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Nonparaxial scalar treatment of sinusoidal phase
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Scalar diffraction theory is frequently considered inadequate for predicting diffraction efficiencies for grating
applications where � /d�0.1. It has also been stated that scalar theory imposes energy upon the evanescent
diffracted orders. These notions, as well as several other common misconceptions, are driven more by an un-
necessary paraxial approximation in the traditional Fourier treatment of scalar diffraction theory than by the
scalar limitation. By scaling the spatial variables by the wavelength, we have previously shown that diffracted
radiance is shift invariant in direction cosine space. Thus simple Fourier techniques can now be used to predict
a variety of wide-angle (nonparaxial) diffraction grating effects. These include (1) the redistribution of energy
from the evanescent orders to the propagating ones, (2) the angular broadening (and apparent shifting) of
wide-angle diffracted orders, and (3) nonparaxial diffraction efficiencies predicted with an accuracy usually
thought to require rigorous electromagnetic theory. © 2006 Optical Society of America
OCIS codes: 050.0050, 050.1950, 050.1940, 050.2770, 260.1960.
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. INTRODUCTION
ince the late 1960s, holographic gratings, fabricated by
he exposure of photoresist by a stationary sinusoidal in-
erference fringe field, have become commonplace. The
hotoresist substrate is chemically developed after expo-
ure to produce a master holographic grating with sinu-
oidal groove profiles. These master holographic gratings
re routinely coated and replicated, as are master ruled
ratings.

Prior to the widespread use of holographic gratings, the
iffraction characteristics of sinusoidal phase gratings
ere of interest primarily because other groove profiles

lamellar and blazed gratings) can be Fourier analyzed
nto a superposition of sinusoidal profiles.1 Likewise, ar-
itrary scattering surfaces are routinely modeled as a su-
erposition of sinusoidal surfaces of different amplitudes,
eriods, and orientations.2–4

Scalar diffraction theory is frequently considered inad-
quate for predicting diffraction efficiencies for grating
pplications where � /d�0.1.5–7 It has also been stated
hat scalar theory imposes energy upon the evanescent
iffracted orders.5 These notions, as well as several other
ommon misconceptions, are actually driven more by an
nnecessary paraxial approximation in the traditional
ourier treatment of scalar diffraction theory than the
calar limitation. We have found only one recent paper in
he literature that seems to support our claim that scalar
iffraction theory may indeed be valid for feature sizes
uch smaller than popular opinion seems to dictate.8

To minimize any chance for confusion concerning our
otivation or claims in this paper, we want to emphasize

ere that we are not trying to replace rigorous electro-
agnetic (vector) theory with scalar theory. And we are

ot claiming that our new nonparaxial scalar theory
omehow provides us with the sometimes dramatic dis-
inctions in the behavior of orthogonal polarizations of
1084-7529/06/040858-8/$15.00 © 2
ight that can be provided by electromagnetic theory.
owever, we have developed a more convenient Fourier

reatment of scalar theory (not restricted to paraxial ap-
lications). Furthermore, the nonparaxial diffraction be-
avior predicted by this scalar theory agrees well with the
ehavior of TE-polarized light, not TM or unpolarized
ight.

. HISTORICAL BACKGROUND
n a review article on diffraction gratings in 1984,
aystre9 discussed a variety of rigorous vector theories

ncluding the Rayleigh method, the Waterman method,
is own integral vector method, and other differential and
odal methods. He presented a comparison (duplicated
ere as Fig. 1) of the diffraction efficiency (TE polariza-
ion) of the first diffracted order of a perfectly conducting
inusoidal grating �h /d=0.20� in the Littrow condition as
alculated by the classical Beckmann–Kirchhoff theory
nd his own rigorous integral vector theory.9 For this spe-
ial case (�m=−�i in Maystre’s sign convention), the
eckmann geometric factor2 reduces to

F = sec �m

1 + cos��i + �m�

cos �i + cos �m
=

1

cos2 �m
, �1�

nd the classical Beckmann–Kirchhoff theory predicts a
iffraction efficiency of

�1 = J1
2�k

h

2
cos �m�� cos4 �m, �2�

here h is the peak-to-peak amplitude of the sinusoidal
rating surface profile.

We have added to Fig. 1 the paraxial scalar prediction
f diffraction efficiency for sinusoidal phase gratings pro-
ided by Goodman10 and others11–13:
006 Optical Society of America



w

f
(
l
t
v
o
L
f
c
d
l
i
a
f
t
p
l
o

i
i
u
a
l
A
t
�
s
g
p
t
a
p
H
t
t
d
t

3
N
T
T
p
f
h
fi
t
p
F
n
o
s
a

t
c
t

i
R
g
f
o
s
o
t
e
m
fi

w
d
o

u
i
a
b
t
p
b
d
s
p
r
b
a
f
c
t
r
t

F
s
d
p
E

Harvey et al. Vol. 23, No. 4 /April 2006 /J. Opt. Soc. Am. A 859
�m = Jm
2 �a/2�, �3�

here a=2kh cos �i.
The format of Fig. 1 is commonly used to display dif-

raction efficiency data because the Littrow condition
�m−�i, in our standard sign convention) allows one to
eave the detector and the source fixed and to merely ro-
ate the grating between measurements. An angular de-
iation of 2–8 deg between the fixed source and detector is
ften used for convenience (thus not strictly satisfying the
ittrow condition).14 Every data point in the above dif-

raction efficiency curve therefore requires a different in-
ident angle. For small � /d, there are many diffracted or-
ers, but they all have small diffraction angles; hence the
eft edge of the curve is the paraxial regime. As the grat-
ng is rotated to increase � /d, both the angle of incidence
nd the diffraction angles increase, and the higher dif-
racted orders start going evanescent. For the right two
hirds of the curves in Fig. 1 there can be at most only two
ropagating orders, the zero order and the +1 order, the
atter being maintained in the Littrow condition. All other
rders are evanescent.

Note that all three curves agree well for � /d�0.4, i.e.,
n the paraxial regime. The Beckmann–Kirchhoff theory
s better than the paraxial theory for � /d�0.8 but blows
p for values of � /d�1.5. The paraxial scalar theory
grees well not only in the paraxial regime but also in the
ong wavelength region, i.e., the smooth surface regime.
lthough many authors state categorically that scalar

heory can be applied only in the paraxial regime �� /d
0.1�, they would probably concede that in the smooth

urface regime the higher orders of a sinusoidal phase
rating contain a negligible fraction of the energy and the
redicted efficiency is not significantly affected when
hose orders go evanescent. It is in the midportion of the
bove diffraction efficiency curve that the traditional
araxial scalar diffraction theory is totally inadequate.
owever, we will now show that it is not the scalar limi-

ation, but instead the unnecessary paraxial approxima-
ion implicit in the traditional Fourier treatment of scalar
iffraction theory that has prevented its useful applica-
ion to diffraction grating problems.

ig. 1. Diffraction grating efficiency of the first order of a sinu-
oidal phase grating �h /d=0.20� in the Littrow condition as pre-
icted by the nonrigorous Beckmann–Kirchhoff theory, the
araxial scalar theory, and the rigorous integral vector theory.
M, electromagnetic.
. LINEAR SYSTEM’S FORMULATION OF
ONPARAXIAL SCALAR DIFFRACTION
HEORY
he fundamental diffraction problem consists of two
arts: (i) determining the effects of introducing the dif-
racting screen (or grating) upon the field immediately be-
ind the screen and (ii) determining how it affects the
eld downstream from the diffracting screen (i.e., what is
he field immediately behind the grating and how does it
ropagate). Harvey et al. have generalized Goodman’s
ourier treatment of scalar diffraction theory to include
ew insight into the phenomenon of diffraction through-
ut the whole space in which it occurs.15–17 By using a
caled coordinate system in which all of the spatial vari-
bles are normalized by the wavelength of the light,

x̂ = x/�, ŷ = y/�, ẑ = z/�, etc . , �4�

he reciprocal variables in Fourier-transform space be-
ome the direction cosines of the propagation vectors of
he plane-wave components

� = x̂/r̂, � = ŷ/r̂, � = ẑ/r̂ �5�

n the angular spectrum of plane waves discussed by
atcliff,18 Goodman,10 and Gaskill.19 Recall that this an-
ular spectrum approach leads to a transfer function of
ree space whose Fourier transform (the impulse response
f the diffraction process) is a precise mathematical de-
cription of a Huygens wavelet, complete with a cosine
bliquity factor and a 	 /2 phase delay.10,15 The convolu-
ion of that impulse response with the optical disturbance
merging from a diffracting aperture is precisely the fa-
iliar Rayleigh–Sommerfeld diffraction integral for near-
eld �z
�� diffraction:

U�x̂2, ŷ2; ẑ� = − i�
−�

� �
−�

�

U0�x̂1, ŷ1;0�
ẑ

�̂

exp�i2	�̂�

�̂
dx̂1dŷ1,

�6�

here � is the distance between an arbitrary point in the
iffracting aperture (grating) to an arbitrary point in the
bservation plane.

The Rayleigh–Sommerfeld diffraction integral is rather
nwieldy to solve explicitly for most problems of practical

nterest. The Fresnel and Fraunhofer diffraction formulas
re obtained by retaining only the first two terms in the
inomial expansion for the quantity �̂ in the exponent of
he Rayleigh–Sommerfeld diffraction integral. These ex-
licit approximations impose severe restrictions upon
oth the size of the aperture (relative to the observation
istance) and the diffraction angle. In fact, Goodman
tates that the Fresnel approximation is equivalent to a
araxial approximation.10 So that we do not impose these
estrictions, all terms from the binomial expansion must
e retained. This can be accomplished by rewriting Eq. (6)
s a Fourier-transform integral of a generalized pupil
unction that includes phase variations that resemble
onventional aberrations.20,21 Any departures of the ac-
ual diffracted wave field from that predicted by the Fou-
ier transform of the aperture function are shown to have
he same functional form as the conventional wavefront
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berrations of imaging systems. These aberrations, which
re inherent to the diffraction process, are precisely the
ffects ignored when making the usual Fresnel and
raunhofer approximations. Significant insight is ob-
ained by recognizing that near-field diffraction patterns
re merely aberrated Fraunhofer diffraction patterns. It
ollows that Fresnel diffraction patterns are merely defo-
used Fraunhofer diffraction patterns.20–22

When a spherical wave is incident upon a diffracting
perture and the observation space is a hemisphere cen-
ered upon the aperture, the phase variations mentioned
bove are frequently negligible.15 For normal incidence,
he diffracted wave field on the hemisphere is then given
irectly by the Fourier transform of the aperture function

U��,�; r̂� = ��exp�i2	r̂�/�ir̂��F	U0�x̂, ŷ;0�
, �7�

here F is the Fourier transform operator, E0
�U0�x̂ , ŷ ;0��2 is the irradiance in the plane of the diffract-

ng aperture, and P0=E0As is the total radiant power
assing through an aperture of area As. Furthermore,
his Fourier-transform relationship is valid not merely
ver a small region about the optical axis, but over the en-
ire hemisphere (with certain restrictions depending upon
he residual phase variations).20

Now consider the situation in which the incident radia-
ion strikes the diffracting aperture at an angle �i as il-
ustrated in Fig. 2. This is equivalent to introducing a lin-
ar phase variation across the aperture and attenuating
he irradiance in the plane of the aperture by the factor
i=cos��i�. By applying the shift theorem of Fourier-
ransform theory to Eq. (7), we find that the complex am-
litude distribution in direction cosine space is a function
f �−�0,

U��,� − �0; r̂� = ��exp�i2	r̂�/�ir̂��F	U0��x̂, ŷ;0�exp�i2	�0ŷ�


�8�

here

ig. 2. Geometric configuration when the incident beam strikes
he diffracting aperture at an arbitrary angle.
U0��x̂, ŷ;0� = ��iU0�x̂, ŷ;0�. �9�

ere � is the direction cosine of the position vector of the
bservation point, and �0 is the direction cosine of the po-
ition vector of the undiffracted beam. Note that the di-
ection cosines are obtained by merely projecting the re-
pective points on the hemisphere back onto the plane of
he aperture and normalizing to a unit radius. The com-
lex amplitude distribution at an arbitrary point on the
emisphere can now be said to be a function of the dis-
ance of the observation point from the undiffracted beam
n direction cosine space. Furthermore, �=cos � is just a
osine obliquity factor.

Hence nonparaxial diffraction phenomena have been
hown to be linear, shift-invariant phenomena with re-
pect to incident angle if we formulate the problem in
erms of the direction cosines of the propagation vectors.
urthermore, for a uniformly illuminated diffracting ap-
rture of area As, it is the diffracted radiance (not irradi-
nce or intensity) that is shift invariant in direction co-
ine space16:

L��,� − �0� =
�2

As
�F	U0��x̂, ŷ;0�exp�i2	�0ŷ�
�2. �10�

Rayleigh’s (Parseval’s) theorem from Fourier-transform
heory states that the integral over all space of the
quared modulus of any function is equal to the integral
ver all space of the squared modulus of its Fourier
ransform.10,16 Hence we can write

�
−�

� �
−�

�

�U0��x̂, ŷ;0�exp�i2	�0ŷ��2dx̂ dŷ

=�
−�

� �
−�

�

�F	U0��x̂, ŷ;0�exp�i2	�0ŷ�
�2d� d�. �11�

ubstituting Eq. (10) into Eq. (11),

�
−�

� �
−�

�

�U0��x̂, ŷ;0�exp�i2	�0ŷ��2dx̂ dŷ

=
As

�2�
−�

� �
−�

�

L��,� − �0�d� d�. �12�

ecall that only those plane-wave components that lie in-
ide the unit circle in direction cosine space ��2+�2�1�
re real and propagate. Those that lie outside of the unit
ircle are imaginary and are referred to as evanescent
aves (and thus do not propagate).10,15,16 All (real) space

s therefore represented by a unit circle in the two-
imensional direction cosine space. Hence all of the radi-
nt power emanating from the diffracting aperture is con-
ained in that portion of the diffracted radiance
istribution function lying inside a unit circle in direction
osine space (the direction cosines of a vector must satisfy
he equation �2+�2+�2=1). Therefore Eq. (12) can also be
ritten as
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�
−�

� �
−�

�

�U0��x̂, ŷ;0�exp�i2	�0ŷ��2dx̂ dŷ

=
As

�2�
−1

1 �
−�1−�2

�1−�2

L���,� − �0�d� d�, �13�

here we have used L��� ,�−�0� to indicate the real dif-
racted radiance distribution that lies inside of the unit
ircle. Note that the left side of Eq. (13) is merely the in-
egral of the radiant exitance over the (scaled) aperture.
t is therefore proportional to the total radiant power
ransmitted through the diffracting aperture, which di-
inishes with the cosine of the incident angle.

�
−�

� �
−�

�

�U0��x̂, ŷ;0�exp�i2	�0ŷ��2dx̂ dŷ =
PT��i�

�2 =
E0As�i

�2 .

�14�

ubstituting Eqs. (14) into Eqs. (12) and (13), it is now
vident that, for the case of a uniformly illuminated dif-
racting aperture, the total radiant power diffracted from
he aperture is just the area of the aperture times the in-
egral of the diffracted radiance:

PT = As�
−�

� �
−�

�

L��,� − �0�d� d�

= As�
−1

1 �
−�1−�2

�1−�2

L���,� − �0�d� d�, �15�

here L�� ,�−�0� is given by Eq. (10) and

L���,� − �0� = K L��,� − �0�. �16�

he real radiance distribution function is thus merely a
enormalized version of the original radiance distribution
unction L�� ,�−�0�.16 The renormalization constant K is
iven by the ratio of the integral of L�� ,�−�0� over infi-
ite limits to the integral of L�� ,�−�0� over the unit
ircle in direction cosine space16:

K =

�
�=−�

� �
�=−�

�

L��,� − �0�d� d�

�
�=−1

1 �
�=−�1−�2

�1−�2

L��,� − �0�d� d�

. �17�

For those cases where the diffracted radiance distribu-
ion function given by Eq. (10) extends beyond the unit
ircle in direction cosine space, the real radiance distribu-
ion is given by

L���,� − �0� = K
�2

As
�F	U0��x̂, ŷ;0�exp�i2	�0ŷ�
�2

for �2 + �2 � 1

L���,� − �0� = 0 for �2 + �2 � 1. �18�

The renormalization constant differs from unity only if
he radiance distribution function extends beyond the
nit circle in direction cosine space (i.e., only if evanes-
ent waves are produced). The well-known Wood’s anoma-
ies that occur in diffraction grating efficiency measure-
ents are entirely consistent with this predicted

enormalization in the presence of evanescent waves.22

hese equations have also been applied to more general
cattering surfaces and have successfully explained some
therwise nonintuitive surface scatter effects.16 This
enormalization process is also consistent with the law of
onservation of energy. However, it is significant that this
inear systems formulation of nonparaxial scalar diffrac-
ion theory has been derived by the application of Parse-
al’s theorem10 and not by merely heuristically imposing
he law of conservation of energy. The physics has not
hanged from the Rayleigh–Sommerfeld theory, but we
ave reformulated it into a Fourier treatment that can be
asily solved for a wide variety of nonparaxial applica-
ions.

. NONPARAXIAL (WIDE-ANGLE)
EHAVIOR OF SINUSOIDAL PHASE
RATINGS

here are substantial advantages of modeling diffraction
rating behavior (especially for conical diffraction con-
gurations with large obliquely incident beams) in terms
f the direction consines of the propagation vectors of the
iffracted orders and the incident beam.23 In particular,
se of direction cosine diagrams can be shown to simplify
he analysis of the number and angular location of the
arious propagating orders for different grating periods
nd orientations. In addition, several qualitative aspects
f the intensity distributions diffracted from gratings be-
ome apparent. These include the broadening and appar-
nt shifting of diffracted orders at large diffraction
ngles.16,24

However, in this paper we will use the nonparaxial sca-
ar diffraction theory summarized in Section 3 to make
uantitative predictions of diffraction efficiency for per-
ectly conducting sinusoidal phase gratings. Hopefully,
hese results will dispel several common misconceptions
hat continue to persist due to the paraxial scalar predic-
ion of Eq. (3). Two related misconceptions are (i) the no-
ion that scalar theory imposes energy on the evanescent
iffracted orders5 and (ii) the prediction, from Eq. (3) and
llustrated in Fig. 1, that it is impossible to obtain a dif-
raction efficiency greater than 0.3386 for the first dif-
racted order of a sinusoidal phase grating.

We could model either a uniformly illuminated grating
f finite size or a small beam of some specific size and
hape underfilling a large grating. In the first case the to-
al radiant power being transmitted through the aperture
s reduced by the cos �i, whereas in the second case the
otal transmitted radiant power remains the same but the
eam footprint in the plane of the grating is increased by
os �i and the exitance emerging from the plane of the
rating is reduced by cos �i. Both cases should yield the
ame results for diffraction efficiency, which is defined as
he ratio of the radiant power in a given diffracted order
o the radiant power in the incident beam. We have cho-
en to analyze the first case to be consistent with Good-
an’s paraxial treatment.10

Using a symbolic notation for special functions popular-
zed by Goodman10 and Gaskill,19 a square sinusoidal
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hase grating (of finite size, bb) can be defined by the
omplex amplitude transmittance function

t�x̂, ŷ� = rect� x̂

b̂
,
ŷ

b̂
�expi

a

2
sin�2	ŷ/d̂�� . �19�

lluminating this grating with a uniform amplitude plane
ave with an angle of incidence �i and using the following
athematical identity

expi
a

2
sin�2	ŷ/d̂�� = �

m=−�

�

Jm�a

2�exp�i2	mŷ/d̂�,

�20�

e can now rewrite Eq. (10) as

L��,� − �0� = �iE0

�2

As
� �

m=−�

�

F�rect� x̂

b̂
,
ŷ

b̂
�

exp�i2	�iŷ�Jm�a

2�exp�i2	mŷ/d̂���2

.

�21�

his is an expression for the diffracted radiance emanat-
ng from a sinusoidal phase grating with its grating lines
grooves) aligned parallel to the x axis when illuminated
ith a uniform amplitude plane wave whose propagation
ector lies in the y–z plane. We thus have planar diffrac-
ion (all of the diffracted orders lie in the y–z plane) and
he grating equation can be written as

�m + �i = m/d̂, �22�

here �m=sin �m and �i=sin �i.
Applying the convolution theorem of Fourier-transform

heory to Eq. (21), we obtain

L��,� − �0� = �iE0

�2

As
� �

m=−�

�

F�rect� x̂

b̂
,
ŷ

b̂
�exp�i2	�iŷ��

� � F�Jm�a

2�exp�i2	mŷ/d̂���2

, �23�

here �� denotes a two-dimensional convolution
peration.19 Applying the shift theorem and the similarity
heorem of Fourier-transform theory, and noting that the
uantity exp�i2	mŷ / d̂� merely Fourier transforms into a
hifted delta function, ��� ,�−m / d̂�, we have

L��,� − �0� = �iE0

�2

As
� �

m=−�

� 1

1/b̂2
sinc� �

1/b̂
,
� + �i

1/b̂
�

� � Jm�a

2����,� − m/d̂��2

. �24�

ince any function convolved with a delta function merely
eplicates that function at the location of the delta func-
ion,
L��,� − �0� = �iE0

�2

As
� �

m=−�

�

Jm�a

2� 1

1/b̂2

sinc� �

1/b̂
,
� + �i − m/d̂

1/b̂
��2

. �25�

rom the grating equation expressed in Eq. (22), the ar-
ument of the sinc function becomes

��,� − �0�

= �iE0

�2

As
� �

m=−�

�

Jm�a

2� 1

1/b̂2
sinc� �

1/b̂
,
� − �m

1/b̂
��2

�26�

ince ��=1/ d̂
1/ b̂, there is negligible overlap between
he individual sinc functions; hence there are no cross
erms in the squared modulus of the above summation.
actoring b̂2 outside of the summation sign and noting
hat As=b2, we can write

L��,� − �0� = �iE0 �
m=−�

�

Jm
2 �a

2� 1

1/b̂2
sinc2� �

1/b̂
,
� − �m

1/b̂
�� .

�27�

ubstituting Eq. (27) into Eq. (16) and then into Eq. (15)
nd interchanging the order of the summation and the in-
egral operation, we have

PT = �iE0KAs �
m=min

max

Jm
2 �a

2��−1

1 �
−�1−�2

�1−�2

 1

1/b̂2
sinc2� �

1/b̂
,
� − �m

1/b̂
��d� d�, �28�

here the summation is taken only over the diffracted or-
ers lying inside the unit circle in direction cosine space
i.e., the propagating diffracted orders). The quantity in
quare brackets is merely a unit volume sinc2 function.19

ince b̂
1, the sinc2 function is very narrow and we will
ssume that, even for large diffracted angles, it lies com-
letely inside the unit circle; hence the above integral is
qual to unity and

PT = �iE0KAs �
m=min

max

Jm
2 �a

2� . �29�

he radiant power in a given diffracted order is thus
learly equal to

Pm = �iE0KAsJm
2 �a

2� , �30�

nd the diffraction efficiency of the mth diffracted order is
iven by

�m =
Pm

PT
=

Jm
2 � a

2�

�
m=min

max

Jm
2 � a

2�
. �31�
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Note that the nonparaxial Eq. (31) for diffraction effi-
iency reduces to the paraxial Eq. (3) when the denomi-
ator is a summation from minus infinity to plus infinity.
ecall that the quantity a in the argument of the above
essel functions is the peak-to-peak phase variation in-

roduced by the grating. Figure 3 illustrates that a varies
ot only with the angle of incidence, but with the dif-
racted order as well:

a = �2	/���h1 + h2� = 2	ĥ�cos �i + cos �m�. �32�

Equations (31) and (32) can now be used to calculate
he diffraction efficiency of a perfectly conducting sinu-
oidal reflection grating. Figure 4 shows these predictions
or the first order in the Littrow condition and compares
hem with the predictions shown in Fig. 1.

The above nonparaxial scalar diffraction theory pro-
ides remarkably good agreement with rigorous integral
lectromagnetic theory, not merely in the paraxial regime
nd the smooth surface (shallow grating) regime, but over
he entire range of � /d.

Similar predictions for sinusoidal reflection gratings at
/d values of 0.05, 0.15, and 0.30 are shown in Figs. 5–7,
espectively. As expected, Fig. 5 shows that all of the theo-
ies agree well with rigorous calculations for low values of
/d. The rigorous data in Figs. 5–7 are taken from Ref. 1,
. 185.
Figure 6 not only shows good agreement between our

onparaxial scalar theory and rigorous calculations, it
lso demonstrates that our nonparaxial scalar diffraction

ig. 3. Illustration of the peak-to-peak phase variation intro-
uced into a given diffracted order by reflection from a sinusoidal
urface.

ig. 4. Diffraction grating efficiency of the first order of a per-
ectly conducting sinusoidal phase grating �h /d=0.20� in the Lit-
row condition as predicted by the Beckmann–Kerchhoff theory,
he paraxial scalar theory, the nonparaxial (NP) scalar diffrac-
ion theory presented in this paper, and a rigorous integral vector
heory. EM, electromagnetic.
ig. 5. Diffraction grating efficiency of the first order of a sinu-
oidal phase grating �h /d=0.05� in the Littrow condition as pre-
icted by the Beckmann–Kerchhoff theory, the paraxial scalar
heory, our nonparaxial (NP) scalar diffraction theory, and a rig-
rous integral vector theory. EM, electromagnetic.
ig. 6. Diffraction grating efficiency of the first order of a per-
ectly conducting sinusoidal phase grating �h /d=0.15� in the Lit-
row condition as predicted by the Beckmann–Kerchhoff theory,
he paraxial scalar theory, our nonparaxial (NP) scalar diffrac-
ion theory, and a rigorous integral vector theory. EM,
ig. 7. Diffraction grating efficiency of the first order of a per-
ectly conducting sinusoidal phase grating �h /d=0.30� in the Lit-
row condition as predicted by the Beckmann–Kerchhoff theory,
he paraxial scalar theory, our nonparaxial (NP) scalar diffrac-
ion theory, and a rigorous integral vector theory. EM,
lectromagnetic.
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heory indeed predicts the Rayleigh anomalies1,7,25 that
ccur when a propagating order goes evanescent. Note the
brupt increase in diffraction efficiency at � /d=0.67. This
s precisely the value of � /d at which the −1 and +2 dif-
racted orders go evanescent.

Likewise, Fig. 7 shows that our nonparaxial scalar
heory continues to predict the major features of the dif-
raction efficiency curve even for h /d values of 0.30. The
iminishing agreement for � /d�0.6 is probably due to
he fact that our theory does not include shadowing and
ultiple-scattering effects. However, it does still predict a

econd Rayleigh anomaly at � /d=0.40 where the −2 and
3 diffracted orders go evanescent.
Note that there is a substantial difference in the peak

alues of the oscillatory behavior in the paraxial regime
s predicted by the paraxial and the nonparaxial scalar
heories in Figs. 4, 6, and 7. The diffraction efficiency pre-
icted for the nonparaxial scalar theory is given by Eq.
31). As � /d becomes very small (paraxial regime), the
umber of diffracted orders becomes very large and the
enominator approaches unity resulting in the well-
nown result given by �m=Jm

2 �a /2�. Clearly for a finite
umber of propagating orders the denominator is less
han unity. This results in a higher value for the non-
araxial prediction. Our nonparaxial scalar theory as-
umes that the energy previously contained in the eva-
escent orders is distributed uniformly over the
emaining propagating orders. This may or may not be an
ccurate assumption. Additional rigorous data are needed
o quantitatively evaluate the deviation between the non-
araxial scalar theory and the rigorous theory in the
araxial regime.

. SUMMARY AND CONCLUSIONS
pparently much of the grating community believes that
calar diffraction theory is valid only for � /d�0.1.5–7 We
elieve that this limitation is due to an unnecessary
araxial approximation in the traditional Fourier treat-
ent of scalar diffraction theory, not a limitation of scalar

heory itself. We have therefore summarized the develop-
ent of a linear system’s formulation of nonparaxial sca-

ar diffraction theory that greatly expands the range of
arameters over which accurate predictions can be made
ith simple Fourier techniques. This theory was then ap-
lied to the prediction of diffraction efficiency from per-
ectly conducting sinusoidal phase (holographic) gratings.
hese diffraction efficiency predictions were compared
ith those of the classical Beckmann–Kirchhoff theory, a

imple paraxial theory, and a rigorous integral vector
heory. The results for the diffraction efficiency of the +1
rder in the Littrow condition were plotted in the usual
anner as a function of � /d for values from 0.1 to 2.0. Ex-

ellent agreement with rigorous electromagnetic theory
as shown for h /d values up to 0.3. This is quite remark-
ble since this entire range �0.1�� /d�2.0� lies outside of
hat is usually thought of as the scalar regime �� /d
0.1�. Furthermore, our nonparaxial scalar theory even

redicts the Rayleigh anomalies1,7,22 that are associated
ith the redistribution of energy from the evanescent or-
ers to the remaining propagating orders. Hopefully,
hese results completely dispel the notion that scalar
heory imposes energy upon the evanescent orders.5 We
re fully aware that there are two distinct types of effi-
iency anomalies: Rayleigh anomalies and resonance
nomalies. The resonance anomalies are an electromag-
etic effect that depends upon the optical constants of a
pecific material, and thus do require a rigorous vector
heory (they should be nonexistent in the perfectly con-
ucting gratings modeled in this paper). Also, we have
nly compared our scalar predictions with rigorous calcu-
ations for TE polarization. We will report at a later date
n our attempt to quasi-vectorize our nonparaxial scalar
heory to see if we can predict some of the anomalous TM
ehavior.
Corresponding author James E. Harvey’s e-mail ad-

ress is harvey@creol.ucf.edu.
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