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ABSTRACT. Analog computing paradigms are promising solutions to the growing computational demands 

of machine learning applications. Despite being susceptible to errors, analog and mixed-signal platforms have 

the potential to achieve higher speed and power efficiency for artificial neural network (ANN) applications 

than digital computers. Driven by the development of digital fixed-point ANN accelerators, low-precision 

ANN models have proven to be successful in compressing the size of ANNs and conforming the models to 

the data format of digital accelerators. While the inputs and weights of these digital, fixed-point ANN models 

can have low bit widths, the intermediate results (e.g., activations) must be preserved in high precision. As a 

result, these digital fixed-point models and training algorithms cannot be migrated easily to analog 

accelerators, because the analog intermediate results typically suffer from reduced precision due to noises 

and device imperfections. Here, we report on a training method for mixed-signal ANNs that considers two 

types of analog impairments, namely, random noise and distortion (deterministic in nature). The results show 

that mixed-signal ANN trained with our method can achieve the same classification accuracy as the digital 

fixed-point model with noise levels up to 50% of the ideal quantization step size. We demonstrate our training 

method on a mixed-signal, convolutional neural network based on diffractive optics. 

INDEX TERMS   neural network, mixed-signal training, analog computation

I. INTRODUCTION 

Artificial neural networks (ANN) are growing larger and 

deeper [1]–[3] to tackle tasks of increasing complexity [4]–[6]. 

To accommodate the anticipated computational demands of 

future neural network structures, specialized computing 

hardware and data formats have been engineered. Various 

low-precision or even binary neural networks (BNNs), 

accompanied by specifically designed training algorithms [7]–

[11], have proven to be successful in accelerating inferences 

and reducing memory footprints [12]–[14] via low-bit-width 

and fixed-point data formats for weights and inputs. When 

designing and deploying these networks on digital computers 

[12], the intermediate results (e.g., activations) are typically 

cached in a format with higher precision than that of the 

weights and inputs to achieve the expected performance. 

Recently, due to their advantages in speed and power 

efficiency [15], analog computing paradigms have been 

considered as solutions to the growing demands in neural 

network computing, with implementations in both electronics 

[16], [17] and photonics [18], [19]. However, analog 

computing is susceptible to ambient noise and device 

imperfections [20]. Ex-situ training has been deployed on a 

simulated analog unit using a fixed-point data format [21], 

which is analogous to a low-bit-width neural network using a 

digital computer. However, a model trained by such a method 

is likely to have an inferior inference performance [22], as 

analog intermediate results cannot match the full precision of 

those obtained with a digital computer. To overcome this 

performance degradation, fine-tuning of the analog 

parameters on each computation node [17], [23] can be 

performed, although doing so requires an exhaustive effort. 

There is currently no efficient training method that is robust to 

the errors on analog ANNs. 

In this work, we incorporate two types of common 

impairments in analog processors – random noise and 

deterministic distortion – into the training process, extending 

low-precision neural network training to mixed-signal or 

analog computing platforms. The network trained with our 

method is robust against analog signal noise levels as high as 

50% of the quantization step, indicating that a mixed-signal 

neural network can operate at a reduced quantization level. We 
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demonstrate a trained model on a programmable optical 

convolutional neural network. 

II. THEORY 

A. Overview of low-precision ANN 

Low-precision neural networks perform matrix 

multiplications and convolutions between fixed-point inputs  

and weights, which are the required data format for many 

digital tensor processing units [24]. Fig. 1(a) illustrates the 

computational scheme for a low-precision neural network 

layer. A fixed-point processor computes the activations ℎ(𝑘)  
from the quantized inputs 𝑎(𝑘) and weights 𝑊(𝑘)with Eq. (1), 

 ℎ(𝑘) = 𝑊(𝑘) ⋅ 𝑎(𝑘−1), (1) 

where ⋅ denotes matrix multiplication or convolution. The 

activations  ℎ(𝑘) require higher bit widths than the inputs and 

weights due to the associated accumulation process [12]. A 

nonlinear function 𝑔(⋅) is then applied to the activations, along 

with a quantization operation, to match the input data format 

of the next layer, i.e.: 

 𝑎(𝑘) = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑔(ℎ(𝑘))). (2) 

Here, 𝑔(⋅) can be a neural network layer operation, such as 

batch normalization, down-sampling, activation, and so on, or 

a combination of multiple operations. The quantization of the 

tensor 𝒙 operates on each tensor element 𝑥𝑖 according to Eq. 

(3), 

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥𝑖) = 

{
[

𝑥𝑖
2𝐿−𝑚−1

] 2𝐿−𝑚−1, |𝑥𝑖| < (2𝑚 − 2𝑚+1−𝐿)

𝑠𝑖𝑔𝑛(𝑥𝑖)(2
𝑚 − 2𝑚+1−𝐿), |𝑥𝑖| ≥ (2𝑚 − 2𝑚+1−𝐿)

, (3) 

where 𝐿 is the total bit width, 𝑚 is the shared exponent among 

all tensor elements, and [⋅] denotes rounding to the nearest 

integer. Several nonlinearities, such as clipping and scaling 

functions, have been purposefully designed for easier 

integration with the quantization operation [25], [26]. 

B.  Mixed-signal ANN layer with an analog accelerator 

A growing number of neural network implementations have 

replaced traditional digital computers with their analog 

counterparts for speed and power efficiency [17]–[19]. Fig. 1 

(b) illustrates the computational scheme for a mixed-signal 

neural network layer with an analog acceleration unit. A set of 

digital inputs 𝑎(𝑘−1) and weights 𝑊(𝑘) are sent to their 

corresponding digital-to-analog convertors (DACs) and/or 

modulators, generating the analog signal representing the 

inputs 𝑎̃(𝑘−1) and 𝑊̃(𝑘), respectively. The activations 𝑎̃(𝑘−1) ⋅
𝑊̃(𝑘) from an analog acceleration unit are collected by a 

detector, producing signals ℎ̃(𝑘). The detected signals are then 

sent to a digital processing unit, which maps the activations to 

the inputs of the next layer via the activation function 𝑎(𝑘) =
𝑔(ℎ̃(𝑘)). The activation function can include ANN 

nonlinearities, such as ReLU and sigmoid, as well as 

quantization operations to match the input data format of the 

next layer. Computational errors of an analog acceleration unit 

include deterministic errors and random noises. These two 

types of impairments can be present in any analog signal, i.e., 

𝑎̃(𝑘−1), 𝑊̃(𝑘), and ℎ̃(𝑘). 
Deterministic errors can originate from the response 

function 𝑓(⋅) of the modulators, the DACs, or the detectors. 

For a continuous output, the signal 𝑥̃, which represents the 

distortion of the ideal signal 𝑥 is given by Eq. (4), 

 𝑥̃ = 𝑓(𝑥). (4) 

Examples of continuous deterministic errors include the 

gamma curves of the detector, and the sinusoidal relation 

between the intensity and phase of an interferometry-based 

intensity modulator [27]. A discrete deterministic error maps 

tensor 𝑥 to a set of values, i.e.: 

 𝑥̃ = 𝑓(𝑥) = argmin
𝑥′∈𝐗′

|𝑥′ − 𝑥|1, (5) 

where 𝐗′ is the set of discrete values available to the 

accelerator hardware, and |⋅|1 represents the L1 norm. 

Examples of discrete deterministic errors include the effects of 

DACs and analog-to-digital convertors (ADCs) that can only 

generate or digitize a fixed number of voltage levels. The 

quantization in digital low-precision or binary networks can 

be considered as a special case of Eq. (5), where the set 𝐗′ is 
{±𝑖 ⋅ 2𝑚+1−𝐿; 𝑖 = 0,1, … , 2𝐿−1 − 1} for a fixed-point 

quantization with bit-width 𝐿 and exponent 𝑚. 

Figure 1. Computational schemes for (a) a digital fixed-point neural network layer and (b) a neural network layer with an analog acceleration unit. 

Variables with tildes, 𝒂෥(𝒌−𝟏), 𝑾෪(𝒌), and 𝒉̃(𝒌) are analog signals. 
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Noise is modeled as a random variable on top of an ideal 

signal 𝑥. The signal corrupted by noise 𝜀 can be expressed by 

Eq. (6), 

 𝑥̃ = 𝑥 + 𝜀, (6) 

where 𝜀 is assumed to follow an unbiased distribution. If the 

random noise in an experimental platform introduces a bias to 

the signal, this bias can be merged into the deterministic error. 

Notice that random noise and deterministic errors can be 

combined to model the errors associated with any analog 

signal in a practical analog acceleration unit. 

C.  Training of mixed-signal neural networks 

Our proposed training method for mixed-signal ANN 

considers the two types of impairments described above in 

both the forward pass and the gradient backpropagation during 

the training process. The gradient flow through Eq. (6) can be 

computed using the noisy instance of the tensor, 𝑥̃, in the 

forward pass [28], as in Eq. (7), 

 
𝜕𝑙

𝜕𝑥
←

𝜕𝑙

𝜕𝑥̃
. (7) 

The gradient flow through the deterministic error process 

𝑥̃ = 𝑓(𝑥)  (Eq.(4)) involves the derivate of 𝑓(⋅), i.e.: 

 
𝜕𝑙

𝜕𝑥
←

𝜕𝑙

𝜕𝑥̃
𝑓′(𝑥). (8) 

The derivate of a continuous nonlinear response 𝑓(⋅) is readily 

available. When the output of 𝑓(⋅) is discrete, the gradient is 

0 almost everywhere since 𝑓(⋅) is piecewise constant. To 

preserve the gradient flow, we use a gradient clipping method 

similar to that for BNN [8] in Eq. (9), 

 
𝜕𝑙

𝜕𝑥
←

𝜕𝑙

𝜕𝑥̃
𝟏𝜃1<𝑥<𝜃2 , (9) 

where 𝜕𝑙 𝜕𝑥̃⁄  is the gradient with respect to the distorted tensor 

𝑥̃, and 𝟏𝜃1<𝑥<𝜃2 denotes a binary tensor with the same shape 

as the ideal tensor 𝑥, which has value 1 for elements of 𝑥 

within the range (𝜃1, 𝜃2), and 0 for elements of 𝑥 outside the 

range (𝜃1, 𝜃2). Here, 𝜃1 and 𝜃2 are typically chosen to 

represent the output range of 𝑓(⋅). For the special case of 

binarization, 𝜃1 and 𝜃2 are -1 and 1 (or 0 and 1 if 𝐗′ = {0,1} 

in Eq.(5)), respectively. 

III.  Mixed-signal convolution neural network simulation 

A.  Network structure 

We have constructed a mixed-signal convolutional neural 

network (MCNN) that classifies digits with binary inputs and 

kernels in all layers, shown in Fig. 2. The MCNN consists of 

convolutional layers only to facilitate its deployment on a 

mixed-signal diffractive-optics-based system (Sec. IV). The 

input digit from the MNIST dataset (28×28) is gradually 

down-sampled to a 3×3 matrix, in which each element 

representing the probability of a digit being 1 of the 9 labels. 

The first layer convolves the 28×28 input image with 64 3×3 

kernels and outputs a 64-channel activation tensor with size 

28×28×64. The 64 channels are then individually batch-

normalized and max-pooled with 2×2 down-sampling to a 

14×14×64 tensor as the input of layer 2. Layers 2 and 3 use 

the same convolution and post-processing operations, with the 

exception that the numbers of kernels used are 128 and 256, 

respectively. The input of layer 4 is a 3×3×256 tensor that has 

been down-sampled from the layer 3 activations by extracting 

the 2nd, 5th, and 7th elements along the horizontal and vertical 

spatial dimensions. Layer 4 computes a weighted sum of all 

256 channels, applies the softmax activation function, and 

outputs a final 3×3 matrix. Because this MCNN can produce 

only 9 possible labels, we excluded the digit ‘6.’ 

The impairments that we consider in this MCNN simulation 

are the discrete deterministic errors of the inputs and weights, 

as well the random noise of the detector. In layer 𝑘, the analog 

inputs  𝑎̃(𝑘)  and weights 𝑊̃(𝑘) produced by the convertors 

from the ideal, digital values 𝑎(𝑘) and 𝑊(𝑘) are: 

 
𝑎̃(𝑘) = 𝑓𝑎(𝑎

(𝑘)) = argmin
𝑎′∈𝐀′

|𝑎′ − 𝑎(𝑘)|
1
, 

𝑊̃(𝑘) = 𝑓𝑊(𝑊
(𝑘)) = argmin

𝑊′∈𝐖′
|𝑊′ −𝑊(𝑘)|

1
, 

(10) 

respectively. Here 𝐀′ and 𝐖′ are the sets of discrete input and 

weight tensors, respectively. For an input with M×N pixels 

and 𝑄 input channels, the activations in a CNN convolution 

with 3×3 kernels and 𝐶 output channels are computed by an 

analog accelerator as: 

ℎ̃𝑖,𝑗
(𝑘,𝑞,𝑐)

= ∑ ∑ 𝑎̃𝑚,𝑛
(𝑘−1,𝑞)

𝑊̃𝑚−𝑖+2,𝑛−𝑗+2
(𝑘,𝑞,𝑐)

𝑗+1

𝑛=𝑗−1

𝑖+1

𝑚=𝑖−1

+ 𝜀, (11) 

where 𝑖, 𝑗 denote the pixel indexes of the convolutional; 𝑚, 𝑛  

are the pixel indexes of the input image; 𝑞 is the index of the 

Figure 2. Structure of the convolutional neural network used in the simulation. 
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input channels; 𝑐 is the index of the output channels; and 𝜀 

denotes the random additive noise, which is modeled by an 

unbiased Gaussian distribution, i.e., 𝜀~𝒩(0, 𝜎2). Here, we 

assume that the inputs are zero-padded. For simplicity, we 

omit the pixel and channel indexes in the tensor when they are 

not ambiguous. The activations ℎ̃(𝑘,𝑞,𝑐) then undergoes digital 

post-processing, which consists of batch normalization and 

2×2 max pooling, as follows: 

𝑎(𝑘) = 𝑔(ℎ̃(𝑘,𝑞,𝑐)) 

= 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑆(ℎ̃(𝑘,𝑞,𝑐)))). 
(12) 

Here, 𝑆 represents the summation over all input channels 𝑞 of 

ℎ̃(𝑘,𝑞,𝑐) for each applied kernel 𝑐. Let 𝐻̃(𝑘,𝑐) denote the 

aggregate results along the dimension, 𝑞, 

 𝐻(𝑘,𝑐) = 𝑆(ℎ̃(𝑘)) = ∑ ℎ̃(𝑘,𝑞,𝑐)

𝑄𝑘

𝑞=1

, (13) 

the operation 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(⋅) is performed channel-wise on 

𝐻(𝑘,𝑐) in Eq. (14), 

𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐻(𝑘,𝑐) ) = 𝛾(𝑘,𝑐) (
𝐻(𝑘,𝑐)  − 𝜇(𝑘,𝑐)

𝜎(𝑘,𝑐)
), (14) 

where 𝜇(𝑘,𝑐), 𝜎(𝑘,𝑐) are the mean and standard deviation of all 

the pixels in 𝐻̃(𝑘,𝑐) in channel 𝑐, and 𝛾(𝑘,𝑐) is a trainable 

parameter. After 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚, the features are binarized to 

obtain the input of the next layer. 

B. Training of MCNN 

The random noises and deterministic errors are both quantified 

by the root mean square error (RMSE), which measures the 

average deviation per dimension of the tensor, as in Eq. (15), 

 𝑅𝑀𝑆𝐸 = √
|𝑥̃ − 𝑥|2

2

dim (𝑥)
. (15) 

Here, 𝑥̃ is the tensor 𝑥 corrupted by errors; dim (𝑥) is the total 

number of elements in tensor 𝑥, and | ⋅ |2 denotes the L2-

norm. If 𝑥̃ is corrupted by unbiased Gaussian noise 

(𝜀~𝒩(0, 𝜎2)), the RMSE reduces to the standard deviation, 

𝜎. 

The MCNN was trained by considering the binary inputs 

𝐀′, the kernel sets 𝐖′ that can be displayed in the experiment, 

and a noise level 𝜎=0.5 for 𝜀. These parameters were selected 

to match the experimental MCNN setup. For comparison, we 

also trained a reference MCNN model with the same structure 

using the BNN training method in Ref. [8], but without 

considering the random noise term 𝜀. The binarization on the 

kernels in BNN training was replaced with rounding to the 

nearest experimental kernels, as in Eq. (10).  After training, we 

tested the accuracy of the trained MCNN using the MNIST 

test digits under various levels of simulated Gaussian noise on 

the activations. For each Gaussian noise level 𝜎, we ran seven 

noisy inference instances by randomly sampling 𝜀 from  

𝒩(0, 𝜎2)  to obtain the mean and standard deviation of the 

inference accuracy. 

C. Inference simulation of MCNN 

Fig. 3 plots the inference accuracy at various noise levels, as 

quantified by the RMSE, for the MCNNs with our training 

method and that of BNN. The MCNN trained with our method 

maintained the inference accuracy up to 𝜎=0.5. The accuracy 

was 75.0±3.2% for our method and 47.3±3.1% for BNN 

training method. These results show that adding random noise 

during training has improved the performance in a mixed-

signal scenario, an effect similar to the regularization of the 

neural network parameters [29]. Note that we trained the 

MCNN off-line by modeling the analog computations using 

random noise and the deterministic errors in the forward and 

backpropagation processes. An in-situ [16] forward pass 

through the physical MCNN setup can leverage the full 

potential of the speed and efficiency provided by the analog 

accelerator unit. 

Fig. 4 exemplifies the layer-by-layer activations of two 

inference instances in Fig. 3 at 𝜎=0.5 for the input digit ‘5.’ 

The probabilities of the input digit being classified as ‘5’ were 

99.2% and 83.1%, respectively, for the MCNN trained with 

our method and that of BNN. Although the MCNN trained 

with the BNN method classifies this digit correctly, the 

probability of correct identification is reduced and confusions 

with the digits ‘0’, ‘3’, and ‘8’ can be observed in its output. 

Figure 3. Classification accuracy as a function of the noise RMSE added 
in the inference simulation. 
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3072193, IEEE Access

 

VOLUME XX, 2017 9 

Our treatment of the analog computation noise is similar to  

stochastic quantization [12] to a lower precision level on a 

digital computer. Table 1 shows the inference accuracies of 

the two MCNNs on a simulated digital low-bit-width 

accelerator. We kept the same range of the activations, while 

stochastically quantizing them to 3, 2, and 1 bit(s), 

corresponding to 8, 4, and 2 quantization levels, respectively. 

For a binary input convolving with 3×3 binary kernels, the 

ideal activations range from 0 to 9. The fluctuation due to 

unbiased Gaussian noise with 𝜎=0.5 can range from -1.0 to 

1.0, considering the 95% confidence interval. The MCNN 

trained with our method maintained its accuracy at 2 bits (4 

levels), indicating that the mixed-signal neural network can 

operate at a reduced quantization level of the intermediate 

results. 
TABLE 1: INFERENCE ACCURACY OF THE MCNN WITH REDUCED 

ACTIVATION QUANTIZATION BIT WIDTHS 

Quantization 

bit width 

MCNN trained 

with our method 

MCNN trained with 

backpropagation in BNN 

3 75.4±2.5% 72.4±3.1% 

2 70.4±2.5% 62.1±3.5% 

1 37.0±2.1% 26.3±3.9% 

 

Quantization on digital, fixed-point neural networks is often 

performed stochastically to avoid introducing the quantization 

bias, which is undesirable in low-precision neural networks. 

Likewise, if there are some distortions uncorrected for in the 

training of the MCNN, the residue deterministic error will 

introduce a cumulative bias, increasing through the layers. Fig. 

5 plots the inference accuracy versus the RMSE of the residue 

error for the two MCNNs trained with our method and the 

BNN method. The drop in the accuracy as the residue error 

increases is consistent with the results on digital platforms [8], 

[12], [30], indicating that our training is still sensitive to the 

bias from uncorrected deterministic errors. 

IV. MCNN experiment 

Many of the existing diffractive optics-based neural networks 

employ pre-recorded diffractive optical elements to represent 

a trained set of weights [31], [32]; hence, they cannot be re-

programmed easily. Here, we constructed a fully 

programmable optical mixed-signal convolutional network 

layer based on a 4f system for the deployment of the trained 

MCNN model. The layer input uses a digital mirror device 

(DMD, ViALUX, V4100 DLP7000, pixel size 13.7 𝜇𝑚). The 

analog convolution is performed by a phase-only spatial light 

modulator (SLM, Meadowlark Optics, P1920-400-800-

HDMI, pixel size 9.2 𝜇𝑚) on the Fourier plane, as shown in 

Fig. 6(a). The DMD is illuminated by a collimated beam from 

a 12 𝑚𝑊 laser source (Coherent, OBIS LX 𝜆 = 488𝑛𝑚). 

Each element of each input channel, 𝑎̃𝑚,𝑛
(𝑘−1,𝑞)

, is represented 

by one DMD pixel, in either the on or off state. The light field 

then passes through a 200𝑚𝑚 tube lens (Thorlabs TTL-200) 

𝐿1 that creates a Fourier transform (FT) of the input onto the 

SLM. The FT of the kernel 𝑊̃(𝑘,𝑞,𝑐), approximated as phase 

only, is loaded onto the SLM. Upon reflection off the SLM, 

the FT of the input is multiplied by the FT of the kernel, 

thereby implementing the analog convolution in the frequency 

domain. A beam splitter directs the reflected beam from the 

SLM through lens 𝐿2 (identical to 𝐿1), performing the 

inversion FT to yield the desired convolution between the 

input and the kernel, which is captured by a camera (JAI Ltd., 

GO-5000M-USB camera, 5.0 𝜇𝑚 pitch). To implement the 

CNN operation in Eq.(11), the kernels must be flipped 

horizontally and vertically before use. 

The input patterns 𝑎̃(𝑘) that can be displayed are strictly 

binary due to the use of the DMD as the input device; hence, 

𝐀′ ∈ {0,1}. The use of phase-only masks [33] to approximate 

a complex Fourier filter gives rise to the distortions in the 

kernels. For 3×3 binary kernels, there are a total of 511 non-

trivial kernels. We pre-calculated the 511 phase masks needed 

to display all the non-trivial kernels. Due to the experimental 

artifacts and approximations, the actual 511 kernels, 𝐖′, 
displayed in the experiment are not strictly binary. The 

distorted kernels were calibrated by imaging a single pixel 

displayed on the DMD through the optical system for each 

phase mask. 

Due to aberrations and the limited numerical aperture of the 

4f system, the full-width-at-half-maximum (FWHM) of its 

point spread function (PSF) is about four camera pixels. To 

mitigate crosstalk due to the PSF, we introduced a three-pixel 

separation between adjacent samples of the input on the DMD 

and an eight-pixel separation for the kernels on the SLM, 

accounting for the differences between the pixel sizes of the 

DMD and the camera. To take advantage of the spatial 

bandwidth of the 4f system, we tiled multiple input channels 

in 2×2 and 4×4 formations for layer 2 and layer 3, 

respectively. Fig. 6 (b) shows the tiled input on the DMD. 

After the camera acquired the raw image, we performed an 

8×8 down-sampling and separated the tiled channels to 

recover ℎ̃ in its native spatial resolution. 

Fig. 6(c) shows the layer-by-layer activations of the MCNN 

model trained with our method while classifying the input 

digit ‘5.’ With the calibrated kernel set 𝐖′, the ideal 

convolution between the DMD input and the actual kernels in 

each layer can be computed. We compared the ideal 

convolution results with the activations obtained from the raw 
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camera images. The distributions of the errors for the 

activation tensor ℎ for all the MCNN layers in the experiment 

are plotted in Fig. 6(d). These distributions all resemble the 

Gaussian shape with standard deviations 𝜎=0.37, 0.38, and 

0.58 for layers 1 through 3, respectively. The error in each 

layer is consistent with our choice of the random noise with 

𝜎=0.5 in the MCNN simulation. Despite the presence of this 

activation error, the MCNN trained with our method achieved 

the correct identification. 

V. Summary 

We have demonstrated a training method that incorporates 

analog computational errors in neural network training for 

deployment on mixed-signal computational platforms. 

Compared with a neural network trained using conventional 

backpropagation, mixed-signal neural networks trained with 

our method are robust against a noise RMSE of 0.5 

quantization level in the analog computing process, and thus 

can tolerate the reduced precision of the activations. 

Maintaining the inference performance at approximately half 

the precision levels of the device specification allows us to 

deploy a trained convolutional neural network on a mixed-

signal, diffractive-optics-based convolution system that 

contains computation errors and kernel distortions. 

Another finding of the mixed-signal neural network is its 

sensitivity to uncorrected deterministic errors, which 

introduce cumulative bias throughout the layers. These errors 

can be reduced with integrated optical components for 

improved stability. In addition, incorporating weights 

regularization in the design and training of mixed-signal 

neural networks can reduce the reliance on kernels that tend to 

exhibit large errors in experiment, thus improving the 

tolerance to analog computing errors. 
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