest wish is that further investigations of the role of the display
in assessing human performance be pursued. We already know that there is no unique
solution to this problem, since it depends on the types of images that we are working with.
For example, there is no reason to assume that quantum-Lmited limited images shouid be
displayed the same way as conspicuity-limited images. However, the optimization {and its
definition) of the display of the images should be investigated at least as a function of the

types of images.
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While the ideal observer is generally a powerful tool to assess image quality for
stylized and simple tasks, the Hotelling observer seems to be the appropriate tool for more
complex images that approach the complexity found in clinical images. In terms of the
lumpy background problem, our psychophysical investigations covered only a small subset of
the theory developed in chapter 5. For example, we suggest studying in greater detail the
impact of the correlation length of the background relative to the signal size on the
performance, both theoretically and experimentally. We also assumed that second-order
statistics are sufficient to describe the performance of the human observer. While we know
that first- and second-order statistics are sufficient to describe either the npw or the
Hotelling observer, no experimental data have supported the fact that it is also true for the
human observer. Greater understanding of resolution could also be gained by looking at the
effect of a square aperture versus a Gaussian aperture as used in our human studies, since
theoretical predictions brought about interesting features.

While we considered only simple open apertures of varying sizes, low-contrast
performance with other apertures could also be investigated for the lumpy background
problem. More complicated apertures, such as coded apertures, for example, could be used
instead, and the performance of some statistical observers could be assessed and compared to
the performance of the same observers using simple open apertures. Similarly, performance
assessment based on other signal-known-exactly tasks (sine-wave detection, etc.) can be
easily achieved through appropriate manipulation of the difference-signal term in the
expressions for the detectabilities.

These studies evaluated the ability of model ohservers to perform simple detection
and discrimination tasks. While these studies have included a spatially varying background,
further investigations are needed to determine the ability of the statistical observers to

perform still more complex tasks, including tasks where there is uncertainty in signal
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parameters such as size, amplitude, and location, to further simulate more realistic tasks.
Also, all performance measures derived in this work were based on using the raw data to
perform the appropriate task. It is not clear whether humans would be able to effectively
use raw data for complicated tasks, so studies comparing statistical-observer performance on
raw and reconstructed data vs. human performance on both raw and recontructed data sets
are also warranted.

While the present studies were based on simulated objects, this work has
implications for phantom design as well. We expect that some systems that work well on
stylized phantoms where the background is known to be f lat might demonstrate performance
degradations with more realistic objects that have spatially varying backgrounds.

We have shown on one hand that background or structured noise interfered with
the detection of signals or "tumors" and, on the other hand, that image processing did
improve the performance of the human observer for the case of a signal on a smooth
background imaged using a long-tailed PSE. An interesting area of research would be to
study the effect of image processing on more complex images and to assess performance for
detection tasks such as the ones defined, for example, for the lumpy backgrounds.

Since many questions remain, we strongly believe that further investigations of
some of the work presented will bring more insights not only into medical imaging but also

image science,
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APPENDIX A
DERIVATION OF THE COVARIANCE MATRIX

In this appendix we derive the covariance matrix of the data vector g. We are
concerned with a two-dimensional (planar) imaging system with planar objects and images.
Nevertheless, we can represent two-dimensional objects and images as one-dimensional
column vectors by lexicographically ordering their discretized values, so that the data vector

g is related to the object vector £ in the following way:

g=Hf+n . (A1)

If the data véctor g and noise vector n are Nxl vectors, and the object vector f is an MxI
vector, then the system operator H is an NxM matrix. The system operator includes the
aperture transmission function as well as the imaging geometry and exposure dependence
(see equation (2.6)).

The covariance matrix for the data vector g when class k (k=1,2) is true is defined

K= ({(8- &) (& - 80t Do g » (A2)

where g, is the mean image from class k, averaged over both the noise random variable n,

bject f, and the ensembie of objects f that belong to class k. The covariance

=}

given an
matrix K, characterizes the variation in the data due to the spatially varying object and the

Poisson noise. The inhomogeneous background in the object is assumed to be stationary and
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independent of the signal. For low-contrast signals, then, K, characterizes the same
nonuniformity in the background and Poisson noise regardless of the class, so we can drop
the subscript k from the covariance matrix (K=K ,~K),

To determine K we add and subtract g;, the mean data vector averaged over the

Poisson noise for a given object f, from each factor in equation (A2) such as

K=(({(g-er+8-8)(8-8+8-8)" ) . (A3)

Equation (A3) may be rewritten as a sum of four matrices M, M,, M, and M, with

M, = (((g-8) (8- 8t oy )s (A4)
M, = (((8 - &) (& - 80t e )¢ (AS5)
M= - ({(8 - B) (8 - 8)b oy ) (A6)
My=-({(g-2)(&-8) oy )r . (A7)

To evaluate each of these matrices, let us call Mp(i,j) (with £ =1,2,3,4) the (i, 1) matrix
element of My . In addition, let us write (g(i))nlf , the average data value at the ith pixel

given the object £, as g;(i). In component form equation (A4) becomes

M,(i,5) = ( () - &:(i)) (2(3) - 8 (i) it de s (A8)

which, for Poisson noise, and for i#j, becomes

MG 0) = ({800) ~ 80D Ju ( 8G) - 2205 Duge

=0 , i#. (A9)
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For i=j, the matrix element M, (i, ) = M(i,i) is given by

My(i,1) = { ((8(0) - gr(i))? Doy )t
= ( ge() )¢
= g(i)

=xTALB . (A10)

We have again made the low-contrast assumption, so that the stationary background gives a
mean pixel value in the image that is independent of position. The value B is the mean
background level in the object, x is an efficiency factor, T is the imaging time, and Ay is
the area of the aperture (Aap=L2 for the square and « 1, % for the Gaussian aperture).

If we denote the autocorrelation function of the nonuniform background after the

imaging process by Rg s My(4, j), M(i, j), and M,(i, ) are given for any (i, i) by

M@0, ) = ( ( (8() - D) (&03) - £e(3)) )y )e
= (&) - 8D &) - ()

=R, (i) , (All}

My(is ) = (( (50 - g/ () (86) - 8(3)) g )
= ((&(0) - &) ( (20} - &r(D)) ) )s
=0 |, (A12)

MG, ) = (( (80 - &) (&0 - £1(3)) g )¢
= ({(800) - 8e(D) Jor @0) - 8:(3) )¢
=0 . (A13)
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We can now combine equations (A9) through (A13) to write the (i, j)th element of the

covariance matrix defined by equation (A2) as a sum of two terms

KL =Ry +xTA,B & |, (A14)

where 6;; is the Kronecker delta function. The autocorrelation function of the nonuniform
background in the image plane R, is related to the autocorrelation function of the
nonuniform background in the object plane R; through a convolution with the aperture
function. Equation (A.14) shows that the contributions of the Poisson noise and the

nonuniform-background randomness to the covariance matrix of the data are additive.
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APPENDIX B

DERIVATION OF THE EXPRESSION FOR THE AUTOCORRELATION FUNCTION
OF LUMPY BACKGROUNDS OF TYPE 1

For the case of lumpy backgrounds of type I introduced in chapter 5, the random

variable used to describe the lumpiness in the background is given by

K
b(r) = }:&rﬂ) SYO (B1)
i=1
with
b
V() = 2 exp (el ) (B2)

Ty, 2

where K, the number of Gaussian blobs in the background, is assumed to be a random
variable, and r; is a uniformly distributed random variable that specifies the location of the

ith blob. Given b(r), the expression for the autocovariance of the background is given by
Re(r-1”) = { (6(D)=( b(r) )¢) (6(")-{ b(x") )¢ )¢ (B3)
where r and r” are 2D position vectors and { b(r) ); is the expectation value of b(r) averaged

over the ensemble of images that constitute the lumpy backgrounds. The expression for R;

given by equation (B3) can then be expressed as the sum of four terms

Re = {(b(r) b(r”) )¢ + ( (b(r) )¢ (b)) )¢ - (D(r) (D) }p )y - ({b(r) )¢ Br") )y  (B4)
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which reduces after simple examination to only two terms

Rp = (b(r) b(r) )¢ - {b(r) )¢ (b)) . (BS)

Let us first look at the first term of equation (B5). It can be explicitly written as

{ b(x) b(r”) %

K K
(O e T ) B-) - W
i=1 i=1

K K
= { Z y(r-r;) Z ¥(r"-15) )¢
i=1 j=1
K K
= Z P(K) J d2r, pr(r,) ... J d2ri prirg) Z y(r-1;) Z y(r’-1;) , (B6)
K i=1 i=1

where pr(r;) is the probability density associated with the random variable r;, and P(K) is
the probality of having K Gaussian blobs . If i=j, we shall show that each term in the sums
over i and j contributes in the same fashion to the left-hand side of equation (B6). For

example, the term for i=j=7, denoted as term1(7,7), becomes

terml{7,7) d?r, pr(r,) ... J'dzr,‘, pr(r,) y(r-r;) y(r”-r,) .... jder pr(rg)

= | dr, pr(r,) y(r-r) Y(-1,) (®7)
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Since r, is uniformly distributed, pr(r;) is given by 1 /Ag¢ with A; being the area of the
object. In the particular case where the distances from object to aperture and from aperture
to detector are equal, the geometrical magnification is one and Ay equals Ay, the area of the
detector. If we now define r” to be r + r,, and if we denote I~-T, as I’, we can write

equation (B7) as a convolution operation,

term1(7,7)

)

b aze wier) vrer
A J'd r’ y(r’) y(r + 1)

= [,f—d (¥(r) « y(rp) ) . (B8)

The convolution of two Gaussians being a Gaussian, the final expression for the
contribution of i=j=7 to the first term of equation (B5) can be computed by substituting the

expression for y(r) given by equation (B2) into equation (B8),

2
term1(7,7) = Kl'd— 2::1;2 exp ( —[r|z/( 21,%)) (B9)

which is independent of the choice for i and J (assuming i=j). Since there are in average K

terms such that i=j, the first term of equation (B5) becomes for i=j,

.. K byt
terml1(i=j) = Ag Znrs exp ( -[rf2/(2r,2)) . (B10)

If i#j , let us consider the example of i=6 and j=7. The contribution to the first

term of equation (B3) is then,
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terml1(6,7) = szrl pr(r,) ... ~l'd?'r6 prir,) y(r-r.) Ider pr(r,) y(r’-r,)

szrK pr(rk)

szrs pr(ry) y(r-r,) szr7 pr(r;) y(r-r,)

1
- x5 b (B11)

Since there is an average of K2-K terms with i#j, the contribution of the terms i#j to the
first term of equation (B5) is given by

2

b
o . (B12)

term1 (i) = (K2-K) N
d

If we now examine the second term of equation (B5), it is given by

term2 = { b(r) )¢ { b(r”) )

K K
() s () ven) )
i=1 i=]

b2
Ayt

= (K)? (BI3)
Finally the expression for the autocorrelation function, that is the sum of
term1{i=j), terml1(i#j) and term2 given by equations (B1G), (B12) and {B13), respectively,

becomes
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Re= K 200 exp (frfy/2 1,9 + @0 20 - ®pe 20 ey
Ay 2,2 Ayl Ayl
This expression is quite interesting since the autocorrelation function is not found
to be Gaussian unless K is itself a Poisson random variable. In this case, Kz_(f{)z =K and
the second term of equation (B14) cancels with the third term of the equation. Thus we
choose K to be a Poisson random variable and the autocorrelation function reduces to

K boz
R(r) = Ay 2nr2 exp ( -|r|2/2 1,2 ) . (B135)

The power spectrum, which is defined as the Fourier transform of the autocorrelation

function for stationary random process, is then given by
Welp) = szex (-2 7212 |p]2)
tlp) = A, ° p b~ P

= W;(0) exp( -2 =2 1,2 |p[2) , (B16)
with

W;(0) = f—dbgz : (B17)

We shall use W;(0) as the measure of the lumpiness in the background. Note that We(0) is a

measure of counts?/(sec? mm?),
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APPENDIX C

DERIVATION OF THE EXPRESSION FOR THE AUTOCORRELATION FUNCTION
OF LUMPY BACKGROUNDS OF TYPE 1I

Lumpy backgrounds of type II are generated by filtering uncorrelated Gaussian
noise. By definition, the power spectrum of uncorrelated noise W(p)} is constant, and if we
denote by H(p) the Gaussian filter used to filter Gaussian noise, the resulting power

spectrum is given by

We(p) = Wip) | Hip) |2 . (C1H

To generate lumpy backgrounds of type II with the same autocorrelation function as lumpy

backgrounds of type 1, we should define H(p) as

H(p) = H(0) exp( - 72 1,2 |o]2) (C2)

where H(0) is the amplitude of the filter and r, is the correlation length of the resulting

autocorrelation function. The filtered power spectrum is then given by
Wi (p) = W(0) (H(O)P exp( - 272 1,2 |p]?)
= W(Q) exp( - 272 1,2 |pl2) (o))

with

W:(0) = W(0) [H(O) . (C4)
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The expression for the autocorrelation function is then given by the inverse Fourier

transform of the power spectrum as

2
R;(r) = Wgwif exp (- [r|2/21,2) . (C5)
The measure of lumpiness is now given by W(0) = W(0) [H(0)]2, where H(0) is simply a
number and W(0) is in units of counts per unit time and per unit area. Therefore, W;(0) is

again in units of counts?/(sec2 mma2),
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