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Metasurfaces, planar electromagnetic artificial media com-
prising arrays of subwavelength-scale antennas or ‘meta 
atoms’, have been widely regarded as a promising platform 

enabling optical elements with substantial potential size, weight, 
power and cost benefits over their conventional bulk counterparts. 
Active metasurfaces, whose optical responses can be dynamically 
modulated, further enable exciting opportunities for agile manip-
ulation of light propagation and interaction with matter1–3. So far, 
active tuning of metasurfaces has leveraged mechanical deforma-
tion4,5, electrochemical or chemical reactions6, electro-optic7–10 
and thermo-optic effects11, as well as phase-change media12–25. In 
particular, phase-change materials (PCMs) based on chalcogenide 
alloys are uniquely poised for realizing phase-gradient active meta-
surfaces, since the giant refractive index contrast imparted by their 
structural transition facilitates broad optical phase tuning26. For 
instance, we have recently demonstrated that full 2π phase coverage 
can be achieved in PCM-based active metasurfaces, enabling binary 
switching between arbitrary phase profiles27,28.

So far, active modulation of PCM-based metasurfaces has relied 
on thermal annealing19,20,27,29–32 or optical writing22–25,33,34. These 
modulation schemes, however, necessitate bulky heating furnaces 
or ultrafast lasers. Electrical switching of PCM, on the other hand, 
is naturally conducive to compact integration with flat optics and 
foresees miniaturized, chip-scale reconfigurable optical systems. 
While electrical addressing of PCM is already a mature technology 
in phase-change random-access memories, the much larger device 
area essential for optical devices—as compared to today’s deeply 

scaled phase-change random-access memories—places more strin-
gent requirements on switching homogeneity across large areas. 
This technical challenge is epitomized by the phenomenon of fila-
mentation: a thin wire of PCM that initially crystallizes becomes 
an electrical current conduit with substantially higher conductiv-
ity than the surrounding amorphous matrix, preventing uniform 
crystallization of the entire PCM volume. Filamentation precludes 
switching by passing current directly through PCM26. To address 
this challenge, we report in this work a large-area, reconfigurable 
metasurface based on electrothermal switching of PCM. Our work 
advances the state-of-the-art in three important aspects. First, our 
devices are made of a recently developed PCM, Ge2Sb2Se4Te or 
GSST35–37. Compared to the prevailing GeSbTe alloys, GSST offers 
two unique advantages specific to active metasurfaces: its broad-
band transparency across different structural states mitigates opti-
cal losses, and its much larger switching volume allows for optically 
thick PCM structures to boost light-PCM interactions while main-
taining dynamic and fully reversible switching capacity23,37. The lat-
ter feature underpins the giant optical contrast and tuning range 
of our devices. Second, we have demonstrated voltage-controlled 
multi-state tuning of the PCM metasurface covering a record 
half-octave spectral regime. While multi-state operation has been 
reported in PCM-integrated waveguide devices38–41, we show that 
progressive phase transition in our devices proceeds in a dis-
tinctively different, spatially uniform manner facilitating precise 
meta-atom tuning. Last but not least, we have realized large-area 
(up to 0.4 × 0.4 mm2), uniform electrothermal switching of PCMs 
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using geometrically optimized heaters, which heralds topologically 
optimized heater designs towards ultimate scaling of active meta-
surface aperture size.

Electrothermal switching device platform
Each electrically reconfigurable metasurface device comprises meta 
atoms resting on a metal heater, which also acts as a reflector (Fig. 
1a). The meta atoms are patterned in a GSST film and the fabri-
cation process details are described in Methods. The metasurface 
device arrays were then wire bonded to a printed circuit board 
(PCB) carrier with pluggable ribbon cable connections to facilitate 
computerized control of the devices (Fig. 1b). In each device, the 
structural state of the meta atoms is collectively controlled by elec-
trical pulsing, where a long, low-voltage (500 ms duration, <12 V) 
pulse triggers crystallization via Joule heating, whereas a short, 
high-voltage (5 μs, 20–23 V) pulse re-amorphizes the meta atoms 
via a melt-quench process (Fig. 1c).

PCM metasurfaces with square apertures of varying sizes (from 
0.1 × 0.1 to 0.4 × 0.4 mm2) were fabricated. Compared to previously 
reported electrothermal PCM switching devices37,42,43, the heater 
unit area reported here is more than two orders of magnitude larger. 
Mitigation of thermal non-uniformity becomes a critical chal-
lenge with enlarged metasurface aperture size, since large tem-
perature excursions (1) preclude precise multi-state tuning due to 
non-uniform switching during crystallization and (2) compromise 
device reliability owing to emergence of ‘hot spots’ during amor-
phization. To illustrate this challenge, Fig. 2a plots the simulated 
steady-state temperature profile during a crystallization pulse for a 
classical square-shaped heater within the 0.15-mm device aperture. 
It is apparent that temperature near the perimeter of the aperture is 
considerably lower due to more efficient heat dissipation. To coun-
ter the issue, we introduced curved heater boundaries (Fig. 1a) to 
both lower current density in the heater centre and move the heater 
boundary further away from the metasurface aperture. Figure 2b 
presents the corresponding temperature profile for a heater with 
optimized boundary curvature (Supplementary Information) show-
ing substantially improved in-plane uniformity. On the basis of the 
optimized heater design, Fig. 2c maps the average heater tempera-
ture for different pulse duration and voltage combinations that suc-
cessfully amorphized/crystallized the devices in experiments, and 
the results (550–630 K for crystallization indicated by the light blue 
line, 1,020 K for amorphization indicated by the dark blue point) are 
in excellent agreement with our previous data37,44.

We further investigated thermal uniformity inside meta atoms 
along the out-of-plane (through-thickness) direction. Figure 2d 
plots the temperature distributions along the out-of-plane direction 
for different time durations after onset of the electrical pulse, all 
normalized to the respective peak temperature at the heater surface. 
Within 5 μs (duration of the amorphization pulse), the temperature 
distribution has approached the steady state with an average tem-
perature deviation of only 4 K throughout the entire meta atom. The 
negligible temperature gradient in the meta atoms, coupled with the 
reduced temperature sensitivity of crystallization kinetics in PCMs 
at temperatures well above glass transition45, indicates that the tran-
sition proceeds progressively and uniformly throughout the meta 
atoms during crystallization, leading to a mixture of interspersed 
crystalline and amorphous phases. This contrasts with intermediate 
states of PCM elements integrated with waveguide devices, where 
the crystalline and amorphous phases are spatially localized39. The 
meta-atom tuning mechanism is viable since GSST is classified as 
a nucleation-dominated PCM37, such that GSST nanocrystals can 
precipitate and grow from an amorphous matrix throughout the 
meta-atom volume. The ability to precisely access different inter-
mediate states with voltage control is critical to enabling multi-state 
operation of the PCM active metasurface, a key attribute of our 
strategy.

Active metasurface characterization
Figure 3a depicts an archetypal metasurface consisting of a periodic 
array of identical GSST meta atoms. The meta-atom dimensions 
are chosen such that the meta atoms support two distinctive hybrid 
plasmonic-photonic modes (Fig. 3b inset (1) and (3), details can 
be found in Supplementary Information) in their amorphous and 
crystalline states in the target wavelength range. Evident from the 
simulated spectra in Fig. 3b, switching between the two states cre-
ates a large optical contrast at 1.49 μm wavelength, where efficient 
coupling to mode 1 in the crystalline state occurs while coupling to 
mode 3 in the amorphous state is suppressed due to optical phase 
mismatch.

The design principle is validated by our experimental data in Fig. 
3c showing the reflectance spectra of the device after 40 crystalliza-
tion–amorphization switching cycles. Complete reversible switching 
of the GSST material is also verified using micro-Raman measure-
ments (Supplementary Information). The device boasts a large 
absolute optical reflectance (ΔR) contrast of 40% at 1.49 μm wave-
length and a relative reflectance modulation (ΔR/R) up to 400% at a 
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1.43 μm wavelength. The optical contrast is substantially larger than 
those achieved in active metasurfaces relying on thermo-optic or 
electro-optic effects10,11 and benefits from the colossal index modi-
fication of PCMs on phase transition. The device also exhibits con-
sistent switching characteristics with a small average cycle-to-cycle 
reflectance variation of 3.5% (Fig. 3c) at crystalline state and <1% at 
amorphous state. Further details about the metasurface design and 
characterization are elaborated on in Supplementary Information.

Quasi-continuous multi-state tuning
Besides the giant index modulation, PCMs are also known for their 
capacity for multi-state or multi-bit operation38–41. As discussed in 
the previous section, the excellent thermal uniformity inside the 
meta atoms indicates that the intermediate states contain inter-
spersed crystalline and amorphous phases of varying fractions. 
Precise control of the phase composition of the intermediate states 
can be realized through either varying the crystallization electrical 
pulse duration or the pulse voltage, thereby regulating the crystal-
lization kinetics. Here we choose the latter mechanism to demon-
strate quasi-continuous tuning of the meta-atom resonance.

The device, which comprises meta atoms arranged in a square 
lattice (Fig. 4b inset), is designed to attain ultra-broadband reso-
nance tuning. Unlike devices reported by others where the PCM 
layer is limited to an ultrathin (<100 nm) form factor to facilitate 
rapid quenching during re-amorphization and hence switching 
reversibility22–25, the GSST layer in our device has a total thickness of 
250 nm. Our previous work has proved that GSST exhibits improved 
amorphous phase stability compared to the classical GeSbTe alloys37, 
which enables a much larger PCM thickness while maintaining fully 
reversible switching capability. The increased PCM volume affords 
substantially enhanced light confinement and interaction with the 
PCM layer, which underlies an exceptionally large resonance tuning 
range. Figure 4a displays reflectance spectra of the device measured 
after multiple crystallization cycles, where pulses with increasing 
voltage at 0.1 V increment were used to access different intermedi-
ate states of the PCM. Ultra-broadband tuning of the optical reso-
nance over half an octave, from 1,190 to 1,680 nm, was measured 
(Fig. 4b). This is a very large spectral span that the non-mechanical 
active meta-optical device covers.

The result also allows quantitative evaluation of the GSST 
meta-atom crystallization kinetics. This is accomplished by extract-
ing the crystalline phase fraction for each intermediate state via an 
effective medium theory based on the Lorentz–Lorenz equation (Fig. 
4c left axis, details can be found in Supplementary Information), 
and correlating the pulse voltage with corresponding meta-atom 
temperature using finite-element modelling (Fig. 4c right axis). Our 

device platform therefore not only validates multi-state switching 
capabilities of the PCM metasurfaces but also provides a versatile 
platform for quantitatively assessing the crystallization kinetics of 
PCMs (Supplementary Information).

Beam steering using active phase-gradient Huygens’ 
surface
Here we further show that, besides amplitude or resonance tun-
ing, the PCM-based active metasurface platform also enables 
facile control of optical phase and wave front by demonstrating a 
polarization-insensitive reconfigurable metasurface beam deflec-
tor. The device functions as a Huygens’ surface46 consisting of 
only two cylindrical elements (as shown in Fig. 5g). Details of the 
aggressively discretized Huygens’ metasurface design are furnished 
in Supplementary Information. Figure 5c and d presents simu-
lated field patterns of the devices in its amorphous and crystalline 
states, respectively. The device is designed such that for both trans-
verse electric and transverse magnetic polarized light at 1,550 nm 
wavelength normally incident on the device, the reflected beam 
couples to the +1 mode in the amorphous state with a deflection 
angle of 32° and to the 0th order mode in the crystalline state. The 
polarization-independent response was experimentally validated, 
confirming that the transverse electric and transverse magnetic 
deflected beams exhibit identical intensities within our measure-
ment uncertainty. In the crystalline (amorphous) state, the mea-
sured deflection efficiency into the 0th (+1) order is 24.8% (8.3%). 
The switching contrast ratio, defined as 

(

I0cI1a
)

/
(

I1cI0a
)

 where I rep-
resents the light intensity, the superscripts show the diffraction 
order and the subscripts denote the device state, was measured to 
be 8.6 dB, which is lower than the simulated value of 11.4 dB albeit 
on par with state-of-the-art active metasurface deflectors8. We 
anticipate that improved fabrication accuracy as well as adoption 
of advanced meta-atom designs27,28,47 will further boost the device 
performance.

Conclusion
In this work, we have demonstrated an on-chip electrical switch-
ing platform enabling both binary switching and quasi-continuous 
tuning of PCM-based active metasurfaces. Compared to ther-
mal or optical actuation schemes, electrical addressing of active 
metasurfaces represents an important step forward towards real-
izing fully integrated, chip-scale reconfigurable optics. In addi-
tion, we show that using a recently developed PCM, namely GSST, 
imparts important advantages including mitigation of optical losses 
and increased PCM reversible switching volume. Leveraging the 
enhanced light-PCM interactions, we achieved unprecedented 
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ultra-broadband tuning of meta-atom resonances across half an 
octave. This exceptionally large modulation capability is critical to 
realizing active metasurfaces for on-demand phase and amplitude 
control. As an example of phase and wave front control, we further 
realized active switching of a Huygens’ surface beam deflector using 
the platform. Moreover, the electrical switching design and the 
geometric optimization approach for large-aperture metasurfaces 
demonstrated herein are also transferrable to other emerging heater 
materials such as silicon48,49 and graphene44 to enable a diverse array 
of reconfigurable metasurface devices.

We note that a relevant paper has been peer-reviewed at the same 
time as this work50.
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Methods
Material synthesis. GSST thin films were prepared using thermal evaporation 
from a single Ge2Sb2Se4Te source. Bulk starting material was synthesized using a 
standard melt-quench technique from high-purity (99.999%) raw elements51. The 
film deposition was performed using a custom-designed system (PVD Products, 
Inc.) following previously established protocols37,52,53. Stoichiometries of the films 
were confirmed using wavelength-dispersive spectroscopy on a JEOL JXA-8200 
SuperProbe Electron Probe Microanalyzer to be within 2% (atomic fraction) 
deviation from target compositions.

Device fabrication and packaging. All the devices were fabricated on silicon 
wafers with 3 μm thermal oxide from Silicon Quest International. The 50 nm 
Ti/20 nm Pt heaters and the 10 nm Ti/100 nm Au contact pads were deposited 
via electron beam evaporation and patterned using lift-off. Then 10 nm of Al2O3 
was coated using atomic layer deposition to prevent direct contact between GSST 
and the heater. The GSST metasurfaces were then deposited and patterned using 
poly(methyl methacrylate) as the electron beam lift-off resist and subsequently 
capped with 15 nm Al2O3 deposited using atomic layer deposition. All the 
patterning steps were carried out using electron beam lithography on an Elionix 
ELS-F125 system. The devices were subsequently wire bonded (using 0.8 mil 99% 
Al–1% Si wires) and mounted onto a custom-designed PCB, which allowed for 
reproducible electrical contact (as compared to using contact probes).

Optical simulation. For the multi-state metasurfaces, finite-difference 
time-domain simulations were performed using the commercial software package 
Lumerical FDTD. The periodic boundary condition was set along both x and y 
in-plane directions and perfectly matched layer boundary condition was used 
along the out-of-plane z direction. Reflectance spectra were recorded with an xy 
plane monitor on top of the device. For the beam deflector devices, S parameter 
and far-field radiation pattern calculations were carried out with the commercial 
full-wave computation package CST Microwave Studio using the frequency 
solver under unit cell boundary conditions. Optical constants for the metal heater 
materials and both states of GSST characterized using spectroscopic ellipsometry 
were used in the simulations.

Thermal simulation. The thermal simulations were performed using a 
three-dimensional finite-element method model constructed in COMSOL 
Multiphysics. A COMSOL built-in module (electric currents) was used for solving 
the electrical current distribution, and the heat transfer in solids module was 
implemented for simulating the heating transfer and temperature distribution. 
The two modules were coupled through the electromagnetic heat source model. In 
the heat transfer module, infinite element domains were adopted for the side and 
bottom boundaries. Convective heat flux boundary condition was used for the top 
surface with a heat transfer coefficient of 10 W/(m2 K−1). The thermal properties 
of GSST in the model were defined on the basis of experimentally measured data, 
which we will report in detail in a separate publication. Specifically, the thermal 
conductivity values of GSST in the model were 0.2 W/(m K−1) for the amorphous 
state and 0.4 W/(m K−1) for the crystalline state, and heat capacity values of GSST 
were taken as 1.45 MJ/(m3 K−1) for the amorphous state and 1.85 MJ/(m3 K−1) for 
the crystalline state.

Tuneable metasurface characterization. The metasurface devices with 200 μm 
square apertures have electrical resistances of approximately 20 Ω. To amorphize 
the device, a single 20 V, 5 μs pulse was applied. For crystallization, a single 500 ms 
pulse with a voltage of approximately 10 V was applied. A Renishaw Invia Reflex 
micro-Raman system was used for collecting Raman spectra on the devices. 
A Thermo Fisher FTIR6700 Fourier transform infrared spectrometer with an 
attached microscope was used to obtain the reflectance spectra of the devices. The 
reflectance spectra were calibrated using a standard gold mirror.

In the quasi-continuous tuning experiment, the device reflectance spectra 
were taken in situ using a super continuum laser (NKT Photonics SuperK Extreme 
Continuum Laser) with a tuneable notch filter (SuperK Select Multi-Line Tunable 
Filter) across the 1.2–1.7 μm spectral range, with the reflected light intensity 
quantified using an InGaAs short-wave infrared camera (Xenics Xeva 320 Series 
SWIR Camera). The reflectance spectra were similarly calibrated using a gold mirror.

Beam deflector characterization. The measurement setup was schematically 
illustrated in Fig. 5e,f. The device under test (DUT) was mounted on a 
two-dimensional translational stage for optical alignment. A laser source (LUNA 

Technologies OVA-5000) whose wavelength was fixed at 1,550 nm in conjunction 
with a fibre-optic collimator was used for characterizing the metasurface deflector. 
The collimated beam was focused by a lens with a 15 cm focal length onto the 
device. The laser beam diameter exiting from the collimator is approximately 
3 mm, thereby giving rise to an effective numerical aperture of the beam of 
approximately 0.01. When the weakly focused beam impinged on the DUT, the 
spot size was 0.14 mm, which ensures that the entire spot falls on the aperture of 
the DUT. An infrared camera was first used to image the diffracted spots before 
quantifying their intensity values using a calibrated photodetector. To measure 
the zero-order power, a beam splitter was inserted into the optical path at 45° with 
respect to the optical axis. The same measurement procedure was followed as 
above. The total power of the laser and the transmission and reflection coefficients 
of all the optical components were measured to calculate the absolute reflectance of 
the zero order.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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