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Abstract—Recognizing objects directly from optical fiber output
images is useful in endoscopic applications when forming a clear
image of the object is unnecessary or rather difficult. Conventional
fiber-optic systems, such as multicore-fiber-based and multimode-
fiber-based systems, suffer from the sensitivity of the fiber to ex-
ternal perturbations. For example, a slight movement of the fiber
(a-few-millimeters translation of the tip for meter-long multicore
fibers or multimode fibers) can greatly change the output images
of the system. In this work, we utilize the light guidance stability
of recently proposed glass-air Anderson localizing optical fiber
(GALOF) to achieve robust imaging-free objection recognition.
We transport five classes of cell images through an 80-cm straight
GALOF. A deep convolutional neural network is trained to classify
the output images and tested on images never seen, namely, images
collected when the fiber is bent or when the fiber facet is placed
several millimeters away from the object without any distal optics.
Bending-invariant high classification accuracy (86.8% on average)
is observed all the way to the maximum bending offset distance of
45 cm (∼74thinsp;° bending angle). High classification accuracy
(91.2%) is also preserved when the fiber facet is 0.5 mm away from
the object.

Index Terms—Microstructured optical fiber, deep learning,
object recognition, transverse Anderson localization.

I. INTRODUCTION

F IBER-OPTIC imaging systems (FOISs) are the backbone
of modern endoscopy for bio-imaging research as well

as medical diagnosis [1], [2] due to their miniature sizes and
flexibility. The imaging unit of FOISs can penetrate deeply into
tissues and organs with minimal invasions to study areas inac-
cessible by conventional microscopy. Moreover, FOISs can be
implanted in freely moving animals [3], thus, enabling real-time
in vivo imaging. The two most commonly used optical fibers
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in FOISs are multicore fibers (MCFs) [4]–[12] and multimode
fibers (MMFs) [13]–[16]. A typical MCF contains thousands
of closely spaced cores in a common cladding, whereas an
MMF contains a single step-index or graded-index core that
supports thousands of modes. With the recent development
of machine learning, researchers and doctors begin to benefit
from computer-aided diagnosis (CAD) in FOIS-based imaging.
Conventional CAD in FOISs consists of two phases: image
acquisition and image classification [8], [17]. In the image
acquisition phase, a high-quality image of the object is formed.
This is straightforward in MCF-based FOISs since images
are sampled and transmitted directly through individual fiber
cores. For MMF-based FOISs, however, images are encoded
into thousands of optical modes that travel at different speeds
along the fiber. The output speckle patterns of the MMF contain
the information about the object image. Several solutions have
been proposed to recover the input images. A complex-valued
transmission matrix (TM) [13], [14], [16], [18]–[21] can be
obtained experimentally to establish the relationship between
the input orthogonal bases and the output bases. The speckle
patterns are then inverted back to recover the original images.
Deep convolutional neural networks (DCNNs) can be trained
to directly “learn” the mapping between the input images and
speckle patterns, and then reconstruct input images from speckle
patterns [22]–[24]. A third method is a combination of the
last two. It approximates the TM from the input image and
speckle pattern pairs using a learning-based algorithm [25]. In
the image classification phase, traditional machine learning clas-
sifiers learn to recognize patterns in image features handcrafted
by human experts. Nowadays, deep learning [26] can differ-
entiate high-level features through self-directed learning and
outperforms conventional methods. Therefore, deep learning has
become the state of the art and has been widely implemented in
biomedical image classifications [27]–[29].

Despite the great success of conventional CAD in FOISs, it
has a few drawbacks. For deep-learning-based image recon-
struction, a large number of input-output image pairs needs
to be collected during the image acquisition phase. This re-
quires a reference arm in the setup, which makes the calibration
complicated and demanding. Under some circumstances, it is
even impossible to get access to the ground truth images. Yet,
since the speckle patterns contain as much information as the
original images, there is no fundamental reason to reconstruct
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the original images before classification. Objects can be directly
recognized from the speckle patterns [30]–[34]. The concept of
imaging-free object recognition through optical fibers can be
traced back to the early 90’s [35]–[37], when artificial neural
networks were applied to classify speckle patterns from MMFs.
With the aid of deep learning, researchers are now able to classify
speckle patterns resulting from more complicated input images
in MMFs [23], [38]–[40] and MCFs [41]. One may argue that
deep-learning-enabled image reconstruction is not necessary
when MCFs are used or when the TM method is adopted to
recover images in MMFs. However, conventional FOISs face
another major challenge. Strong core-to-core mode coupling
in MCFs [9]–[12], [42], [43] and multimode interferences in
MMFs make them very susceptible to external perturbations,
such as fiber movement (translation of a few millimeters in the
fiber tip for meter-long MCFs or MMFs [10], [14], [16], [44]) or
thermal variations (about 15 °C for MMF [16]), which greatly
change the output images of the systems. Efforts have been made
in both TM [21], [45]–[50], and deep learning methods [23], [51]
to alleviate this adverse effect. Nevertheless, the sensitivity to
external perturbations is intrinsic in the fiber properties and is
rather hard to get rid of.

Recently emerging Anderson localizing optical fibers [52]–
[61] pave the way to realize robust imaging-free object recog-
nition through FOISs. The refractive index distribution in An-
derson localizing optical fibers is disordered in the transverse
plane and homogenous along the light propagation direction.
Because of transverse Anderson localization (TAL), Ander-
son localizing optical fibers can support thousands of modes
embedded in the random structure through multiple scattering
process. Unlike the modes in conventional MMFs or MCFs,
the TAL-supported modes demonstrate single-mode-like prop-
erties, such as bending-invariance and high spatial coherence
[59], [60], [62]. Each of these modes also corresponds to a
beam propagation channel, which constitutes the foundation of
high-quality robust imaging system [63], [64]. The mode density
in TAL fiber (∼10 modes/μm2) is orders of magnitude higher
than that in MCFs (∼0.1 modes/μm2) or MMFs (∼1 mode/μm2)
[62], thus, enabling transport of more complex images, e.g.
cell images [60]. Moreover, the effective beam width in the
transverse plane, also known as localization length, has been
shown to be independent of wavelength [65]. It makes incoherent
broadband illumination possible, which is extremely challeng-
ing in systems based on MCFs or MMFs. In our previous work
[59], [60], we have demonstrated the robust and high-fidelity
imaging capabilities of glass-air Anderson localizing optical
fibers (GALOFs) to transport cell images under mechanical
bending, temperature fluctuations, or variations on the imaging
depth between the fiber facet and the object. In this work, we
further exploit the unique GALOF properties to achieve robust
imaging-free object recognition. Object recognition is often
considered a task that is more perturbation tolerant than image
reconstruction since it only involves extracting and differentiat-
ing features from various objects, whereas image reconstruction
requires pixel-wise accuracy. Objects can still be recognized
even though their images are blurry. Thus, more robustness is
expected in an object recognition task, as is confirmed in this
work. We transport five classes of cell images through an 80-cm

straight GALOF with the distal fiber end touching the object and
train a DCNN to classify the output images. Then we test the
DCNN classifier with output images collected when the fiber is
strongly bent or when the fiber facet is moved a few millimeters
away from the object. High classification accuracy is preserved
in both cases, on average 86.8% with the maximum bending
angle of ∼74 ° and 91.2% for a detecting depth of 0.5 mm.

II. METHODS

A. Experiments

The scanning electron microscope (SEM) image of the
GALOF used in the experiments is shown in Fig. 1(e). It is
fabricated using the stack-and-draw method. The disordered
structure is about 278 μm in diameter, with an air-hole-filling
fraction of ∼28.5% [58]. The length L of the fiber is 80 cm.
Fig. 1(a)–(c)show the experimental setup and workflows under
different conditions when the fiber is straight, away from the
object, and bent, respectively. In all cases, we illuminate five
different classes of samples with an LED centered at 460 nm.
Fig. 1(d) I-V show bright-field microscopy images of these
samples, i.e., I: bird blood cell, II: frog blood cell, III: polymer
microsphere, IV: human red blood cell, V: cancerous human
stomach cell. The region of interest (ROI) in the sample is first
magnified by a 10x microscope objective MO1 (NA = 0.3)
and a tube lens L1 (f = 200 mm) before being transported
through the GALOF. The image of the fiber output facet is
projected onto a CCD camera (Manta G-145B, 30 fps) by a
20x microscope objective MO2 (NA = 0.75) and a tube lens
L2 (f = 200 mm). The collected 8-bit grayscale image is then
cropped to a size of 420 × 420 pixels. As an example, Fig. 1(f)
show the output images from the five types of sample images
when the GALOF is kept straight. Each output image is labeled
with the corresponding sample class as the ground truth. The
cell samples are scanned both horizontally and vertically with
5μm step to generate various images. In depth object recognition
(Fig. 1(b)), the fiber input end is placed away from the object
with a depth ranging from 0.5 mm to 4 mm with a step of 0.5 mm.
In the fiber-bent experiment (Fig. 1(c)), the amount of bending is
quantified by the offset distance d. The corresponding bending
angle θ can be calculated from 1− dθ/L = cos θ. Starting from
5 cm, the offset distance is increased in a 5 cm step all the way to
45 cm, which corresponds to the largest bending angle of ∼74 °.
We collect 45,000 images, 9,000 for each class, from the straight
fiber to establish the training dataset. The validation set consists
of 2,000 different images, 400 for each class, collected from the
straight fiber. Lastly, for each detecting depth and bending offset
distance, as well as the straight fiber, we collect separate 2,000
images, 400 for each class, to form the test sets.

B. Data Preprocessing

As can been seen in Fig. 1(f), similar patterns appear in all col-
lected output images. However, mechanical shifts and vibrations
of the setup during the experiments lead to tiny displacements
among these images. To ensure consistency, all images in the
training set, validation set, and test sets are registered according
to an arbitrarily chosen image in the training set using the
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Fig. 1. (a–c): Schematic diagram of the experimental setup under the condition of (a) the GALOF is kept straight; (b) the input facet of the GALOF is located
at various depths away from the back focal plane of Lens L1; (c) the GALOF is bent with different offset distances while the input facet is fixed. MO: microscope
objective; L: tube lens. (d): Sampled images from the five classes of samples used in the experiments: (I) bird blood cell, (II) frog blood cell, (III) polymer
microsphere, (IV) human red blood cell, and (V) cancerous human stomach cell. (e): SEM image of the GALOF. (f): Examples of output images from the straight
GALOF when class I to class V samples are transported, respectively. The scale bars in d(I) and f(I) are both 10 µm long.

Fig. 2. The architecture of the DCNN classifier. Gray block: the network input of size 224 × 224 × 1. Blue block: convolutional layers. For example, the first
blue block means it consists of 16 3 × 3 convolutional filters with rectified linear unit (ReLU) as the activation function. Yellow block: 2 × 2 max-pooling layer
with a stride of 2. Orange block: fully connected layer containing five output units with softmax activation function.

Matlab imregister function. Monomodal image registration and
translation geometric transformation are applied. The registered
images are then resized to 224 × 224 with the anti-aliasing.
Our results show that resizing the images does not degrade the
classification performance. Finally, standardization is applied to
all the images by subtracting the training set mean and dividing
by the training set standard deviation. The corresponding ground
truth labels of the images are converted to vectors using one-hot
encoding. Each vector contains five elements: ‘1’ for the true
class and ‘0’ for the others.

C. DCNN Implementation

To classify the preprocessed images, we build a VGG19-type
[66] DCNN. The DCNN has an architecture with alternating
convolutional and max-pooling layers (Fig. 2). The convolu-
tional layers consist of small 3 × 3 convolutional filters. The
number of filters in the layers increases as the network goes
deeper. The output of the convolutional downsampling encoder
is passed through a fully connected layer with softmax activation
function. The fully connected layer has five output units, which

can be explained as the predicted possibilities of an input image
belonging to certain classes. We train the DCNN with the 45,000
image-label pairs. The weights in the DCNN are initialized
using the Glorot normal initializer [67]. An adaptive moment
estimation (Adam) [68] optimizer with a learning rate of 1 ×
10−5 is used to minimize the categorical cross entropy loss
function. During the training, dropout [69] with a rate of 0.4 is
implemented after each convolutional layer and before the fully-
connected layer to prevent overfitting. The DCNN is trained for
200 epochs. In each epoch, the training pairs are shuffled and
split into batches of size 128. The DCNN is trained in parallel
with two GPUs (GeForce GTX 1080 Ti). After training, all the
weights in the DCNN are fixed. During test, given a new input
image that has never been “seen” before, the DCNN chooses the
class with the maximum possibility as its prediction.

Despite the robustness of GALOF, there is still some incon-
sistency among the training set and test sets, which is due to tiny
movements of the optical components during the experiments
and, in depth object recognition, diffraction of the images over
some distance. Therefore, great care must be taken to prevent
the DCNN classifier from overfitting the training set. First,
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Fig. 3. (a), (b): Confusion matrices of the predicted classes and true classes for various detecting depths and bending offset distances, respectively. (c), (d): The
classification accuracy as a function of detecting depth and bending offset distance, respectively. In both plots, the classification accuracy starts at 91.55%, which
is the classification accuracy for the test images collected with a straight fiber and the object located directly at the input fiber facet.

among all the DCNNs that achieve similar performances on
the training set, we choose the one with the minimal number
of weights. Specifically, we reduce the number of filters used
in the convolutional layers until the final classification accuracy
drops on the training set. Secondly, early stopping is used. That
is, we stop training the DCNN when convergence is observed.
These two methods are known to be effective in generalizing
DCNNs.

III. RESULTS AND DISCUSSIONS

We evaluate the DCNN classifier on the test sets. Fig. 3(a),
(b) show the confusion matrices of the predicted classes and true
classes for various detecting depths and bending offset distances.

The corresponding changes of accuracy, defined as the percent-
age of correctly recognized objects, are shown in Fig. 3(c),
(d). It can be seen that high classification accuracy (91.2%) is
preserved at a detecting depth of 0.5 mm. The classification
accuracy drops as the detecting depth gets larger, which might
be attributed to the loss of high-frequency information of the
object under incoherent illumination. In particular, an increasing
misclassification of class IV object as class III and class I objects
is found. Nevertheless, high classification accuracy (>85%) is
retained for class II and V objects even for large detecting depths
between the object and the input fiber facet.

On the other hand, no obvious degradation in classification
performance is observed when the bending offset distance is
increased. High classification accuracy with an average of 86.8%

Authorized licensed use limited to: University of Central Florida. Downloaded on February 09,2021 at 16:47:55 UTC from IEEE Xplore.  Restrictions apply. 



924 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 4, FEBRUARY 15, 2021

is maintained from the offset distance of 5 cm to the maximum
offset distance of 45 cm. The valley point at 25 cm is most likely
due to experimental errors, for instance, slight movements of
optical exponents. Most notable confusions are between class I,
class IV and V objects.

The consistent bending-invariant classification performance
of the GALOF-based FOIS demonstrates its suitability for many
practical endoscopy applications that require a high degree of
flexibility. The robustness of our system on object classification
can be directly related to the single-mode properties of the
densely packed transversely localized modes in the GALOF
[62], [64]. It has been shown that these localized modes can
potentially resist extremely small bending radii (∼1 mm) [70],
resulting in consistent fiber output images. In contrast, a slight
fiber movement (several millimeters in the fiber tip translation
for meter-long MCFs or MMFs [10], [14], [16], [44]) can change
the output images of MCF-based or MMF-based FOISs, and
consequently, affect their performances on image acquisition
tasks. As a result, the length of optical fibers used in current
in vivo imaging applications is limited to several centimeters
[20]. Efforts have been made to increase robustness in MMF-
based FOISs by including perturbations, such as mechanical
bending, temperature fluctuations and wavelength drifts, into
the training set when the DCNN is trained [23], [40], [51].
However, this does not generalize the systems to situations that
have not been encountered during the training. Small deviations
from the conditions included in the training set will still de-
grade the performance due to the very strong dependence of
the multimode interference in MMFs on external environment.
Contrarily, using our GALOF-based FOIS, the DCNN classifier
is trained exclusively with the data collected from the straight
fiber and performs astonishingly well on unseen data. Again,
this robustness in performance is a direct result of the unique
intrinsic GALOF properties. Besides, the GALOF-based system
is also expected to maintain high classification accuracy under
temperature variations. As shown in our previous work [60],
the quality of reconstructed images is not affected by thermal
changes over a range of 30 °C, whereas temperature shifts of
15 °C can greatly impair the performance of MMF-based sys-
tems [16]. Moreover, the ability of GALOF-based systems to
accurately recognize and classify objects that are located several
millimeters away from the fiber facet without the need for any
distal optics can eliminate contact damage as well as minimize
collateral penetration damage, since the size of the fiber probe
unit can be as small as the outer fiber diameter.

Although the effect of fiber bending is investigated in our
previous paper [60] and in this work, these two studies are re-
lated to different imaging problems: image reconstruction versus
image classification. The design of the deep learning algorithm
for image classification is different from the algorithm applied
previously to image reconstruction. Correspondingly, we also
reach some new conclusion: the tolerance for fiber bending in
image classification is dramatically higher than the tolerance
previously found for image reconstruction.

Apart from the great success already shown, further work
can be made in several ways to study as well as to enhance
the performance of the GALOF-based system. First, features

of the objects, such as brightness, cell sizes and clustering,
can greatly affect the classification performance. To explore the
limitations of the system regarding the classification of objects
with increasing similarity, further studies are needed. Secondly,
a direct comparison among GALOF-based, MMF-based, and
MCF-based systems on object recognition under perturbations
lacks in literature. The current discussion is based on their
performances on image acquisition. However, since image ac-
quisition is a more demanding task than object recognition, high
sensitivity of the transmission matrix to perturbations in image
acquisition should not rule out the possibility of MMF-based and
MCF-based systems’ applications in robust object recognition.
It is possible that despite large changes in the output images,
some underlying patterns are preserved, which can be utilized
to categorize different objects. This is beyond the scope of this
work and requires further studies. Thirdly, a smaller localization
length is preferable to achieve higher imaging resolution and
increased classification accuracy. It has been shown that an
air-filling fraction of ∼50%, an average air-hole diameter of
about twice the operating wavelength and a high refractive
index variation can result in small localization lengths [63],
[71]–[73]. The current GALOF has an air-filling fraction of
∼28.5% and an average air-hole diameter of ∼1.6 μm. Thus,
future work can be done to optimize the GALOF geometry and
perhaps its material composition. Furthermore, a reflection mode
operation is more favorable in most practical applications. That
is, objects should be recognized from the backscattered light
instead of the transmitted light as in the current setup. Therefore,
we will investigate next-generation GALOF-based systems that
include illuminating light guided either through parts of the
disordered structure or through the non-disordered GALOF
cladding. Lastly, new ideas to optimize DCNN architectures
and training procedures will help to improve the performance of
FOISs and open new application areas.

IV. CONCLUSION

We show that even though the original image of the object is
scrambled, abundant information is preserved during light trans-
mission through the GALOF. The demonstrated high accuracy
of the trained DCNN in classifying unseen complex objects even
when the fiber is strongly bent indicates the robustness of the in-
formation transport through GALOF. We see great potentials for
our GALOF-based FOIS in endoscopy applications that require
high-quality imaging [59], [60] and reliable object classification.
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