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We present femtosecond pump-probe measurements of the nondegenerate (1960-nm excitation and 1176—
1326-nm probe) two-photon absorption spectra of 8-nm GaAs/12nm Al 3,Gap¢sAs quantum well waveguides.
Experiments were performed with light pulses copolarized normal and tangential to the quantum well plane.
The results are compared to perturbative calculations of transition rates between states determined by the k - p
method with an 8- or 14-band basis. We find excellent agreement between theory and experiment for normal
polarization, then use the model to support predictions of orders-of-magnitude enhancement of nondegenerate
two-photon absorption as one constituent photon energy nears an intersubband resonance.
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I. INTRODUCTION

Nondegenerate two-photon absorption (ND-2PA) is a pro-
cess whereby absorption of an optical field is induced by a
second, high irradiance field at a different wavelength. Ap-
plications of ND-2PA include detection [1], imaging [2], and
all-optical switching [3]. Inverting carrier populations can also
transform ND-2PA into nondegenerate two-photon gain [4-6],
which is critical for realizing a two-photon semiconductor
laser [7-9]. Waveguides are especially interesting for non-
linear optical applications because they enable strong effects
through long interaction lengths. Group velocity mismatch
(GVM) induced walkoff usually limits nondegenerate interac-
tions, but dispersion engineering can mitigate or remove this
walkoff entirely [10].

The degenerate 2PA (D-2PA) spectrum of infinite quantum
wells was predicted by Spector [11] and Pasquarello and
Quattropani [12]. Shortly after, Nithisoontorn et al. [13] ex-
perimentally demonstrated D-2PA to excitons in GaAs quan-
tum wells. Shimizu [14] developed an excitonic model for
D-2PA, and Tai et al. [15] verified their predictions with two-
photon luminescence spectra. Later, Yang et al. [16] showed
the anisotropy of D-2PA in quantum well waveguides.

Pasquarello and Quattropani [17] relaxed some of
Shimizu’s approximations and extended the analysis to non-
degenerate photon pairs, predicting large enhancements as
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one photon energy neared an intersubband resonance. Pat-
tanaik et al. [18] quantitatively examined these nondegenerate
resonance enhancements, expanding upon a six-band theory
developed by Khurgin [19].

Here, we present pump-probe measurements of ND-
2PA coefficients in GaAs quantum wells. We studied 8-nm
GaAs/12-nm Alj3,Gag ¢sAs quantum wells at room temper-
ature using beams polarized normal (TM-TM) and tangential
(TE-TE) to the quantum well plane, and compared the results
with a theoretical model for ND-2PA in finite wells neglecting
excitonic effects.

We find that our perturbative model matches experimental
results very closely for TM-TM beams, whereas a relatively
large error in TE-TE predictions indicates that a more thor-
ough analysis is needed. The TM-TM model shows that
predictions of intersubband resonance enhancements of ND-
2PA also apply to finite wells, suggesting the possibility of
extremely sensitive gated detection of subband-gap pulses [1].

This paper is organized as follows. In Sec. II, we derive
a method for calculating ND-2PA coefficients in an arbitrary
quasi-2D semiconductor. We introduce our GaAs quantum
well waveguide in Sec. III and describe the pump-probe
experiments carried out to find its ND-2PA coefficients. In
Sec. IV, we apply the model of Sec. II to a simple quantum
well structure that approximates our sample. Measurement
results are presented in Sec. V followed by a discussion in
Sec. VL.

In Appendix A, we give the equations and parameters
used in numerical simulations of quantum well states and
optical modes. Appendix B contains nonlinear wave propa-
gation analysis, as well as the techniques used to match the
calculation results to experimental curves. The rest of the
Appendixes contain derivations and background for important
equations: Appendix C gives a detailed derivation of ND-2PA
coefficients in semiconductor quantum wells. Appendix D
contains background about the Kane band-structure model
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for zinc-blende semiconductors, which is used in the enve-
lope theory described in Appendix E. Appendix F shows the
derivation of an intersubband matrix element in the envelope
function expansion. Finally, an analytical equation for nonlin-
ear propagation is derived in Appendix G.

II. THEORETICAL BACKGROUND

The nth level wave function of the jth band (e.g., conduc-
tion, heavy hole, light hole) in a semiconductor confined in
the z direction is [20]

Vin(r;Ke) = ™M Fj(ry, 23 K,). (1

Fj, is an envelope with lattice periodicity only in r;, the
component tangential to the quantum well plane.

Second-order perturbation theory gives the net two-photon
transition rate per unit volume [21],

2711;2

Y. IR % 24 2
(clH{li) (i|Hj|v)
Eiy (k) — hao

(clAs iy (ilH{lv)
Eiy(k;) — T,

X 8[Ecy(K) — hoy — ha], 2

where |c) and |v) are conduction and valence envelopes,
respectively. H is the interaction Hamiltonian for a vector
potential of magnitude A(; and polarization &, given by [22]

N eA
H = 2—°(jé1 (B + 7ik,). 3)

The 7k, term arises from the chain rule for the momentum
operator p = —ihV applied to states in the form of Eq. (1).
This term is usually ignored because it frequently cancels out,
but we leave it in for completeness.

The transition rate is converted to an ND-2PA coefficient
by [23]

ha)1
2L,

ar (w1 wp) = w, 4
which describes the attenuation of wave 1 at frequency w;
induced by wave 2 at w,. I} and I, are the incident field
irradiances,

I = nzCéow; A, (5)

with n; the effective index at w;. We also introduce a unitless
matrix element between envelopes [24],

“(Ejnlp + K| Fip) . (6)

! o
M;n)lm( t) = we[
As detailed in Appendix D, the Kane parameter P =
hi/my (iS|p.|X) is the optical coupling strength between con-
duction and valence bands.

Finally, we combine Egs. (2)-(6) into a general expression
for ND-2PA coefficients:

Kﬂi f2<@;@>, )

ar(wy;w) = L E3 E ' E

where f; is the dimensionless spectral function,

2w 8€CU
Salxsx) = ZZ o
v Ko
2)a4(1) (D) ar(2)
% Mci Miv + Mci Miv dd) (8)
€y — X1 €y — X2

See Appendix C for a full derivation. The quantity E, is the
band gap of the quantum well material and £, = 2moP?/h* is
the Kane energy. The parameter L, is the total thickness of the
structure in the z direction. For a single quantum well, L, is
the sum of the barrier and well widths.

Equation (7) is valid in any unit system so long as
the material-independent parameter K is adjusted accord-
ingly. With energies and lengths written in Hartree atomic
units [A=my=e=1/(4mey) = 1], this constant is simply

= (7 /c)2 (m/ 137)2. The final 2PA coefficient can then
be converted to cm/GW by the conversion factor 1 a.u. =
29.36 cm/GW.

The integral in Eq. (8) is taken over the azimuthal angle
of k,, whose magnitude has been replaced by the unitless
quantity k = k,P/E,. Energies are also normalized by letting
€jx = Ejx/Eg and x; = hw;/E,. Each kg is a real, positive
solution to

€k, @) —x1 —x =0. ®

We derived Egs. (7) and (8) without making any assump-
tions of specific band-structure or layer design, leaving us
with a general expression for ND-2PA coefficients in quasi-
two-dimensional (2D) materials. Later, we make approxima-
tions to simplify calculations for the symmetric quantum wells
introduced in the next section.

III. SAMPLE AND EXPERIMENT

We experimentally investigated GaAs quantum wells
MBE-grown by Sandia National Laboratories on an n-
GaAs (100) substrate. A waveguiding structure was formed
in the z direction by growing 2-um-thick Aly;GagsAs
cladding layers on either side of a 2-um active region.
The active region comprised 100 repetitions of (8 nm
GaAs)/(12 nm Aly3,GaggsAs) quantum wells, with barrier
widths chosen so that coupling between wells is negligi-
ble. Transverse optical confinement was achieved by etch-
ing a 3-um-wide ridge through the active region and lower
cladding. Finally, the sample was cleaved to a length of
3.6 mm. The layer structure and geometry are seen in Fig. 1.

Figure 2 shows the optical setup employed to study
the sample. A short-wavelength probe and long-wavelength
pump came from the signal and idler, respectively, of a
Spectra-Physics OPAL optical parametric oscillator (OPO)
synchronously driven by a Spectra-Physics Tsunami Ti:Al, O3
laser with 82 MHz repetition rate. We tuned the driving laser
wavelength between 730 and 795 nm to study 2PA at sum
photon energies near the absorption edge. For each driving
laser wavelength, the OPO phase matching was adjusted to fix
the idler at 1960 nm. In effect, the pump was fixed at 1960 nm
while the probe varied between 1176 and 1326 nm. This pump
photon energy was chosen to be below the D-2PA edge so that
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FIG. 1. A schematic of the quantum well waveguide samples
studied. The 2-um quantum well region consists of 100x (8 nm
GaAs)/(12 nm Alj3,Gag ¢s) quantum wells.

two-photon photogenerated carriers did not interfere with data
interpretation.

After fixing the signal and idler wavelengths, their polar-
izations were set to TE (y polarized) or TM (z polarized) using
broadband half-wave plates. The probe then traveled through
a delay line and combined with the pump at a dichroic mirror.
The beams were end-fire coupled into the ridge waveguide
(Fig. 1) using a microscope objective and collected by a lensed
fiber at the exit facet. The lensed fiber was connected to a
Yokogawa AQ6370D spectrum analyzer (OSA in Fig. 2) to
compare the probe output power spectrum with and without
the pump’s presence. The process was repeated at a series of

HWP DM
[ >
Laser Z] MO
+
OPO % WG
HWP ——
Pol. /= LF

%DelayI % f OSA

FIG. 2. A schematic of the experimental setup. OPO: optical
parametric oscillator; HWP: half-wave plate; Pol: polarizer; DM:
dichroic mirror; MO: microscope objective; WG: AlGaAs/GaAs
quantum well waveguide; LF: lensed fiber; OSA: optical spectrum
analyzer. The pump laser for the OPO is a Ti:sapphire laser which is
tuned between 730 and 795 nm.

probe delays to generate curves of normalized transmission
versus delay.

It is necessary to know the pump power at the facet inside
the waveguide to convert normalized transmission to an ND-
2PA coefficient. This input power was calculated by back-
propagating the OSA-measured output power to the front facet
using

Pout = Pin CXP(—UL)Ta (10)

which depends on the waveguide loss o, the sample propaga-
tion length L, and the the output facet coupling efficiency 7.
This efficiency was experimentally determined by temporarily
replacing the microscope objective of Fig. 2 with a lensed
fiber identical to the one at the output. By measuring Py /P
for this symmetric system, we found the facet transmission by

m

[Pout }” 2

T = exp(oL) . (11)
P

After finding a waveguide loss of oy = 0.46 mm~! and
org = 0.56 mm~' (see Appendix B2), we determined the
transmission coefficients of the front facet to be Tty = 0.47
and TTE = 0.54.

Autocorrelation measurements of the 1960-nm pump at
four different sum wavelengths gave the following pulse
widths: 227 fs at 789 nm, 221 fs at 774 nm, 156 fs at 754 nm,
and 149 fs at 745 nm. By comparing to the measured spectra,
we determined pump pulse widths to be an average of 9%
greater than the Gaussian bandwidth limit.

IV. CALCULATION OF 2PA COEFFICIENTS

This section describes the model used to calculate the 2PA
coefficients of a symmetric GaAs quantum well. We begin by
calculating the energy levels and envelope functions of each
subband level. Then we construct expressions for the optical
matrix elements between all states. Finally, Eq. (8) is used to
calculate the 2PA coefficients for parabolic bands.

A. Wave-function envelopes

Calculation of ND-2PA coefficients requires knowledge of
the energy levels and wave functions between which two-
photon transitions occur. We begin by expanding the envelope
functions in the basis of zone-center wave functions u,(r)
[25,26]:

Fin(r, k) = (2 kuso(r). (12)

The basis is chosen to consist of either 8 or 14 spin-degenerate
bands (see Appendix D for details). For ease of calculation,
we only solve for envelopes at k, = 0; the approximation
applied for k, # 0 is discussed later in this subsection. Tak-
ing the alloy composition-dependent energy offset of band
J as a z-dependent potential V;(z) leads to a second-order
Schrodinger equation [27],

1 1

Epzmpzx}n(z) +Vi(@)x1,@) = Ejux],). (13)
J nsy &

The superscript on x fn denotes the dominant envelope, and
mj (Ejn, z) is the state’s energy-dependent effective mass in the
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z direction. Choosing the eight-band basis for Eq. (12) yields
the effective-mass relations [27]

my my 2 Ep
- + =
m(E, z) ME - 3E —=Vi(z)
! E,
3E+A—-V(2)
m m 2 E
m;(E, z) MT 3E—-Ve(z) - E,
nyo nyo
——— =1+ —. (14)
m; (E, z) M

See Appendix E for more information on the effective masses
and the envelope Schrodinger equation. The quantity A is
the spin-orbit split-off energy and mg /. are remote band
contributions included by Lowdin’s perturbation method [28].
We take the approximation that this remote band contribution
is independent of energy.

In the 14-band basis, the conduction-band effective mass
changes to

Mo _ 1+ o + % Ep l Ep
mi(E, 2) ME S 3E—-Vi(z) 3E+A-V(2)
) 15
3E—E;—Vi(z) 3E—Ey—Ve(2)
(15)

where /" is the light electron band at E = E; and s’ is the
split-off electron band at E = Ey. E, is the coupling energy
between the two sets of conduction bands. All hole effective
masses are identical to the eight-band results.

If we set V; =0 and E = E; i in Egs. (14) and (15),
we find expressions for bulk GaAs effective masses. As was
done in Ref. [29], we choose myg/.#5 so that calculated bulk
effective masses match experimental values.

We assume the k; band dispersion to have the form

Rk}
Eju(k) = E;u(0) + 2—; (16)
M
where m', is the effective mass in the transverse direction. This
parabolic band approximation has been successfully used to
calculate 2PA coefficients for bulk semiconductors [22], at the
cost of ignoring some fine structure in the dispersion [24].

B. Matrix elements

Equipped with a model for electronic states, we can pro-
ceed to calculate the optical matrix elements between them.
Two-photon transitions across the band gap always require
an interband transition, for which we consider allowed and
forbidden paths. For TM-TM polarizations, the remaining
step is assumed to be an allowed intersubband transition. In
TE-TE 2PA, the remaining step is assumed to be a forbidden
self-transition [30]. These two interaction types vary differ-
ently with wavelength near the 2PA edge, causing anisotropy
between the polarization schemes.

Intersubband matrix elements are calculated between the
envelopes found from Eq. (13). As a consequence, the results
are only strictly valid at the band edge. For TM polarization,

TABLE 1. Optical matrix elements Mj.mim =1Z-Mj,;,. Only

transitions to « spin states are shown since transitions to 8 states

can be found from the relation M5, ,, = (M7, ;)"
ca,n ha, n la,n
co, m Eq. (17) 0 V2 cos 0 8
cB,m 0 —% sin 6 8, ﬁ sin 6 §,,,
ha, m 0 Eq. (17) 0
hB, m —% sin 6 8, 0 0
la,m VZcos68,, 0 Eq. (17)
1B, m % Sin 6 8, 0 0
we find that
o, o1 1 ;
_ J j
M?n,im - ﬁ(xjn \ gpz + pzﬁ | le) 55}’ (17)
i J
where
1 1 1

— == —. 18
m,  m(E,z) MG (18)

See Appendix F for justification of the above equation. This
form exhibits two improvements over that in Refs. [18] and
[19], viz. M3, ., = R/(m;P) (x},|p:|x],). The first is to in-
clude energy scaling of the effective mass, and the second is
to account for the fact that interband coupling depends only
on the inverse effective-mass component arising from interac-
tions within the basis. Equation (17) can also be compared to
that in Ref. [31], which ignores the subtraction of remote band
contributions.

Self-transitions are forbidden because they describe op-
tical coupling between states of nearly identical symmetry.
Equation (17) with m = n shows that these contributions are
negligible for TM polarization. For TE fields we use the
relation (p) = (mo/h)VkE(k;) — hk, [32] with the energy
given by Eq. (16). Fixing TE polarization in the y direction
leads to

ﬁz
M;n’im = Wkt Sin @ 8, 0; ;. 19)

Equation (17) is also valid for interband transitions, but us-
ing it would ignore the k, dependence once again. Instead, we
use the method of Yamanishi and Suemune [33] to estimate
matrix elements from the bulk band structure:

ho .
M;f’l)il1l = € - (”jO(r)|P|’4i0(l')>/ 8nm» (20)
’ moP

where uo(r) is the zone-center basis function for band j. As
described in Appendix D, the prime denotes that the basis
functions are rotated by an angle 6 = cos™! [k,/ (kf + k)12,
We find k, from the energy relation £,(0) = hzkzz /2m’;. Equa-
tion (20) applies to TM and TE polarizations and accounts for
allowed (o< cos 0) and forbidden (o sin 8) transitions.

All matrix elements for both polarizations are compiled in
Tables I and II, in a similar form to those in Refs. [21,24].
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TABLE II. Optical matrix elements M,

=¥ -M;, in. Only transitions to « spin states are shown since transitions to § states can be

A : jn,im
found from the relation M, ,, = (M;,, )"
co,n ha, n la,n
ca,m % i—: Sin ¢ S 0 \/g sin @ sin ¢ 8,
cB,m 0 0 —%(cos@ sin ¢ + i cos )8,
hot, m 0 2 sin g 8y 0
h
hB, m % (cos O sin ¢ — i oS ¢)Sum 0 0
la,m % sin @ sin ¢ 68, 0 o i—’( sing 8,,,,
3 mj €p
B, m —ﬁ(cos@ sin ¢ + 7 cos ¢)8, 0 0

C. 2PA coefficients for parabolic bands
The energy separation between parabolic conduction and
valence bands is given in normalized form by

my K2

o) = €00(0) + —=—, 2
Moy €p
where €, = E,/E, and 1/’ = 1/m!. — 1/m!. We see imme-
diately from Eq. (21) that

—1

8 cv !
€ _ P E_p_ (22)
dK ‘o my 2K¢
Combining Egs. (9) and (21), we find
MZ 1/2
Ko = {_wep[xl +x — ECU(O)]} . (23)
my

Feeding the results of Egs. (21)—(23) into Eq. (8) gives a
general expression for the dimensionless scaling factor in the
parabolic band approximation:

Mt
Hx) =€y =20 +x — €(0)]
my
co,v
2
LTI MM MM
X — d¢.
27 Jo €y — X €y — X2
(24)

The sum runs only over o conduction states, with identical
cp transitions included by a factor of 2. The step function ®
defines the range where the solution of Eq. (23) is real. The
aforementioned angular rotation factor in the interband matrix
element is found to be

t _ 0 —1/2
My X1 +x2 6Cv( )) (25)

m¢ €:(0)

C

cosf = (1 +

Two-photon absorption coefficients can finally be found from
Eq. (7). Note that each quantum well is treated as a separate
system so that L, in this equation is the total thickness of a
single well (20 nm).

Equation (24) is valid for TM-TM, TE-TE, and the
mixed-polarization TE-TM configurations. Because the
copolarized schemes provide sufficient information about the
ND-2PA anisotropy, we do not perform the less tractable
cross-polarized calculations. The next two subsections pro-
vide some simplifications for the TM-TM and TE-TE cases.

1. TM-TM 2PA coefficients

As shown in Fig. 3, every TM-TM two-photon transi-
tion includes one interband and one intersubband transition.
Because envelope parity alternates with subband index, the
required TM matrix element [Eq. (17)] imposes the selection
rule n —m = 2k + 1 for integer k. Since every element in
Table I is independent of ¢, the azimuthal integral of Eq. (24)
reduces to unity such that

2
€p Pew M M, M M;,
X13X) = ——= +
i) x1x§ ; my Xl: €y — X1 €y — X2
X ®[x1 +)C2 - 6cv(O)]- (26)

Both matrix elements are nonzero at the ND-2PA edge for
doubly allowed transitions, giving the steplike shape charac-
teristic of linear quantum well absorption.

2. TE-TE 2PA coefficients

Per Fig. 3, each TE-TE 2PA path involves an interband
and a self transition. Two-photon transitions therefore inherit
the selection rules of the the interband transition, namely
m = n. Using the matrix elements from Table II, which are
generally ¢ dependent, we simplify the dimensionless scaling

A e
e (a) TMETM N : (D) TE-TE

FIG. 3. A diagram of the possible paths for TM-TM (a) and TE-
TE (b) two-photon transitions. The initial and final states are marked
with a blue dot. Dashed lines represent a nonresonant transition,
which is the transition leading to a detuning denominator. Black and
red lines signify allowed and forbidden transitions, respectively.
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FIG. 4. TM-TM ND-2PA coefficients vs Agm = (19607 +
)»1’1)_' (nm). Black circles: measured coefficients with total pulse
energy E, = 3.5 pJ. Black triangles: measured coefficients with
E, =49 pl. Red dash-dotted line: theory with eight-band basis.
Solid blue line: theory with 14-band basis. Dashed blue line: TM-TM
theory convolved with 4 nm Gaussian to approximate bandwidth
effects. Magenta dotted line: 14-band model without adjustments to
well width and barriers. Solid green line: 14-band calculation with
E,=25¢eV.

function to

4 /1 1)\ yop2
fz(X1;x2) = )F + x—2 Z(|M5a,v sm¢| )¢

X2 x_l ca,v
X [)C] +x — Ecv(o)](a[xl +x — ch(O)]. (27)

The term linear in x; 4 x, grows from zero at the 2PA edge,
meaning TE-TE 2PA dispersion lacks the discontinuities seen
in TM-TM 2PA curves.

The ¢ integration has been reduced to the average over
a single term denoted with angular brackets. Performing the
integration for each pair of bands gives

(iMza,la Sin¢|2) = (1 — cos26),
<|Mza,z,s sin¢|2) = 9%(5 + 3 cos26),

(‘Mfa.hﬁ Sin¢>|2) = 5 (17 — 9cos 29). (28)

Note that if we chose x polarized light, we would need to
use the x components of the interband matrix elements and
take € - k; = cos¢. The result is that the integration over ¢
yields identical values to y polarized light. This equivalence is
consistent with the fact that physical measurements must have
the azimuthal symmetry of the isotropic bands.

V. RESULTS

Normalized transmission versus pump-probe delay was
measured as described in Sec. III, and coupled nonlin-
ear Schrodinger equations were used to fit the curves to
ND-2PA coefficients. The exact procedure is detailed in
Appendix B, along with all necessary approximations and
empirical adjustments.

TM-TM measurement results are plotted versus sum wave-
length in Fig. 4 alongside theoretical predictions. Sum wave-
length is defined by 1/Agym = 1/A; + 1/A,, where the pump

TABLE III. Quantum well subband energies (in meV) at k =0
for 7.84 nm GaAs quantum wells with Alj 3,3Gag ¢72As barriers.

c 1h hh
1 1475.9 —33.5 —11.5
1604.9 —120.3 —45.4
3 —98.9

wavelength A, is fixed at 1960 nm. Excitations of light hole
states bring about discontinuities in the spectrum, with the
I1 — ¢2 and /2 — cl transitions accounting for the shorter
and longer wavelength steps, respectively. In contrast with
light hole contributions, heavy hole signals exhibit a gradual
increase due to the interband y matrix element’s sin 6 (forbid-
den) dependence. Each transition’s onset is found by subtract-
ing the subband energies in Table III using the selection rule
m—n==l.

Expanding states in the 8-band basis with E, = 28.9 eV
[34], our predicted curve matched the data apart from a 3-nm
wavelength shift. This offset is mitigated by using the 14-band
model with E [’, = 6 eV [34]. In both cases, we assumed there
were small growth errors such that the real material consisted
of 7.84-nm wells with Alg3,3Gag¢72As barriers. The effect
of this modification is revealed by comparing the blue (solid)
and magenta (dotted) curves of Fig. 4. Other sources for this
wavelength inaccuracy could be OSA miscalibration or the
use of imprecise band-gap values in simulations, but these
assumptions lead to curves nearly identical to the ones shown.

Interestingly, calculated 2PA coefficients vary significantly
with the value chosen for the Kane energy. This sensitivity
is apparent when comparing the 14-band theoretical curve
with another that has E, = 25 eV and E[’, = 6¢eV [34]. By
the arguments of Sec. IV A, under these conditions we require
mo/ A7 = 3.0 so that Eq. (15) reduces to the bulk effective
mass for GaAs. For comparison, my/.#F = —2.2 when E,, =
28.9 eV. This modification reduces the intersubband matrix
element according to Eq. (17).

Figure 5 shows the TE-TE results compared with 14-band
calculations. The ND-2PA edge is energetically lower than in
TM-TM because it first occurs for 21 — c1 transitions, lead-
ing to large anisotropy below the /1 — ¢2 TM-TM transition
energy. The theoretical curve, which is smooth with a kink
at 750 um from h2 — ¢2 transitions, shows this anisotropy.
Howeyver, our unscaled calculations differ from the measure-
ments by over a factor of 4 and show some dissimilarity
in shape. We provide reasons for these differences in the
following section.

VI. DISCUSSION

The TM-TM theory matches the data without any nonphys-
ical scaling parameter; this excellent agreement is likely due
to the dominance of allowed transitions. The parabolic band
approximation works well because important features in the
2PA spectrum occur at small k,, where the parabolic band
approximation introduces little error. Calculations show that
the ND-2PA coefficients measured here are enhanced by a
factor of 1.5 over degenerate 2PA.
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FIG. 5. Comparison between theory and experiment for TE-
TE polarization. Black circle: TE-TE ND-2PA coefficients at £ =
4.2pJ. Black diamond: TE-TE ND-2PA coefficients with E =
6.0 pJ. Black line: TE-TE 2PA theory. Black dotted line: TE-TE 2PA
theory multiplied by 4.

We do not notice any bound excitonic response, which
may be attributed to temperature effects. Continuum exciton
enhancement is also not evident. Reference [14] concludes
that this contribution is absent in Ref. [15] due to low sample
quality and large exciton spatial extent. We suspect the same
reasons apply here, with further reductions possibly occurring
due to loss of 2D character from interactions between many
closely spaced wells.

In contrast to TM-TM polarizations, the parabolic band
approximation introduces significant errors in TE-TE ND-
2PA coefficients. By ignoring unit-cell intermixing, we un-
derestimate the k,-dependent scaling of forbidden transitions
that are necessary in TE-TE pathways. We also determine
that it is insufficient to examine only self-transitions as the
forbidden step; we must also consider intersubband transitions
and those between different hole types. Away from the band
edge, light-hole to heavy-hole transitions were shown to be
non-negligible for 2PA in bulk semiconductors [24]. TE-TE
coefficients could be more accurately calculated by numeri-
cally computing the highly nonparabolic band dispersion as
in Ref. [35]. Equation (6) would then give matrix elements
throughout the Brillouin zone, which are used to find 2PA
coefficients according to Eq. (8).

The sensitivity of the 2PA coefficient to Kane energy and
effective masses indicates that pump probe spectroscopy of
quantum wells may be an effective method for determining
basic material parameters. Our results, while not precise
enough to justify a definitive declaration, seem to support the
idea that the Kane energy is closer to 28.9 eV than lower val-
ues that have been reported (see Appendix A). Furthermore,
Hiibner er al. [36] and others have shown evidence that the
Kane energy is dependent on temperature. With better spectral
resolution and careful experimental setup, the temperature
dependence of E, could be reflected both in a magnitude
change of the normalized transmission signal and a shift of
the ND-2PA edge as effective mass is changed [see Eq. (A4)].

With this experimental support for our model, we can re-
examine ND-2PA for extremely nondegenerate photon pairs

max{as} (cm/MW)

5.5 6 6.5 7 7.5 8 8.5
Pump Wavelength (pm)

FIG. 6. Maximum TM-TM ND-2PA coefficient (in cm/MW) vs
pump wavelength. The dashed red line denotes the point where
maximum 2PA occurs for a probe wavelength within 25 meV of the
hl — c1 band gap. The solid red line is the same for the /1 — c1
gap. The dotted black line shows the END-2PA coefficients of bulk
GaAs for a probe just below the band gap [37].

[17,18,37]. Figure 6 shows that the calculated TM-TM ND-
2PA coefficients rapidly increase as the pump wavelength
nears the cl — ¢2 resonance at 9.55 um. We can compare
this enhancement to that seen in bulk GaAs (dotted line)
arising from a zero resonance. The red vertical lines denote
points where the probe energy for maximum 2PA lies within
kT = 25 meV of the forbidden (dashed, 21 — c1) and al-
lowed (solid, /1 — c1) linear absorption edges. The offset
value is chosen so that we can roughly assume negligible
impurity state absorption, but these edges will shift depending
on material quality and temperature. For A, = 7.5 um, we see
that max{a,} = 5.7 cm/MW—an enhancement of ~360x
over the slightly nondegenerate case studied here, and a
considerably larger ND-2PA coefficient than any we have
measured in bulk semiconductors (~1 cm/MW) [37]. This
enhancement suggests the possibility of extremely sensitive
gated detection as in Ref. [1], with even further increases in
photogenerated carrier density due to long pulse interactions
within a waveguide.
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APPENDIX A: SIMULATION DETAILS

Since we are not working with an idealized structure,
we must employ some numerical techniques to model our
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systems. In the first subsection of this Appendix, we calculate
energy levels and envelopes for states in the finite quantum
well. In the second, we find the optical mode structure and
dispersion characteristics of the waveguide.

1. Material simulations

We first give the band gap of GaAs and the composition-
dependent band gap of AlGaAs in order to determine the
confining potential imposed by the AlGaAs barriers. Then we
provide values for interband couplings and effective masses,
followed by a brief summary of the calculation results. Each
value is taken from the literature, making adjustments as
needed.

The temperature-dependent band gap of GaAs is given by
the Varshni relation [38]

2
E,=1519 -« d
T+p

(eV) (A1)
with o = 8.95 x 107 eV/K and B = 538 K [39,40]. The
higher conduction-band energies in the 14-band model are
taken to be Eg’ =4.63eVand E;, = 4.44 eV [41].

The potential barriers imposed by the quantum well layer
structure come from the empirical expression for total band
offset between GaAs and Al,Ga,_,As [39]:

AE, = 1395x (x < 0.41). (A2)

The ratio Q = AE,/AE, = 0.33 [40] at an Al,Ga;_,As inter-
face, simplifying conduction and valence offsets to

AE, =V, =0.963x (eV),

AE, =V, =—-0.432x (eV). (A3)

All hole types are presumed to have offset V,, and all conduc-
tion bands are taken to have offset V..

Literature values for the Kane energy of GaAs vary
between E, =22.9 eV [42], 25.7eV [43], 27.86 eV [44],
28.8 eV [45], and 28.9 eV [34]. We choose E, =28.9eV,
and take the inter-conduction band coupling strength as
E, =6¢eV [34].

The conduction-band effective mass of GaAs is m% = m!, =
0.0635m [40] at room temperature. Light-hole masses are
anisotropic with m; = —0.082m [46] as determined from
cyclotron resonance at 77 K. This mass is adjusted to its
room-temperature value by

L +2E,,( 1 1
my 77 K 3 \Egoosk  Egrix

mj 295 K

) . (Ad

where temperature-dependent band gaps are taken from
Eq. (A1). This relation comes from subtracting the Eq. (14)
expressions for 295 and 77 K. The final outcome is that
m§,295 k = —0.077my.

The energy-dependent effective mass is calculated in the
eight-band model using Eq. (14) with spin-orbit splitting of
A =0.341 eV [47].

The heavy-hole effective mass m,(z) is [20]

my
Yi1[x(@)] = 2y [x(2)]

where x(z) is the AlGaAs composition at position z. The
symbol y(x) is the six-band Luttinger parameter linearly

i (2) = (AS)

1
(@) z <
05t & QW &
=< =
0 .
2 -1 0 1 2
z (pm)
1
(b)
0 . . .
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FIG. 7. Normalized pump (red) and probe (blue) TM mode
profiles in the z (a) and y (b) directions for the structure shown in
Fig. 1.

interpolated between the values for GaAs and AlAs [40]:
y1(x) = 6.98 — (3.76 — 6.98)x,

ya(x) = 2.06 — (0.82 — 2.06)x. (A6)

Transverse hole effective masses are also taken from the
Luttinger parameters as [20]
my

= 710+ 12(0)’
t mo

"7 1(0) — 12(0)°

With all material parameters known, the shooting method
[48] is used to solve Eq. (13). The procedure yields the energy
level (see Table III) and dominant wave-function envelope for
each state. Note that the material widths and compositions are
slightly altered as explained in Sec. V.

3
my

(A7)

m (A8)

2. Waveguide modes

Refractive index values for the various AlGaAs composi-
tions used were calculated by Adachi’s formulas [49]. The in-
dex of the quantum well active region was estimated to be the
spatial average of the well (w) and barrier (b) permittivities,

Lwnw(-x» )\)2 + Lbnb(X, )\)2

Lw + Lb ’

Using these indices, electromagnetic mode profiles and

dispersion curves were calculated from the finite difference

method with Lumerical MODE Solutions [50]. The mode

shapes are shown in Fig. 7. The third-order mode areas a;
and overlap 7,; were calculated in the usual way [51]:

S IR, 2)Pdydz]”
“T T TIRG oldydz (A10)

[ 1E@, 211F;(, 2)*dydz
L[] 1B ldydz] [ [] 1F; (. 2)*dydz]

nz(x, A) =

(A9)

nij = 750 (ALD)
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where F(y, z) is the electric-field profile of mode i. The cal-
culated TM (TE) mode area at 1960 nm was found to be 3.56
(3.48) um?, and the TM (TE) probe mode areas range from
3.14 (3.07) um? at 1150 nm to 3.21 (3.17) wm? at 1350 nm.
The mode overlap at 1176 and 1960 nm was 1, = 0.9967,
so they are treated as unity. Due to tight optical confinement
within the active region, propagation is well approximated by
taking modes to travel through a material entirely made up of
the quantum wells.

We numerically differentiated the refractive index curves
to find group velocities and second-order dispersions. The
largest GVM of p = AB = 860 fs/mm occurred when A; =
1176 nm and X, = 1960 nm, with the pump traveling faster
than the probe. Around this value, 150 fs pulses walk off
from each other on the length scale of 350 um. The largest
dispersion coefficient of B, = 1841 fs?/mm occurs at the
same probe wavelength, while the pump dispersion is ﬂ D =
741 fs?/mm at 1960 nm. These values were used in the simu-
lations of Appendix B.

APPENDIX B: NONLINEAR PROPAGATION AND DATA
FITTING

We modeled pulse propagation by the coupled nonlinear
Schrodinger equations [52]

3 B o
&)
—+iZ-— + A
( + B + e + > 4

= i(V11|A1|2 + 2y121421%) Ay, (B1)

a /3(2)82 o>
@) 7
22 A
( AT 28t2+2 :

= i(ynlA2* + 2y211A117)As. (B2)

|A;|? is the instantaneous power, 1(1) and ﬂg) are the first- and
second-order dispersion, and o; is the loss. We neglect free-
carrier contributions to the nonlinear propagation because the
pulses have sufficiently low average power such that excited
carrier density is negligible. The nonlinear parameter y;; is
written in terms of the mode areas and overlap as [51]

yij = ; ny(wi; ;)1ij n l.az(w,-; w;MNij .

c /G;a; 2. /a;a;
We set Im{y»} = 0 because the pump wavelength is below
the D-2PA edge, and the y;, are ignored because the probe

power is low. All nonlinear refraction effects from Re{y;;} are
ignored, which is justified in the following subsection.

(B3)

1. Raw data and analysis

Figure 8 shows a normalized transmission signal generated
as described in Sec. III. A delay of zero indicates that the
pump and probe arrive at the front facet at the same time, and a
negative delay means the probe arrives before the pump. The
curve is temporally wider than the input pulses because the
faster moving pump overtakes the probe within the sample
for delays up to about —2.3 ps. Transmission curves in
high GVM experiments usually exhibit a tabletop shape like
those in Ref. [37]. Instead, we see a decay in the nonlinear

1@
0.957
097
0.857

087

Normalized Transmission

FIG. 8. Normalized transmission vs delay at A, = 1960 nm and

= 1246 nm. The results are compared to calculations using the
split-step Fourier method (black line) and analytical expression of
Eq. (B4) (red dashed line). The parameters used were Im{y;,} =
12.9 fs/(mmpl), E, = 4.8 pJ, p = 654 fs/mm, L = 3.6 mm, 7, =
121 fs, Ty = 154 fs, 0, = 0.4 mm~'. The total width of the signal is
T = pL =2.35ps.

transmission magnitude as delay becomes more negative. This
indicates that loss in pump irradiance leads to a smaller
signal as the pulses meet after propagating farther through the
sample. If these losses were caused by an interband absorption
process, there would be a constant signal at positive delay due
to excited carrier interactions. Instead, we attribute this decay
to high scattering from roughness of the etched sidewall.

The shape of Fig. 8 is explained by the analytical expres-
sion for normalized transmission,

E>1 2
AT = exp 222 m{y,} exp 02T 4 (021 )
p P 2p
X L X
x |erf 1+62T —erf e +azr ,
Tx 2/0 Ty 2,0

(B4)

which is derived in detail in Appendix G. Here, L is the
length of the sample and E, is the total energy of the pump
pulse. The value 7, = (7 + t7)!/? is the pure cross correla-

tion width between pulse durations t;, and p = ,3(2) (1)
the GVM parameter. Equation (B4) was derived by i 1gn0r1ng
second-order dispersion. Despite this approximation, we see
by comparing the curves in Fig. 8 that the equation yields
nearly identical results to those found by split-step Fourier
integration of Eqs. (B1) and (B2) with nonzero B,.

The insensitivity to §; is related to an overall pulse width
insensitivity of the normalized transmission. Qualitatively, the
increase in pump irradiance at fixed energy due to decrease in
pulse width is compensated by a decrease in interaction length
as the pulses walk through each other. In fact, with o, = 0,
the maximum signal of Eq. (B4) is completely independent of
pulse widths. Since the linear and nonlinear pulse broadening
should be negligible over the ~300-pum walkoff length, this
independence would be true without ignoring Re{y;;} and ,Bg) .
In our case, altering the pulse width only causes a slight signal
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reduction due to a delay shift in the curve moving the peak
back to a point where more pump losses have occurred. This
only gives an error of around 8% when 7, is underestimated
by a factor of 2. We use this insensitivity to justify ignoring
nonlinear refraction in Eqgs. (B1) and (B2).

2. Data fitting procedure

For TM-TM (TE-TE) sum wavelengths of 743, 762, 772,
784 nm (743, 762, 780 nm) the transmission curves were fit
with Im{y»}, o2, p, and 71 as free parameters. Averaging
the resulting loss coefficents gives o2 v = 0.46 mm~! and
oy.1e = 0.56 mm~!. A wavelength shift of 25 nm was applied
to the dispersion curve so the simulated values of p more
closely match the fits. This adjustment is needed most likely
due to the inaccuracy of the spatially averaged approximation
to the quantum well index [Eq. (A9)]. The values presented
here were held fixed in fitting the rest of the data.

The rest of the data points in Figs. 4 and 5 were found
by measuring the rising edge and peak of the normalized
transmission. The pump pulse width was taken to be 9%
greater than the bandwidth limit (see Sec. III), and y;, and
71 were free fitting parameters. Once again, the effect of
this imperfect knowledge of pulse widths is mitigated by the
signal’s insensitivity to pulse width. The o, and GVM values
were held fixed according to the previous fitting procedure.

APPENDIX C: DERIVATION OF 2PA COEFFICIENTS

Here we derive the 2PA coefficients for a quantum well.
Some steps will be repeated from the brief version in Sec. II;
we start again with the second-order transition rate per unit
volume,

2

27T 1 HCZIHZLy HCIHI%)
l‘U - hwl Elv - th
X §(hwy + hwy — ELy), (C1)
where H,,,, = —e/(2mg)Ay - p for a harmonic vector potential

of magnitude Ajy. We define a dimensionless matrix element
M = h/(myP)eé - p so that
eAO

Hypm = ———PM.
2h

Substituting the normalized matrix element into the transition
rate per unit volume leads to

4
W= 2m (e |A01A02|2P4
P \2 1%

y Z MM}

— Ey — hwl

X 8(hwy + hwy — Egy).

(C2)

L2 |2
MciMiu

E;, — hwy

(C3)

At this point the derivation becomes much cleaner in atomic
units where i = my = e = 1/(4mep) = 1. Changing units and
normalizing all energies to the band gap E, gives

A% A% 1 P*
W =27 202 E E
16 VE3

X §(x1 +xp — ecu).

MM, M M2 |

€iv _xl v — X2

(C4)

We now convert the sum to an integral over the first Brillouin
zone by
2 27 L.L,

—_—
14 k V. Jsz 2m)?

(C5)

Since V, = LL,L; is the volume of the crystal, we find (after
changing to polar coordinates)
2 z.b.
do / kdk.
0

The upper limit of the k integral accounts for the fact that the
distance to the zone boundary depends on the angle ¢, though
this limit has very little practical effect on the results. Noting
that kP has units of energy, we can define another normalized
parameter k = kP/E,. Updating the integration variable to «

2 11

— C6
V. - L27T (C6)

leads to
A2 A2 P2 ha)l Fla)z
= i ) €7
16 E, E,  E,
with the dimensionless spectral function defined to be
2
2 271 172
M M, M M:
f2(xl,x2)—z / d¢f s
i Ew — X1 €y — X2

X 8(x] 4+ xp — €c)dk. (C8)

Now we convert the transition rate to a 2PA coefficient by

xlEg
W, (C9)
2L

ar(x15x2) =

with the irradiance /; given in atomic units as

lh=o nlAOlezEgz. (C10)
Plugging this in and simplifying gives
ha)l ha)z
; = , Cl1
o (w13 @) 1n2E4L fz( E, ' E ) (C1D)
where K is the material-independent parameter
2 2
F14 b4
K=\—-) =(—])- (C12)
c 137

We perform the delta function integration on the dimension-
less spectral function using the identity

—1

g
/ F@)8[g(x)ldx = Zf(xw ol (C13)
where xg is a real solution to the equation g(x) = 0. Finally,
we find that
L[ decu |
p=Yg [ ¥n
MM} MIM?
x Z ciiv 4 el Tiv (C14)
€y — X1 €ip — X2
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TABLE IV. Table of zone-center wave functions and their corre-
sponding energies. The top half shows « spin states and the bottom
contains f states.

E ujo(r)

E, Ueo * IS 1)

0 Une © —~/T/2|(X 4iY) 1)

0 i 2 /T/61(X —i¥) 1) + /27312 )
—A s * VI131(X —i¥) 1) = V1/31Z )
E; o : —/T/2[(XC4iY¢) 1)

E; ure : I/6(XC —iY) 1) +/2/3|12° )
Ey gy 2 131X —i¥) 1) = V17312 ])
E, U 2 iS 1)

0 upg = NI72|(X —i¥) )

0 wp : —/T/6|/(X +i¥) ) +/2/3|1Z 1)
—A o VIBIX +iY) L) +V1/31Z 1)
E; upp : VI21(XC — i) |)

E, upp : —/1/61(X +iY) |) + /2/31Z° 1)
Ey ugp o I31(XC+iY9) |) + V1/3|12° 1)

APPENDIX D: KANE BAND STRUCTURE

Kane [53] developed a band-structure model for bulk
zinc-blende materials using a k - p formalism including spin-
orbit interaction. The unit-cell basis consisted of two spin-
degenerate S-like functions [S 1) and |S |) with energy E,
and six degenerate P-like functions |X 1), |X |), [Y 1),
Y 1), 1Z 1), and |Z |) with E = 0. By symmetry of the
zinc-blende crystal, all nonzero momentum matrix elements
are given by [54]

ho ho
P = —(iS|p:|X) = — (iS|p,|¥) =
m ni

hoo.
— (iS|p:1Z) .
0 mo

(D1
The wave vector in bulk materials is not restricted to two
dimensions as in quantum wells. In Ref. [53], the k - p Hamil-
tonian is diagonalized in a rotated coordinate system for which
k = k2. This coordinate transformation is represented as a
three-dimensional rotation matrix since X, Y and Z transform
as the components of a vector [54]. Finally, the k-dependent
eigenstates are found to be

= V121X +i¥) 1),
thg —ﬁi(x i) 1),
Ujo = ajliS 1) +b;/V2A(X —i¥) 1) +¢;1Z |,
uip = a;liS 1) + b;/N2|—(X +i¥) }) +¢;|1Z 1)

The heavy-hole bands (%) are uncoupled while the conduc-
tion, light-hole, and split off bands—denoted by index j—
intermix. The primed kets indicate rotated basis functions.

The zone center (k = 0) unit-cell functions are listed in
Table IV. Taking the first four ¢ and B states gives the
eight-band Kane basis described above. The more complete
14-band model includes conduction bands at energy ng and
Ey = E; — A, with A’ representing spin-orbit splitting in the
conduction bands. These two sets are used as bases for the
envelope expansion in Eq. (12).

(D2)

Interband matrix elements

Comparing the u;(r) of Eq. (D2) to the zone center
ujo(r) values in Table IV, we note they differ by the ex-
pansion coefficients as well as a rotation of basis functions.
As in Ref. [33], we assume quantum well transitions are
adequately described by using the zone-center expansion
coefficient while applying the basis rotation. For example,
(U | Pz |ttca) = (iS|p-|/2/3(Z cos 6)), which evaluates to the
value given in Table I after application of Egs. (D1) and (20).

APPENDIX E: ENVELOPE FUNCTIONS AND
EFFECTIVE MASS

Here we explain the origins of energy-dependent effective
masses [Eqgs. (14) and (15)] and the envelope Schrodinger
equation [Eq. (13)]. What follows is very similar to the
derivations in Ref. [27], but we include the details so we
can extend the arguments to the 14-band case. We begin by
expanding a general wave function in the (assumed complete)
set of zone-center wave functions,

Yin(rsk) = ™™y (2K (r), (E1)

where x;, is the envelope component corresponding to the
basis function u,(r). Absent from the expansion in Eq. (E1)
are the class B states included perturbatively using Lowdin’s
method [20,28].

We first use the eight-band basis with only two spin-
degenerate conduction bands. Plugging Eq. (E1) into the time-
independent Schrodinger equation gives a new k - p form.
Defining a vector y of the eight envelope functions, the result
is found to be

9x=E¥, (E2)

where & is the matrix [27],

h2 2
9\)1}’ = En’ + ‘ + pZ + V(Z)
21’)10 2m
1 1 1

+ m_opi”’pf + 2pz T P:

h
+ m_okt pvv’+ Z k %aﬁ

aﬂ—x;

1 1
+ = Zk a—azPe + Pk (E3)

a=x,y v’ v’

The inverse effective-mass terms 1/.# arise from perturbative
inclusion of remote bands using Lowdin’s method. These
band couplings v and v’ are described by the tensors

mo Z (VIpalr) ()ulp,slv/)' (E4)
ME H— E—E —Vi(@)

We can choose k; = 0 to simplify Eq. (E3) considerably (the

last two rows disappear). This step is where we have taken the

parabolic band approximation; we must assume the dispersion

to be parabolic in k; because we are only solving explicitly at

the band edge.
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For « states we then have

2
1
(Ec t3 -+ Ve(2) + 5P: //ﬁ-pz) Xe + PypzXi + PPz Xs = E Xe,

2
1 11
(Ez + ? +Vi(@) + 21&//{;711))(1 + PiePXe + 21)@///2219% Exi,

7
1
<Eh+7+Vh(Z)+ Pz///ﬁ ) = Ex;,

2
1
(Es + =+ Vi(z) + 2171 J//Z pZ)XY + pYCngc + pz =Ex;, (E5)

2 /// = PeX
where we dropped the band index to a subscript because there is no longer room for confusion. The equations for 8 envelopes
are identical. Note that the heavy-hole envelope is decoupled from the rest of the basis. This allows the immediate reduction to
a Schrodinger equation for the single envelope,

1 1
5Pz< ///hzfz)Xh + Vi@ xn = (E — Ep) xns (E6)

which depends only on the remote band coupling.

The rest of the equations involve intrabasis coupling terms. Assuming valence bands have the same offset V, =V, =V, =V,
we rearrange the remaining envelope equations and plug in the appropriate p} ; [from Eq. (D1) and Table IV] to find

1 1 2 1
|:§pz<1 + '//_ﬁc>pz + VC(Z)i|XC + \/;PPZXI - \/;sz)(s = (E — Eg)xe»
1 1 2 1
Epz I+ — L//[ZIZ P+ Vo(@) | X + 3 Pp:xc + pz '//ZJ%XY =Ex,

1 1 1
[EPZ( ///sz;)pz + Vv(z)]Xs - \/;sz)a + 5P %zzpzm (E + A)xs. (E7)

With the goal of reducing these to single envelope Schrodinger equations as in Eq. (E6), we would like to eliminate all other
envelopes in favor of the dominant one. Clearly, the dominant envelope will be the one corresponding to the band’s character. We
assume slowly varying envelopes so we can neglect terms of order pﬁ in comparison to first derivatives. Solving for the dominant
envelope in each equation (in order) gives

1 P
Xe = \/;—(\/EPZXI — PzXs)s

E—E,—V.(2)
\/3 P
Xl = §E_—Vv(z)szc,
1 P
Xs = _\/;E—I—A——Vv(z)pzxc' (E8)

Plugging in the expressions for x; and y; into the x. equation of Eq. (E7) reduces it to an expression for a single envelope,

o T S Vet = (E — Ey) (E9)
sz %g, 3E—V,(2) 3E+A-V,2 Pz Xc c\Z)Xe = g)Xc-

We eliminated P using E,, = 2P? (in atomic units). The effective-mass term sandwiched between the momentum operators now
has an energy-dependent portion due to coupling within the basis and an energy-independent portion term due to remote bands.
Repeating for light hole envelopes, we find

Lo L2 E, V@ +1 1 +ﬁ E, . E10
zpz M 3E—E;—Ve(2) bz <X bz M 3 E-E,—V.(2) PeXs = EXI-
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At first glance, this is more complicated than the conduction-
band solution because it has not reduced to a single envelope
equation. However, we can once again plug in the expression
for x, as a function of y.. Finally, we substitute for . in the
same way yielding terms of minimum order p‘z‘. As always we
ignore these relative to the second order. The conclusion is
that we may ignore the effect of the x; envelope so that

OSSR
2P\ T T 3ECE, @)

)ple + V@ =Ex.
(E11)
Repeating for y; gives

. 1 E,
Eg - VC(Z)

)pZXS + V@) xs = Exs.
(E12)

5;&( ME

14-band model

The 14-band model comes from a relatively trivial exten-
sion of the eight-band analysis. The six added conduction
bands have the same symmetry as the valence bands, so
they are completely decoupled from each other to first order.
Consequently, the valence bands derived in the eight-band
model are equally valid in the 14-band case (within the
approximations applied). The higher conduction bands are
expanded as

P
1
(Ez +7+sz(z)+ pz///zzzz' )Xz'

1
+ PjePXe + 5P:—=DP:Xs = Exv,

2 %ﬁ

P’ 1 1
Ey + — ) +V(Z)+2pz%zzpz

s's’

1
+ PieDPXe + 5P~ =P Xr = Exy. (E13)

2 //l g2
Since we are interested in 2PA well below the energy of the
higher conduction bands, we do not actually need effective-
mass relations for them. We just need to know their effect on
the conduction-band effective mass. To that end, we rearrange
as before to find

/2 1
= =P—————D.Xe»
Xl 3 E_E, — W(Z)PZX

T 1
P ey L S
X \/; E—E — Vo) &

Finally, we look at the k - p expansion for the conduction
band:

(E14)

2
1
<E+ +Ve@)+ zp:— 0=

> ) //zz pz)Xc + pclszl + pcsp Xs

+ Py PXs + Py Pxr = EXe. (E15)
Plugging in the expansions in Eq. (E14) yields

1 1

§P7mpzxc(z) + Ve(@xe(2) = Ecxe(2),  (E16)

with the effective mass altered to

my my 2 Ep 1 Ep
— =1+ + = + =
me MEBE—=Vi(z) 3E+A-Vi(2)
P N E17)
3E —Vi(@)  3E—-E;—Ve(@

APPENDIX F: INTERSUBBAND MATRIX ELEMENT

This Appendix derives the intersubband matrix element in
Eq. (17). The procedure shown is for conduction bands in the
eight-band basis, but it is easily generalized to other bands and
different basis sets.

The momentum matrix element between states given in the
envelope expansion [Eq. (12)] is

jn in = Wjn, p:V¥im) = Z(“MX;;’ quinl:n>’ (F1)

7Y

where we have chosen to represent inner products with op-
erator T as (f, T'g) for clarity. As usual, (Af, g) = A* (f, g).
We apply the chain rule for the differential operator p,, then
assume x and u change on different enough scales so that we
can integrate their expressions separately. In atomic units we
find

Pe i = (Xl pim)Bw + DX Xi)

Y

= (X5s PXipa) F (X P i) + (Xs PXi)

2 c l N c
+ \/;P (le'n’ Xim) - \/;P (Xjnv X,‘m>
2 1
+ \/;’ (X5s Xim) — \/;P (Ko Xi) (F2)

with p?, obtained once again from Eq. (D1) and Table IV.
Suppose now that the initial and final envelopes are conduc-
tion states. By substituting for x/ and x* using Eq. (E8) we
immediately find

1

Pczn cm =3 |:(p2xlf’ Xri) +

4p? 1
2

3 \E,—V,(2)

N 2pP? 1 . .

3\E 52 vy K K
1

E, —V,(2)

Pz X x,2;>

1 2
+ 5[()(5, P + T<x,f, pzx,2>

T 1 C (F3)
3\ Bt A= V@]

where we dropped the subscript ¢ on the right-hand side.
We also used the fact that (xS, p.x%) = [(px5. x5) +
(X5, PzXm)1/2. Noting that E, = 2P? in atomic units, com-
parison with Eq. (14) immediately leads to

1 1

m(En,Z) %ZZ}pZXnV Xm>

1 1 !
Woel 1~ AN
+2<X"’[m(Em,z) //zgg}p*x’”> (F4)

1
Wcm Pchm) = §<|:

013376-13



NICHOLAS COX et al.

PHYSICAL REVIEW RESEARCH 2, 013376 (2020)

Normalization and conversion back to bra-ket notation gives
Eq. (17). This process can be repeated for hole transitions and
states written in the 14-band basis.

APPENDIX G: ANALYTICAL EXPRESSION FOR
NORMALIZED TRANSMISSION

The goal of this Appendix is to derive the simplest equation
that can accurately describe nonlinear propagation in our
system. We find that we can compute normalized transmission
without accounting for linear and nonlinear pulse spreading
effects. Since the pump photon energy is too low to experience
nonlinear loss through 2PA, we take the pump propagation to
be linear with absorption coefficient o7,

( +87 )Az(x n=-2Awn. (G
The propagation direction is fixed along the x direction to be
consistent with the axes chosen in the paper. We can solve
Eq. (G1) by transforming into the moving frame with 7 =
t— ﬂfz)x and X = x. After converting back to the original
coordinates, we see that the solutions must be of the form

Ay, 1) = F (0,1 — BPx) exp <—%x>.

Letting A, be Gaussian and remembering that |A;|?> are nor-
malized to represent instantaneous power,

@y

t
Py = |Ay* = Py exp [—(T—;)} exp (—02x).  (G3)
2

(G2)

Now we can plug into the equation for the probe traveling in
the presence of the pump:

( 02 )A1 = diyalAsPA — DAL (G
We apply an integrating factor to remove the linear loss term
by letting A; = A exp(—ox/2). Transforming to coordinates
moving with the probe group velocity T =t — f])x and X =
X gives

0A (X, T) .
oy =2l DIPAX T (GS)
We can calculate the power evolution of wave 1 by
0 0A] AT
— |A}* = A} Al —L. G6
ax"' ‘ax+lax (Go)

Substituting Eq. (G5) for the derivatives and integrating both
sides over the time parameter 7,

[e9] 8P] o0
—dT = —4Im{y12} PzpldT

T (G7)

We have dropped the prime in P terms representing the decay
being factored out, but in the end the probe decay will have no
effect on normalized transmission. We assume a Gaussian P;
(probe) profile with a time delay of t relative to the pump:

(T —7)2:|
2 ’

Substituting t =T + ,Bl(l) into the pump distribution from
Eq. (G3) and plugging into Eq. (G7) along with the probe
profile, we find

oE
—L = —4Im{y12}Po1 (X )Py exp (—02X )

X
o) T X 2 T — 2
X / exp [——( +/20 ) :|exp |:——( 21) ]dT.
oo 153 T

P(X,T) = Poi(X)exp [— (G8®)

(G9)
The temporal integral evaluates to
oE T
o = —4m{y} P (OPpT—
0X Ty
X 2
X exp [——(T * ';) y _ GzX], (G10)
TX

using again the GVM parameter p = (1) ,3(2) We replace
the probe power with its energy by applymg the relation E; =
J/7T;Pyj, then integrate over the length of the Wavegulde to
find the output energy:

/E<L> dE, 4 In{ys)E 1
- = ——=Imyynsfr—
g0y Ei VT Ty

/ g [ (T + pX)?
X exp | ————
0 Ty

Solving the integral finally gives the result

! <E1(L))
n
E(0)
2 P 2p
X L X
x | erf 1+02r —erf e +aﬂ .
Ty 2p Ty 20

Recall that we still have an exponential decay that has been
factored out of the profile A;. We see that replacing the
integrating factor gives E (L, E>) = E;(0) exp(—oL)I'(E»),
where I'(E;) is the exponential of the right-hand side of
Eq. (G12). Since normalized transmission is defined as
AT(E,) =E(L,Ey)/E(L,0), we immediately see that the
decays cancel to give AT = I['(E»).

- azX]dX. (G11)
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