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Scalar diffraction theory is frequently considered inadequate for predicting diffraction efficiencies for grating
applications where \/d>0.1. It has also been stated that scalar theory imposes energy upon the evanescent
diffracted orders. These notions, as well as several other common misconceptions, are driven more by an un-
necessary paraxial approximation in the traditional Fourier treatment of scalar diffraction theory than by the
scalar limitation. By scaling the spatial variables by the wavelength, we have previously shown that diffracted
radiance is shift invariant in direction cosine space. Thus simple Fourier techniques can now be used to predict
a variety of wide-angle (nonparaxial) diffraction grating effects. These include (1) the redistribution of energy
from the evanescent orders to the propagating ones, (2) the angular broadening (and apparent shifting) of
wide-angle diffracted orders, and (3) nonparaxial diffraction efficiencies predicted with an accuracy usually
thought to require rigorous electromagnetic theory. © 2006 Optical Society of America
OCIS codes: 050.0050, 050.1950, 050.1940, 050.2770, 260.1960.

1. INTRODUCTION

Since the late 1960s, holographic gratings, fabricated by
the exposure of photoresist by a stationary sinusoidal in-
terference fringe field, have become commonplace. The
photoresist substrate is chemically developed after expo-
sure to produce a master holographic grating with sinu-
soidal groove profiles. These master holographic gratings
are routinely coated and replicated, as are master ruled
gratings.

Prior to the widespread use of holographic gratings, the
diffraction characteristics of sinusoidal phase gratings
were of interest primarily because other groove profiles
(lamellar and blazed gratings) can be Fourier analyzed
into a superposition of sinusoidal profiles.! Likewise, ar-
bitrary scattering surfaces are routinely modeled as a su-
perposition of sinusoidal surfaces of different amplitudes,
periods, and orientations.*™*

Scalar diffraction theory is frequently considered inad-
equate for predicting diffraction efficiencies for grating
applications where Md>0.1.5" It has also been stated
that scalar theory imposes energy upon the evanescent
diffracted orders.® These notions, as well as several other
common misconceptions, are actually driven more by an
unnecessary paraxial approximation in the traditional
Fourier treatment of scalar diffraction theory than the
scalar limitation. We have found only one recent paper in
the literature that seems to support our claim that scalar
diffraction theory may indeed be valid for feature sizes
much smaller than popular opinion seems to dictate.®

To minimize any chance for confusion concerning our
motivation or claims in this paper, we want to emphasize
here that we are not trying to replace rigorous electro-
magnetic (vector) theory with scalar theory. And we are
not claiming that our new nonparaxial scalar theory
somehow provides us with the sometimes dramatic dis-
tinctions in the behavior of orthogonal polarizations of
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light that can be provided by electromagnetic theory.
However, we have developed a more convenient Fourier
treatment of scalar theory (not restricted to paraxial ap-
plications). Furthermore, the nonparaxial diffraction be-
havior predicted by this scalar theory agrees well with the
behavior of TE-polarized light, not TM or unpolarized
light.

2. HISTORICAL BACKGROUND

In a review article on diffraction gratings in 1984,
Maystre9 discussed a variety of rigorous vector theories
including the Rayleigh method, the Waterman method,
his own integral vector method, and other differential and
modal methods. He presented a comparison (duplicated
here as Fig. 1) of the diffraction efficiency (TE polariza-
tion) of the first diffracted order of a perfectly conducting
sinusoidal grating (h/d=0.20) in the Littrow condition as
calculated by the classical Beckmann—Kirchhoff theory
and his own rigorous integral vector theory.9 For this spe-
cial case (6,,=-6; in Maystre’s sign convention), the
Beckmann geometric factor? reduces to

1+ cos(6;+ 6,,) 1

1)

F=sec#b, =—,
cos 6; +cos 6,, cos” 6,

and the classical Beckmann—Kirchhoff theory predicts a
diffraction efficiency of

h
7,1=J%<k§cos c9m>/cos46’m, (2)

where & is the peak-to-peak amplitude of the sinusoidal
grating surface profile.

We have added to Fig. 1 the paraxial scalar prediction
of diffraction efficiency for sinusoidal phase gratings pro-
vided by Goodman'® and others3;
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Fig. 1. Diffraction grating efficiency of the first order of a sinu-
soidal phase grating (h/d=0.20) in the Littrow condition as pre-
dicted by the nonrigorous Beckmann—Kirchhoff theory, the
paraxial scalar theory, and the rigorous integral vector theory.
EM, electromagnetic.

T = J2(a/2), (3)

where a=2kh cos 6;.

The format of Fig. 1 is commonly used to display dif-
fraction efficiency data because the Littrow condition
(6,,—6;, in our standard sign convention) allows one to
leave the detector and the source fixed and to merely ro-
tate the grating between measurements. An angular de-
viation of 2—8 deg between the fixed source and detector is
often used for convenience (thus not strictly satisfying the
Littrow condition).!* Every data point in the above dif-
fraction efficiency curve therefore requires a different in-
cident angle. For small A/d, there are many diffracted or-
ders, but they all have small diffraction angles; hence the
left edge of the curve is the paraxial regime. As the grat-
ing is rotated to increase N/d, both the angle of incidence
and the diffraction angles increase, and the higher dif-
fracted orders start going evanescent. For the right two
thirds of the curves in Fig. 1 there can be at most only two
propagating orders, the zero order and the +1 order, the
latter being maintained in the Littrow condition. All other
orders are evanescent.

Note that all three curves agree well for N\/d <0.4, i.e.,
in the paraxial regime. The Beckmann—Kirchhoff theory
is better than the paraxial theory for \/d <0.8 but blows
up for values of N/d>1.5. The paraxial scalar theory
agrees well not only in the paraxial regime but also in the
long wavelength region, i.e., the smooth surface regime.
Although many authors state categorically that scalar
theory can be applied only in the paraxial regime (\/d
<0.1), they would probably concede that in the smooth
surface regime the higher orders of a sinusoidal phase
grating contain a negligible fraction of the energy and the
predicted efficiency is not significantly affected when
those orders go evanescent. It is in the midportion of the
above diffraction efficiency curve that the traditional
paraxial scalar diffraction theory is totally inadequate.
However, we will now show that it is not the scalar limi-
tation, but instead the unnecessary paraxial approxima-
tion implicit in the traditional Fourier treatment of scalar
diffraction theory that has prevented its useful applica-
tion to diffraction grating problems.
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3. LINEAR SYSTEM’S FORMULATION OF
NONPARAXIAL SCALAR DIFFRACTION
THEORY

The fundamental diffraction problem consists of two
parts: (i) determining the effects of introducing the dif-
fracting screen (or grating) upon the field immediately be-
hind the screen and (ii) determining how it affects the
field downstream from the diffracting screen (i.e., what is
the field immediately behind the grating and how does it
propagate). Harvey et al. have generalized Goodman’s
Fourier treatment of scalar diffraction theory to include
new insight into the phenomenon of diffraction through-
out the whole space in which it occurs.’®!" By using a
scaled coordinate system in which all of the spatial vari-
ables are normalized by the wavelength of the light,

x=x/\, y=y/\, Z=z/\, etc., (4)

the reciprocal variables in Fourier-transform space be-
come the direction cosines of the propagation vectors of
the plane-wave components

a=ilf, B=3It, y=5I} (5)

in the angular spectrum of plane waves discussed by
Ratcliff,18 Goodman,lo and Gaskill.'"® Recall that this an-
gular spectrum approach leads to a transfer function of
free space whose Fourier transform (the impulse response
of the diffraction process) is a precise mathematical de-
scription of a Huygens wavelet, complete with a cosine
obliquity factor and a 7/2 phase delay.10’15 The convolu-
tion of that impulse response with the optical disturbance
emerging from a diffracting aperture is precisely the fa-
miliar Rayleigh—-Sommerfeld diffraction integral for near-
field (z>\) diffraction:

o | r- o 2exp(i2772) o
U(xg,99:2) =—1i UO(xl,yl;O)gdeldyl,

(6)

where ¢ is the distance between an arbitrary point in the
diffracting aperture (grating) to an arbitrary point in the
observation plane.

The Rayleigh—Sommerfeld diffraction integral is rather
unwieldy to solve explicitly for most problems of practical
interest. The Fresnel and Fraunhofer diffraction formulas
are obtained by retaining only the first two terms in the

binomial expansion for the quantity ¢ in the exponent of
the Rayleigh—Sommerfeld diffraction integral. These ex-
plicit approximations impose severe restrictions upon
both the size of the aperture (relative to the observation
distance) and the diffraction angle. In fact, Goodman
states that the Fresnel approximation is equivalent to a
paraxial approximation.'® So that we do not impose these
restrictions, all terms from the binomial expansion must
be retained. This can be accomplished by rewriting Eq. (6)
as a Fourier-transform integral of a generalized pupil
function that includes phase variations that resemble
conventional aberrations.?%?! Any departures of the ac-
tual diffracted wave field from that predicted by the Fou-
rier transform of the aperture function are shown to have
the same functional form as the conventional wavefront
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aberrations of imaging systems. These aberrations, which
are inherent to the diffraction process, are precisely the
effects ignored when making the usual Fresnel and
Fraunhofer approximations. Significant insight is ob-
tained by recognizing that near-field diffraction patterns
are merely aberrated Fraunhofer diffraction patterns. It
follows that Fresnel diffraction patterns are merely defo-
cused Fraunhofer diffraction patterns.zo_22

When a spherical wave is incident upon a diffracting
aperture and the observation space is a hemisphere cen-
tered upon the aperture, the phase variations mentioned
above are frequently negligible.15 For normal incidence,
the diffracted wave field on the hemisphere is then given
directly by the Fourier transform of the aperture function

Ula, B;7) = Aexp(i27)/(iF) ] U, (%,9;0)}, (M

where F 1is the Fourier transform operator, E,
=|Uy(%,5;0)|? is the irradiance in the plane of the diffract-
ing aperture, and Py=EyA, is the total radiant power
passing through an aperture of area A,. Furthermore,
this Fourier-transform relationship is valid not merely
over a small region about the optical axis, but over the en-
tire hemisphere (with certain restrictions depending upon
the residual phase variations).?

Now consider the situation in which the incident radia-
tion strikes the diffracting aperture at an angle 6; as il-
lustrated in Fig. 2. This is equivalent to introducing a lin-
ear phase variation across the aperture and attenuating
the irradiance in the plane of the aperture by the factor
v;=cos(6;). By applying the shift theorem of Fourier-
transform theory to Eq. (7), we find that the complex am-
plitude distribution in direction cosine space is a function

of B_BO’

Ula, B - Bo;7) = Mexp(277)/ (i) JFHU(R,5;0)exp(i2mBed)}
(8)

where

Fig. 2. Geometric configuration when the incident beam strikes
the diffracting aperture at an arbitrary angle.
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18 80 = S T (5 e
Uo(x,y,O) Y 'YiUo(x,y,O). (9)

Here B is the direction cosine of the position vector of the
observation point, and 3 is the direction cosine of the po-
sition vector of the undiffracted beam. Note that the di-
rection cosines are obtained by merely projecting the re-
spective points on the hemisphere back onto the plane of
the aperture and normalizing to a unit radius. The com-
plex amplitude distribution at an arbitrary point on the
hemisphere can now be said to be a function of the dis-
tance of the observation point from the undiffracted beam
in direction cosine space. Furthermore, y=cos 6 is just a
cosine obliquity factor.

Hence nonparaxial diffraction phenomena have been
shown to be linear, shift-invariant phenomena with re-
spect to incident angle if we formulate the problem in
terms of the direction cosines of the propagation vectors.
Furthermore, for a uniformly illuminated diffracting ap-
erture of area A, it is the diffracted radiance (not irradi-
ance or intensity) that is shift invariant in direction co-
sine spacelG:

)\'2
L(a, B~ Bo) = XIf{Ué(a”c,ﬁ;O)eXp(i%Buf')}F. (10)

Rayleigh’s (Parseval’s) theorem from Fourier-transform
theory states that the integral over all space of the
squared modulus of any function is equal to the integral
over all space of the squared modulus of its Fourier
transform.'®® Hence we can write

243 dy

ff|U6(9?,5/;0)eXp(i27Tﬁa9)

=f J | FUy&,5;0)exp(i2mBey)}*da dB.  (11)
Substituting Eq. (10) into Eq. (11),

f f [Up(&,5;0)exp(i27By9)[*d dy

A, (7 (7
=Ff f L(a,B-Bp)dadB. (12)

Recall that only those plane-wave components that lie in-
side the unit circle in direction cosine space (a?+82<1)
are real and propagate. Those that lie outside of the unit
circle are imaginary and are referred to as evanescent
waves (and thus do not propaga‘ce).10’15’16 All (real) space
is therefore represented by a unit circle in the two-
dimensional direction cosine space. Hence all of the radi-
ant power emanating from the diffracting aperture is con-
tained in that portion of the diffracted radiance
distribution function lying inside a unit circle in direction
cosine space (the direction cosines of a vector must satisfy
the equation o+ 8%+ y?=1). Therefore Eq. (12) can also be
written as
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f J U5(&,3;0)exp(i2mBu9)[*dx dy

A, ([
-3 f f  L@p-podadp,  (13)
-1J-1-2

where we have used L'(a, 8- ) to indicate the real dif-
fracted radiance distribution that lies inside of the unit
circle. Note that the left side of Eq. (13) is merely the in-
tegral of the radiant exitance over the (scaled) aperture.
It is therefore proportional to the total radiant power
transmitted through the diffracting aperture, which di-
minishes with the cosine of the incident angle.

c Pr(6) E\Ayy,
J f |Uy(#,9;0)exp(i2mBy)|*dx dy = BRI
(14)

Substituting Egs. (14) into Egs. (12) and (13), it is now
evident that, for the case of a uniformly illuminated dif-
fracting aperture, the total radiant power diffracted from
the aperture is just the area of the aperture times the in-
tegral of the diffracted radiance:

PT=ASJ f L(a,B- Bo)da dB

1 r:;ﬁ
=Asf f 1 L'(a,- Bo)da dB, (15)
aJim2

where L(a, B-By) is given by Eq. (10) and
L'(a,B-Bo) =K L(a, 8- fo)- (16)

The real radiance distribution function is thus merely a
renormalized version of the original radiance distribution
function L(«a, 8- ,80).16 The renormalization constant K is
given by the ratio of the integral of L(«a, 8- By) over infi-
nite limits to the integral of L(a,B-By) over the unit
circle in direction cosine space :

f J L(a,B- Bo)da dp

K= .an
V1-a
f f L(a, 8- Bp)da dB
a=-1

=—€1—a2

For those cases where the diffracted radiance distribu-
tion function given by Eq. (10) extends beyond the unit
circle in direction cosine space, the real radiance distribu-
tion is given by

)\2
L' (e, - Bo) = K| FUG(%,9;0)exp(i2mpod)
S

for ® + B2<1

L'(a,B-By)=0 for ®+p2>1. (18)

The renormalization constant differs from unity only if
the radiance distribution function extends beyond the
unit circle in direction cosine space (i.e., only if evanes-
cent waves are produced). The well-known Wood’s anoma-
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lies that occur in diffraction grating efficiency measure-
ments are entirely consistent with this predicted
renormalization in the presence of evanescent waves.??
These equations have also been applied to more general
scattering surfaces and have successfully explained some
otherwise nonintuitive surface scatter effects.'® This
renormalization process is also consistent with the law of
conservation of energy. However, it is significant that this
linear systems formulation of nonparaxial scalar diffrac-
tion theory has been derived by the application of Parse-
val’s theorem'® and not by merely heuristically imposing
the law of conservation of energy. The physics has not
changed from the Rayleigh—Sommerfeld theory, but we
have reformulated it into a Fourier treatment that can be
easily solved for a wide variety of nonparaxial applica-
tions.

4. NONPARAXIAL (WIDE-ANGLE)
BEHAVIOR OF SINUSOIDAL PHASE
GRATINGS

There are substantial advantages of modeling diffraction
grating behavior (especially for conical diffraction con-
figurations with large obliquely incident beams) in terms
of the direction consines of the propagation vectors of the
diffracted orders and the incident beam.?® In particular,
use of direction cosine diagrams can be shown to simplify
the analysis of the number and angular location of the
various propagating orders for different grating periods
and orientations. In addition, several qualitative aspects
of the intensity distributions diffracted from gratings be-
come apparent. These include the broadening and appar-
ent shifting of diffracted orders at large diffraction
angles.le”24

However, in this paper we will use the nonparaxial sca-
lar diffraction theory summarized in Section 3 to make
quantitative predictions of diffraction efficiency for per-
fectly conducting sinusoidal phase gratings. Hopefully,
these results will dispel several common misconceptions
that continue to persist due to the paraxial scalar predic-
tion of Eq. (3). Two related misconceptions are (i) the no-
tion that scalar theory imposes energy on the evanescent
diffracted orders® and (ii) the prediction, from Eq. (3) and
illustrated in Fig. 1, that it is impossible to obtain a dif-
fraction efficiency greater than 0.3386 for the first dif-
fracted order of a sinusoidal phase grating.

We could model either a uniformly illuminated grating
of finite size or a small beam of some specific size and
shape underfilling a large grating. In the first case the to-
tal radiant power being transmitted through the aperture
is reduced by the cos #;, whereas in the second case the
total transmitted radiant power remains the same but the
beam footprint in the plane of the grating is increased by
cos 6; and the exitance emerging from the plane of the
grating is reduced by cos 6;. Both cases should yield the
same results for diffraction efficiency, which is defined as
the ratio of the radiant power in a given diffracted order
to the radiant power in the incident beam. We have cho-
sen to analyze the first case to be consistent with Good-
man’s paraxial treatment.”

Using a symbolic notation for special functions popular-
ized by Goodman'® and Gaskill,’? a square sinusoidal
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phase grating (of finite size, b X b) can be defined by the
complex amplitude transmittance function

A A

X

t&,5) = rect(7,3—j>exp|:ic—tsin(2ﬂj)7/¢;f):|. (19)
b b 2

Illuminating this grating with a uniform amplitude plane
wave with an angle of incidence 6; and using the following
mathematical identity

a N
exp[igsin(ZmA//d)] E J ( )exp(szmy/d),

(20)
we can now rewrite Eq. (10) as
A2 29
L(a,B~Bo) = viEo~ | 2 Fjrect| =,
As | e bb
a 2
Xexp(i27By)d,, ( )exp(z27rmy/d)
(21)

This is an expression for the diffracted radiance emanat-
ing from a sinusoidal phase grating with its grating lines
(grooves) aligned parallel to the x axis when illuminated
with a uniform amplitude plane wave whose propagation
vector lies in the y—z plane. We thus have planar diffrac-
tion (all of the diffracted orders lie in the y—z plane) and
the grating equation can be written as

B + Bi=mld, (22)

where B,,=sin 6,, and B;=sin 6,.
Applying the convolution theorem of Fourier-transform
theory to Eq. (21), we obtain

)\2

L(a,B-By) = 'YiEOZ

% 2
E FS rect| —,— |exp(i27By)
bb

m=—w©

o {Jm<g>exp(i2wmy/&)}

where #* denotes a two-dimensional convolution
operation.'® Applying the shift theorem and the similarity
theorem of Fourier-transform theory, and noting that the

2
(23)

quantity exp(i2mn5//3) merely Fourier transforms into a
shifted delta function, &(«,B-m/ El), we have

Nl I | a B+pB;
E ——sinc
m=—c 1/b2

L(a,8- By) = '}’onA

1/b 1/b
2

# *J,n(g)ﬁ(a,ﬁ—m/&) (24)

Since any function convolved with a delta function merely
replicates that function at the location of the delta func-
tion,
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A2 1
L(a,B- Bo) = viEo— E J, ( )

A | e /62
A\ |2
o B + Bi -mld
Xsin¢| —,———— . (25)
1/b 1/b

From the grating equation expressed in Eq. (22), the ar-
gument of the sinc function becomes

L(asIB_BO)
1 ~ Pm
S o | P
m=— l/b2 l/b 1/6

(26)

2

- ‘YLEO

S

Since AB= 1/d>1/ I;, there is negligible overlap between
the individual sinc functions; hence there are no cross
terms in the squared modulus of the above summation.

Factoring b2 outside of the summation sign and noting
that A,=b2, we can write

1 a -
L(a,B- o) = %Eoz J2( ){—Asmcz(—nﬁ Bm)]

m=—o 1/b* b 1/b
27)

Substituting Eq. (27) into Eq. (16) and then into Eq. (15)
and interchanging the order of the summation and the in-
tegral operation, we have

max
Pr=yEKA, >, J2< )f
m=min — _\1 o2

1 ~Pm
X[fsinc2<i,ﬁ IAB )]dadﬁ, (28)

1/b2 16 1/b

where the summation is taken only over the diffracted or-
ders lying inside the unit circle in direction cosine space
(i.e., the propagating diffracted orders). The quantity in
square brackets is merely a unit volume sinc? function.'®
Since > 1, the sinc? function is very narrow and we will
assume that, even for large diffracted angles, it lies com-
pletely inside the unit circle; hence the above integral is
equal to unity and

max a
Pr=yEKA, >, J?n(§>. (29)

m=min

The radiant power in a given diffracted order is thus
clearly equal to

a
Pm= 'YiEOmsJ?n<§>’ (30)

and the diffraction efficiency of the mth diffracted order is
given by

T =05 = "mm (31)
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Fig. 3. Illustration of the peak-to-peak phase variation intro-
duced into a given diffracted order by reflection from a sinusoidal
surface.

Fig. 4. Diffraction grating efficiency of the first order of a per-
fectly conducting sinusoidal phase grating (h/d=0.20) in the Lit-
trow condition as predicted by the Beckmann—Kerchhoff theory,
the paraxial scalar theory, the nonparaxial (NP) scalar diffrac-
tion theory presented in this paper, and a rigorous integral vector
theory. EM, electromagnetic.

Note that the nonparaxial Eq. (31) for diffraction effi-
ciency reduces to the paraxial Eq. (3) when the denomi-
nator is a summation from minus infinity to plus infinity.
Recall that the quantity ¢ in the argument of the above
Bessel functions is the peak-to-peak phase variation in-
troduced by the grating. Figure 3 illustrates that a varies
not only with the angle of incidence, but with the dif-
fracted order as well:

a = (27/\)(hy + hy) = 2mh(cos 6; + cos 6,)).  (32)

Equations (31) and (32) can now be used to calculate
the diffraction efficiency of a perfectly conducting sinu-
soidal reflection grating. Figure 4 shows these predictions
for the first order in the Littrow condition and compares
them with the predictions shown in Fig. 1.

The above nonparaxial scalar diffraction theory pro-
vides remarkably good agreement with rigorous integral
electromagnetic theory, not merely in the paraxial regime
and the smooth surface (shallow grating) regime, but over
the entire range of \/d.

Similar predictions for sinusoidal reflection gratings at
h/d values of 0.05, 0.15, and 0.30 are shown in Figs. 5-7,
respectively. As expected, Fig. 5 shows that all of the theo-
ries agree well with rigorous calculations for low values of
h/d. The rigorous data in Figs. 5—7 are taken from Ref. 1,
p. 185.

Figure 6 not only shows good agreement between our
nonparaxial scalar theory and rigorous calculations, it
also demonstrates that our nonparaxial scalar diffraction
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Fig. 5. Diffraction grating efficiency of the first order of a sinu-
soidal phase grating (A/d=0.05) in the Littrow condition as pre-
dicted by the Beckmann—Kerchhoff theory, the paraxial scalar
theory, our nonparaxial (NP) scalar diffraction theory, and a rig-
orous integral vector theory. EM, electromagnetic.

Fig. 6. Diffraction grating efficiency of the first order of a per-
fectly conducting sinusoidal phase grating (h/d=0.15) in the Lit-
trow condition as predicted by the Beckmann—Kerchhoff theory,
the paraxial scalar theory, our nonparaxial (NP) scalar diffrac-
tion theory, and a rigorous integral vector theory. EM,
electromagnetic.

Fig. 7. Diffraction grating efficiency of the first order of a per-
fectly conducting sinusoidal phase grating (h/d=0.30) in the Lit-
trow condition as predicted by the Beckmann—Kerchhoff theory,
the paraxial scalar theory, our nonparaxial (NP) scalar diffrac-
tion theory, and a rigorous integral vector theory. EM,
electromagnetic.
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theory indeed predicts the Rayleigh anomalies’"? that
occur when a propagating order goes evanescent. Note the
abrupt increase in diffraction efficiency at A/d=0.67. This
is precisely the value of \/d at which the -1 and +2 dif-
fracted orders go evanescent.

Likewise, Fig. 7 shows that our nonparaxial scalar
theory continues to predict the major features of the dif-
fraction efficiency curve even for h/d values of 0.30. The
diminishing agreement for \/d >0.6 is probably due to
the fact that our theory does not include shadowing and
multiple-scattering effects. However, it does still predict a
second Rayleigh anomaly at A\/d=0.40 where the -2 and
+3 diffracted orders go evanescent.

Note that there is a substantial difference in the peak
values of the oscillatory behavior in the paraxial regime
as predicted by the paraxial and the nonparaxial scalar
theories in Figs. 4, 6, and 7. The diffraction efficiency pre-
dicted for the nonparaxial scalar theory is given by Eq.
(31). As N/d becomes very small (paraxial regime), the
number of diffracted orders becomes very large and the
denominator approaches unity resulting in the well-
known result given by nm=J,2n(a/ 2). Clearly for a finite
number of propagating orders the denominator is less
than unity. This results in a higher value for the non-
paraxial prediction. Our nonparaxial scalar theory as-
sumes that the energy previously contained in the eva-
nescent orders 1is distributed wuniformly over the
remaining propagating orders. This may or may not be an
accurate assumption. Additional rigorous data are needed
to quantitatively evaluate the deviation between the non-
paraxial scalar theory and the rigorous theory in the
paraxial regime.

5. SUMMARY AND CONCLUSIONS

Apparently much of the grating community believes that
scalar diffraction theory is valid only for A/d < 0.1.57 We
believe that this limitation is due to an unnecessary
paraxial approximation in the traditional Fourier treat-
ment of scalar diffraction theory, not a limitation of scalar
theory itself. We have therefore summarized the develop-
ment of a linear system’s formulation of nonparaxial sca-
lar diffraction theory that greatly expands the range of
parameters over which accurate predictions can be made
with simple Fourier techniques. This theory was then ap-
plied to the prediction of diffraction efficiency from per-
fectly conducting sinusoidal phase (holographic) gratings.
These diffraction efficiency predictions were compared
with those of the classical Beckmann—Kirchhoff theory, a
simple paraxial theory, and a rigorous integral vector
theory. The results for the diffraction efficiency of the +1
order in the Littrow condition were plotted in the usual
manner as a function of \/d for values from 0.1 to 2.0. Ex-
cellent agreement with rigorous electromagnetic theory
was shown for i/d values up to 0.3. This is quite remark-
able since this entire range (0.1>\/d > 2.0) lies outside of
what is usually thought of as the scalar regime (\/d
<0.1). Furthermore, our nonparaxial scalar theory even
predicts the Rayleigh anomalies"?? that are associated
with the redistribution of energy from the evanescent or-
ders to the remaining propagating orders. Hopefully,
these results completely dispel the notion that scalar
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theory imposes energy upon the evanescent orders.” We
are fully aware that there are two distinct types of effi-
ciency anomalies: Rayleigh anomalies and resonance
anomalies. The resonance anomalies are an electromag-
netic effect that depends upon the optical constants of a
specific material, and thus do require a rigorous vector
theory (they should be nonexistent in the perfectly con-
ducting gratings modeled in this paper). Also, we have
only compared our scalar predictions with rigorous calcu-
lations for TE polarization. We will report at a later date
on our attempt to quasi-vectorize our nonparaxial scalar
theory to see if we can predict some of the anomalous TM
behavior.

Corresponding author James E. Harvey’s e-mail ad-
dress is harvey@creol.ucf.edu.

REFERENCES

1. R. Petit, Electromagnetic Theory of Gratings (Springer-
Verlag, 1980), p. 98.

2. P. Beckman and A. Spizzichino, The Scattering of
Electromagnetic Waves from Rough Surfaces (Pergamon,
1963).

3. J. M. Bennett and L. Mattsson, Introduction to Surface
Roughness and Scattering, 2nd ed. (Optical Society of
America, 1999).

4. J. C. Stover, Optical Scattering, Measurement and
Analysis, 2nd ed. (SPIE, 1995).

5. D. A. Gremaux and N. C. Gallager, “Limits of scalar
diffraction theory for conducting gratings,” Appl. Opt. 32,
1048-1953 (1993).

6. D.A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of
scalar diffraction theory for diffractive phase elements,” J.
Opt. Soc. Am. A 11, 1827-1834 (1994).

7. E. G. Loewen and E. Popov, Diffraction Gratings and
Applications (Marcel Dekker, 1997).

8. S. D. Mellin and G. P. Nordin, “Limits of scalar diffraction
theory and an iterative angular spectrum algorithm for
finite aperture diffractive optical element design,” Opt.
Express 8, 705-722 (2001).

9. D. Maystre, “Rigorous vector theories of diffraction
gratings,” in Progress in Optics XXI, E. Wolf, ed. (Elsevier
Science, 1984).

10. J. W. Goodman, Introduction to Fourier Optics (McGraw-
Hill, 1968).

11. M. Born and E. Wolf, Principles of Optics (Pergamon,
1980), p. 598.

12. T. K. Gaylord and M. G. Moharam, “Analysis and
applications of optical diffraction by gratings,” Proc. IEEE
73, 894-937 (1985).

13. C. V. Raman and N. S. N. Nath, “The diffraction of light by
high frequency sound waves,” Proc. Ind. Acad. Sci. A 2,
406-413 (1935).

14. C. Palmer, Diffraction Grating Handbook, 4th ed.
(Richardson Grating Laboratory, 2000), p. 15.

15. J. E. Harvey, “Fourier treatment of near-field scalar
diffraction theory,” Am. J. Phys. 47, 974-980 (1979).

16. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L.
Thompson, “Diffracted radiance: a fundamental quantity in
a nonparaxial scalar diffraction theory,” Appl. Opt. 38,
6469-6481 (1999).

17. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L.
Thompson, “Diffracted radiance: a fundamental quantity in
a nonparaxial scalar diffraction theory: errata,” Appl. Opt.
39, 6374-6375 (2000).

18. J. A. Ratcliff, “Some aspects of diffraction theory and their
application to the ionosphere,” in Reports on Progress in
Physics, A. C. Strickland, ed. (Physical Society, 1956), Vol.
XIX.

19. J. D. Gaskill, Linear Systems, Fourier Transforms, and
Optics (Wiley, 1978).



Harvey et al.

20.

21.

22.

23.

J. E. Harvey and R. V. Shack, “Aberrations of diffracted
wave fields,” Appl. Opt. 17, 3003-3009 (1978).

J. E. Harvey, A. Krywonos, and D. Bogunovic, “Tolerance
on defocus precisely locates the far field (exactly where is
that far field anyway?)” Appl. Opt. 41, 2586-2588 (2002).
R. W. Wood, “On a remarkable case of uneven distribution
of light in a diffraction grating spectrum,” Philos. Mag. 4,
396-410 (1902).

J. E. Harvey and C. L. Vernold, “Description of diffraction

24.

25.

Vol. 23, No. 4/April 2006/J. Opt. Soc. Am. A 865

grating behavior in direction cosine space,” Appl. Opt. 37,
8158-8160 (1998).

J. E. Harvey and E. A. Nevis, “Angular grating anomalies:
effects of finite beam size upon wide-angle diffraction
phenomena,” Appl. Opt. 31, 6783-6788 (1992).

A. Hessel and A. A. Oliner, “A new theory of Wood’s
anomalies on optical gratings,” Appl. Opt. 4, 1275-1297
(1965).



