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Fiber-optic imaging systems play a unique role in biomedical imaging and clinical practice
due to their flexibilities of performing imaging deep into tissues and organs with minimized
penetration damage. Their imaging performance is often limited by the waveguide mode
properties of conventional optical fibers and the image reconstruction method, which
restrains the enhancement of imaging quality, transport robustness, system size, and
illumination compatibility. The emerging disordered Anderson localizing optical fibers
circumvent these difficulties by their intriguing properties of the transverse Anderson
localization of light, such as single-mode-like behavior, wavelength independence, and
high mode density. To go beyond the performance limit of conventional system, there is a
growing interest in integrating the disordered Anderson localizing optical fiber with deep
learning algorithms. Novel imaging platforms based on this concept have been explored
recently to make the best of Anderson localization fibers. Here, we review recent
developments of Anderson localizing optical fibers and focus on the latest progress in
deep-learning-based imaging applications using these fibers.
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INTRODUCTION

The integration of optical fiber devices and imaging processing algorithms enables the fiber-
optic imaging system (FOIS) to perform imaging deep into organs or tissues in a minimally
invasive way, which is a formidable task for other imaging techniques, such as the conventional
microscopy. The general layout (Figure 1A) of a FOIS consists of the following components: an
optical fiber, a proximal-end illumination unit, a distal-end collection unit, and a data processing
unit. Depending on the application and the optical fiber type used, the outer diameter and the
optical fiber length can range from ∼125 to ∼1,000 µm and from a few centimeters to a few
meters, respectively [1]. The miniature size, high flexibility, and long light delivery distance lay
the foundation of FOIS’s uniqueness, opening new horizons and creating numerous
opportunities for both basic biomedical research and clinical practices. In fundamental
research, such as deep brain imaging, an FOIS can be easily implanted in freely moving
animal skulls for long-term imaging studies [2–6]. For clinical practices, a handheld FOIS
can go deep into human organs or tissues with minimized penetration damages, which
significantly benefits clinical diagnostics and surgical procedures [7–9].
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Different types of optical fibers have been explored to develop
the FOIS utilizing various mechanisms of image transport and
recovery [1, 4, 10–29]. Among FOIS solutions, multicore optical
fibers (MCFs) and multimode optical fibers (MMFs) are two
widely deployed fiber types. Several state-of-the-art systems using
MMFs or MCFs have demonstrated excellent imaging
performance and made tremendous progress in different
application scenarios [3–6, 11, 23, 25, 26, 29–31]. Despite
these conventional optical fibers’ success, some challenges
remain, hindering further enhancement of FOIS imaging
capabilities. The main issues are the high sensitivity to
environmental perturbations, low imaging quality and speed,
complex and expensive systems, and poor compatibility with
incoherent spectrally broad illumination. These challenges
originate from restrictions related to both the optical fiber
device and the image reconstruction technique. For MMFs, its
single large core supports thousands of orthogonal modes. The
imaging information is encoded in the multimode interference
speckle patterns (Figure 1B). Benefiting from its small diameter
(∼200 µm), MMF-based FOISs are reported to be the least
invasive endoscopic imaging method, especially for deep brain
imaging [3]. Unfortunately, the multimode interference of MMFs
is extremely sensitive to any tiny variations, such as mechanical
bending or thermal perturbations, that effects the fiber refractive
index distribution [4, 12]. Some attempts have been made to
tackle this difficulty, such as an insightful complex theoretical
framework and the application of graded-index MMFs [11, 12,
32–34]. Nevertheless, this issue is far from truly resolved. For
most demonstrated biomedical imaging applications, the MMF
still has to be kept stringently in its shape and the length is limited
to a few centimeters, which severely limits the implementation of
MMF-based FOIS in many scenarios [3–6, 33]. While faced with
robustness issues, powerful techniques have been developed to
unscramble imaging information embedded in the speckle
patterns recorded with MMF-based FOISs [11, 12, 32, 35]. As
indicated in Figure 1B, the wave propagation behavior through
the MMF is calibrated by measuring the transmission matrix
(TM) with interferometry and a wavefront shaping device, such
as a spatial light modulator (SLM) or a digital micromirror device

(DMD) [3, 35]. The TM method has been successfully
demonstrated in practical biomedical imaging [3, 4, 6]. Yet,
due to the restrictions of the MMF multimode interference,
the TM-based imaging process is also vulnerable to external
perturbations. Minor thermal fluctuations (a few degrees
Celsius) or tiny mechanical twisting (a few hundred
micrometers) can change mode coupling and scramble the
pre-calibrated TM [4]. In addition, the experimental
realization and the imaging algorithm of the TM-based
method require relatively complex and high-cost systems while
being limited by imaging speed and illumination coherence [17,
35–37]. Meanwhile, the imaging quality is often impaired by
evident artifacts, such as defective background and ghost
images [3, 4].

MCFs have a much larger diameter than the MMFs, ranging
from a few hundred micrometers up to 1 mm. MCFs are widely
utilized imaging fibers and have been applied with great success in
practical applications [1, 2, 13, 14, 20, 22, 23, 26, 30]. They consist
of thousands of individual cores, which are often referred to as
“coherent fiber bundles” [1]. Each core in MCFs can work as a
pixel to sample and transport the intensity image (Figure 1C).
Although the image sampling is straightforward, the densely
compacted core patterns featured in MCFs produce pixelated
artifacts in transported images (Figure 1C) [14, 38–40]. The
compact structure even further limits the imaging robustness,
imaging quality, and illumination choice. For example, the
coherent core-to-core coupling is sensitive to wavelength
tuning and perturbations [15–17, 38, 39, 41]. Severely blurred
images are obtained away from the optimal wavelength or under
fiber deformations. Especially for techniques using a wavefront-
shaping method to mitigate pixelated artifacts, the strong core-to-
core coupling in MCFs makes the imaging rather intolerant to
perturbations. To mitigate the influence of the core-to-core
coupling, MCF-based FOISs resort to narrowband illumination
and deploy a low mode density design. Besides the cross-talk
issue, conventional MCF-based FOISs usually require bulky and
complex distal optics or mechanical actuators, which limit the
extent of miniaturization and can induce severe penetration
damage [10, 13].

FIGURE 1 | (A)General layout of a FOIS, (B) Schematic of image transport through amultimode optical fiber, (C) Schematic of image transport through amulticore
optical fiber.
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The physical properties of the optical fiber fundamentally
restrain the system performance, whereas the image
reconstruction algorithm deployed in the FOIS is equally
important to 1) recover the object from raw data and 2)
simplify the hardware realization. In practice, the raw imaging
data from the proximal end of the optical fiber are not readily
interpretable; they are either speckle patterns or feature severe
artifacts. The imaging information is most likely hidden or
incomplete with these sparse and noisy patterns. To
reconstruct the object from the raw fiber-delivered data is an
ill-posed inverse imaging problem that lacks a unique solution or
is unstable with raw data. There are different approaches to
obtain the estimation of the object. The process of
transforming the object into the raw image through the
imaging system can be modeled by a forward operator. Based
on the forward model as well as prior knowledge about the
objects, most conventional methods tackle this issue through
solving the regularized optimization problem by carefully
designed regularizers and minimization algorithms. Such
model-based methods have been widely implemented and
achieved great success. Yet, some difficulties remain to be
overcome 1): significant artifacts arise with more noisy or low-
quality raw imaging data 2): the handcrafted model limits the
universality and might be unavailable for some complex physical
systems. On the other hand, the choice of the image
reconstruction method also affects the complexity of the
experimental system. For methods requiring wavefront
shaping process, the configurations and workflow tend to be
complicated and induce high costs.

Instead of relying on conventional optical fibers and
algorithms, another avenue to go beyond the barrier would be
exploring new waveguiding physics as well as resort to a learning-
based approach to tackle the inverse imaging problem. Recently,
the emerging transverse Anderson localizing optical fiber (ALOF)
provided a lot of evidence that transversely random fiber
structures can be utilized as astonishing robust and high-
quality imaging carriers [42–45]. ALOFs can potentially
supersede conventional optical fibers based on their
counterintuitive but intriguing properties: highly multimode
systems with single-mode-like behaviors and wavelength-
independent point spread functions [46–49]. They enable
imaging encoding through densely distributed localized fiber
modes that are highly robust to perturbations. They can also
transport images under broadband illumination without
wavelength-dependent blurry problems suffered by the MCFs.
The underlying physics originates from the transverse Anderson
localization effects, which guarantees robust, broadband, and
high-quality image transport [42, 43]. While the novel
waveguiding physics can relieve the device restrictions, it still
requires a well-designed imaging reconstruction algorithm to
make the utmost of the fiber. Due to their outstanding
performance on image classifications, segmentations, and
reconstructions, deep-learning (DL) methods have motivated
researchers to deploy these algorithms in the fiber optical
imaging area [18, 19, 27, 50–54]. DL-based research in optics
and photonics is fast-growing. It has gained great success in
various applications, and proved to outperform conventional

model-based algorithms in many imaging problems [55, 56].
In particular, DL methods can be well adapted for the inverse
problem of the FOISs. One important reason is that accurate
physics modeling of the complex wave propagations through
special optical fibers is often a formidable task. For example, due
to the absence of analytical solutions, numerical simulations
require substantial computational resources even for simplified
wave propagation within a ALOF [57]. On the other hand, DL-
based solutions boosted by big data stand for a universal approach
without the need for a handcrafting forward model [58–60]. They
are able to directly “learn” the underlying physics of a complex
waveguiding system merely relying on a set of training data
without any prior knowledge [19]. Boosted by the new-
generation graphics processing units (GPUs), many DL-based
tasks can be processed with a personal computer and reach
milliseconds per frame imaging speed for a trained DL neural
network. Unlike conventional solutions, DL-based methods
directly utilize raw intensity images and claim no particular
requirements on the coherence or polarization properties of
the illumination. They can, therefore, bypass the constraints of
complex and high-cost optical systems, such as interferometry
and wavefront shaping devices, leading to cost-effective
configurations with low complexity.

In this review, we focus on the learning-based ALOF imaging
systems. Anderson localization related research is an active and
extremely broad area. We mainly focus on the discoveries of
ALOF that are related to imaging applications. We will present
recent progress of the Anderson localization of light in
waveguide-like structures in the first section. Following the
discussion of ALOFs, we will give a brief introduction to the
basics of the DL and convolutional neural network (CNN).
Finally, we will give a summary of recent progress in imaging
through integrating ALOF with CNNs. Due to the fiber-optic
imaging oriented applications, the discussion of the algorithm
will be limited to the deep convolutional neural network
(DCNN).

ANDERSON LOCALIZING DISORDERED
OPTICAL FIBER

Historical Review on the Origin of ALOF
We summarize the historical development of ALOFs in Figure 2.
We mainly select those which made important impacts on the
imaging applications of ALOFs. As shown in Figure 2, Anderson
localization was first introduced by P.W. Anderson to describe
electron’s motion in a highly disordered medium within the
quantum mechanic’s framework [61]. In his seminal paper,
disordered defects in the potential landscape cause multiple
scattering of electron waves, resulting in spatially localized
electronic states. Since it is a consequence of the wave nature,
Anderson localization is broadly applicable to both quantum
mechanical waves defined by the Schrödinger equation and
classical wave systems, such as acoustics, elastics,
electromagnetics, and optics [62–68]. Among various classical
wave realizations, Anderson localization of light has attracted
tremendous attention due to mature experimental tools to probe
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the localization phenomena and diverse possibilities to construct
disordered “optical potentials” using disordered refractive index
distributions [69–72]. Many efforts have been made to observe
and apply Anderson localization of light in various systems
[44–46, 73–82]. For Anderson localization of light to occur,
the wave scattering must be strong enough so that the
wavelength in the medium is comparable to the scattering
mean free path, the so-called Ioffe-Regel criterion [83]. In 3D
system, it remains quite challenging to satisfy this criterion. Even
if large refractive index variations meet the needs for observing

3D localization of light, the optical system usually introduces
considerable losses, making it difficult to differentiate Anderson
localization-induced exponential decay from optical loss-induced
exponential decay. But this restriction is considerably relieved in
quasi-2D optical systems [84, 85]. One realization of such a
system is a waveguide-like structure (Figure 3A1) where the
refractive index distribution is disordered in the transverse
plane but uniform along the optical wave propagation
direction [42, 84]. To require the optical waves to be localized
in the 2D transverse plane, merely the wavevector’s transverse

FIGURE 2 | Historical overview of ALOF developments.

FIGURE 3 | (A1) Schematic of a quasi-2D disordered waveguide structure for observation of transverse Anderson localization; each pixel is randomly assigned by a
refractive index of n1 or n2 (red or blue color) with equal probabilities. (A2)Cross section of a Gaussian beam propagation process in the disordered waveguide. (B1) SEM
image of PALOF cross section. (B2) SEM image of a zoomed-in area of the PALOF cross section. The sample is exposed to a solvent to differentiate between polymethyl
methacrylate (PMMA) and polystyrene (PS) polymer. The darker regions are PMMA; the Material filling fraction is ∼50%; The feature size is ∼0.9 µm. (B3)
Transported images of numbers “4” and “6” through a 5-cm-long PALOF sample. The numbers are elements from group 3 in the 1951 USAF resolution test chart. (C1)
SEM image of GALOF cross section: white areas are fused silica and black areas are air holes; the material filling fraction is ∼28.5%; The feature size is ∼1.6 µm. (C2)
Transported images of numbers “3” and “5” through a 4.5-cm-long GALOF sample. The numbers are elements from group 3 in the 1951 USAF resolution test chart. (C3)
Elements in the 1951 USAF resolution test chart. (D) GALOF fabrication process. (A1,A2), (B1,B2), and (C1–C3) are adapted with permission from [42, 86], and [103] ©

The Optical Society, respectively. (B3) is adapted with permission [98] © IEEE.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7103514

Zhao et al. Learning-Based Disordered Optical Fiber Imaging

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


components need to be taken into consideration. The transverse
component can be 10 to 100 times smaller than the full
wavevector [85, 86]. Even if the mean free path is much larger
than the wavelength, localization of light could still occur
transversely in quasi-2D optical systems. As the simulation
demonstrated in Figure 3A2, by coupling a Gaussian beam
into the disordered waveguide, the beam first goes through an
initial expansion and eventually localizes to a stable state
fluctuating around with a stable beam radius [42]. The above
optical wave behavior in the quasi-2D system is often cited as
transverse Anderson localization (TAL). The 2D TAL was
proposed by Abdullaeav et al. and De Raedt et al.
independently based on different mechanisms [84, 87].
Abdullaeav’s scheme is to impose the disorder on top of an
existing ordered lattice with periodic potential. Without the
imposed randomness, the wave behavior would be the Bloch-
periodic solutions that extend over the whole lattice. By
introducing sufficient disorder into effective index or coupling
coefficients, the wave propagation would collapse into localized
states in certain regions of the lattice. For De Raedt’s scheme,
instead of introducing disorder to an existing lattice, a completely
random underlying potential (e.g., 2D refractive index
distribution in an optical fiber) is created. De Raedt proposed
an optical-fiber-like waveguide structure as shown in Figure 3A1.
The pixels in the transverse plane have a randomly chosen
refractive index of n1 or n2 with equal probabilities. The
longitudinal refractive index distribution is uniform. The size
of the pixel is assumed to be comparable to the wavelength. Based
on intensive numerical simulations, De Raedt demonstrated that
optical waves decay exponentially in the transverse plane and
remain localized transversely with longitudinal beam
propagation. Such TAL behavior is caused by multiple
scattering in the transverse plane and similar to the simulation
results shown in Figure 3A2. Abdullaeav’s and De Raedt’s results
were purely theoretical investigations. The first experimental
observation of TAL of light was demonstrated by Segev’s team
in 2007 [85]. Their optical system is based on a scheme similar to
Abdullaeav’s proposition: disorder is imposed on an existing
ordered triangular lattice of waveguides using photorefractive
crystals. In this pioneering work, they use an intense laser to write
a transversely disordered but longitudinally uniform refractive
index distribution into the photorefractive crystal and probe the
TAL of light with another laser beam. The photoinduced
refractive index variation is on the order of 10−4. The small
variations of the refractive index result in large localization beam
radii with significant standard deviations among different
realizations of the random refractive index profiles. In this
case, the beam radius of TAL is meaningful in a statistically
averaging sense. Yet, by introducing sufficiently large refractive
index variations, the sample-to-sample variations of TAL beam
radius can be significantly suppressed so that the localized beam
radius of one realization can resemble the ensemble average [57,
86, 88–90]. This self-averaging behavior would guarantee similar
localization lengths for different disordered refractive index
profile realizations, highly desired for pushing TAL optical
waveguides into practical applications. After Segev team’s
pioneering work, many efforts have been made to explore

TAL phenomena, which finally led to the development of
ALOFs [91–94].

Design Parameters of ALOF Related to TAL
Modes
Experimentally demonstrated ALOFs are waveguide-like binary
disordered structures (similar to Figure 3A1) and are in line with
De Raedt proposed design. Depending on the optical fiber
materials, there are mainly two types of ALOFs that were
developed by different teams: 1) all-solid-state ALOFs, such as
polymer ALOFs (PALOFs, Figure 3B1) and tellurite glass ALOFs;
2) the glass-air ALOFs (GALOFs, Figure 3C1) [79, 86, 95–100].
In the following discussions, we mainly take the PALOFs and
GALOFs as examples. For device-level applications, one would
expect that the beam’s localization radius is sufficiently stable
based on self-averaging behavior. Otherwise, the transported
beam radius could vary with the transverse location in the
disordered structure unpredictably. Stable localized beam radii
require a proper ALOF design with enhanced TAL. Previous
studies in the ALOF design suggest the following most relevant
transverse structure parameters: the transverse size of cross-
section, the feature size (width of each refractive index pixel),
the material filling fraction (ratio of low-index materials to the
high-index host medium), and the refractive index contrast [42,
57, 90, 98]. First, the transverse size of the ALOF should be large
enough so that the localized modes in the interior area would not
be affected by boundary effects and are merely decided by the
TAL mechanism. For example, the diameters of most recently
reported ALOFs range from ∼125 to ∼400 µm. Second, the
optimum feature size was speculated to be around half of the
free-space wavelength for fiber materials with a refractive index
around 1.5. The above design is just an educated guess, whereas
the truly optimal feature size relative to the wavelength is still in
dispute [98]. Recent observation of localization radius being
independent of the wavelength within a rather wide spectral
range has cast more shadows on the optimal feature size
speculation [47, 48]. While this issue needs more investigation
to provide more experimental evidence, our empirical
observations based on GALOF fabrications and tests show that
strong TAL requires a feature sizes on the order of the free-space
wavelength [44]. Third, the optimal material filling fraction
suggested by intense numerical simulation shows that 50%
should be the ideal design [42, 57]. This parameter is from the
observation that a higher material filling fraction results in a
smaller localized beam radius. It should be noted that the above
conclusions apply to refractive index contrasts below 0.5. For
even larger refractive index contrasts, it is still an open question
[98]. While a 50% material-filling fraction is relatively easier to
achieve for PALOFs, a similar material-filling fraction is still quite
challenging for GALOF fabrication. The reported highest
material filling fraction of the GALOF is still below 30%.
Finally, increasing the refractive index contrast between the
two filling materials can generally enhance TAL and reduce
the localized beam radius. Previous investigations have
confirmed that an index difference of ∼0.5 for GALOF can
considerably reduce the localized beam radius compared to the
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index difference of ∼0.1 for PALOF. Nevertheless, one should be
cautious with the finding that the dependence of localization
length’s reduction on index difference enhancement tends to
saturate asymptotically [42]. Therefore, further reductions in
localization length may be quite small by increasing index
difference beyond the threshold value.

Besides the discussed design parameters, the optical losses of
the fiber materials need to be taken into consideration for specific
applications. For imaging applications, PALOF fibers suffer from
huge signal attenuations in the visible band, limiting their image
transportation distance to less than 20 cm [74]. In comparison,
the fused silica based GALOFs have much smaller material losses,
which is shown to support image transport distance, at least, to 1-
m level [44]. Fused silica is also the mature and widely deployed
optical fiber industrial-grade material, making it cost-effective
and easy-to-implement. Based on the above roadmap of ALOF
design, both PALOFs and GALOFs have demonstrated superior
imaging capabilities. As shown in Figures 2B,C, they can directly
transport high-quality intensity images from a resolution test
chart. Different observations have further confirmed that the
quality of the images transported by ALOFs are comparable to or
even higher than some of the best commercially available
coherent fiber bundles. As a special case of MCFs, the core-to-
core coupling in fiber bundles degrades the point spread function
with increasing transmission distance [101]. In order to suppress
the cross talk between individual cores, the MCFs usually have to
randomize the core size and control the core density, which
results in low mode density. But low mode density brings in more
severe pixelated artifacts. ALOFs resolve the contradiction by
strongly coupling all the neighboring sites but preventing the
cross talk through extreme randomness. Therefore, ALOFs
feature about two orders higher mode densities than MCFs
and can outperform them in terms of transmitted image
quality. Especially, the point spread function of ALOFs is
determined by the localization length that is independent of
the transmission distance.

Fabrication Techniques of ALOF
Finally, the fabrication of ALOFs is also an important topic to
explore. PALOF’s fabrication has been reported by Mafi’s team
[99, 102]. To fabricate the PALOF, 40,000 polymethyl
methacrylate (PMMA) strands are randomly mixed with
40,000 polystyrene (PS) strands first. Then the randomly
mixed strands are assembled into a preform with a square
cross section, the side length of which is ∼2.5 inches. The
preform is further drawn into the final PALOF with a
diameter of ∼250 µm. The optimal GALOF fabrication recipe
is still under investigation. The first GALOF was reported by
Karbasi et al. in 2012, which is drawn from “satin quartz”
(Heraeus Quartz) at Clemson University [95, 99]. The “satin
quartz” is a type of porous artisan glass. This type of GALOF has a
diameter of 250 μm, which is drawn from a rod preform with a
diameter of 8 mm. The average air-filling fraction is about ∼5%.
The feature size of air holes varies from 0.2 to 5.5 µm. Chen and Li
at Corning Inc. also reported their random air-line GALOFs that
were fabricated using the outside vapor deposition process [96,
99]. They first create a silica soot blank by soot deposition in the

laydown process. The silica soot is chlorine dried in a
consolidation furnace, then further consolidated in the
presence of 100% N2. The N2 was trapped in the blank to
form glass with randomly distributed air bubbles. Finally, the
preform with random air bubbles are drawn into fibers with
random airlines. The air-filling fraction of the air-line GALOFs is
lower than 2%. The air hole size is being around 0.2–0.4 µm.
Being limited by the low air-filling fractions, these early reported
GALOFs can only support TAL in some local areas of the
transverse plane and are not suited for the image transport. In
2017, Zhao et al. developed GALOFs with ∼28.5% air-filling
fraction using the well-established stack-and-draw fabrication
technique [44, 79]. The feature sizes are around 1.6 µm. Due to
the high air-filling fraction, TALs can be observed across the
whole disordered area. A high-quality image transport process
has been demonstrated through a meter-long GALOF sample
[44]. The fabrication workflow of Zhao’s GALOF is shown in
Figure 3D. In the preform fabrication phase, hundreds of silica
capillary tubes are first drawn with various outer diameters (ODs)
and inner diameters (IDs). The ODs of the capillaries vary from
∼100 to 180 µm. The ratio of ID to OD ranges from 0.5 to 0.8.
These capillaries are cut into the same 1-m-long length and
randomly mixed. Then they are assembled and fed into a
silica jacket with an inner diameter of ∼15 mm to create the
preform. In the fiber fabrication phase, the first step is to draw the
preform into a cane with ∼3 mm OD. The second step is to draw
the cane to the desired fiber size (OD: ∼400 μm, ID: ∼280 µm).
During the fiber fabrication process, it is important to monitor
the variations of the cross section with a bright-field microscope.
The finished GALOF samples feature characteristic distributions
of air-hole areas that typically range from 0.64 µm2 to over
100 μm2. Statistically, air holes with an area of 2.5 µm2 cover
the largest disordered area.

Wavelength Dependence and Wavefront
Qualities of TAL in ALOF
ALOFs’ intriguing mode properties lay the foundation for
developing robust FOIS with high imaging quality. Different
types of ALOFs share similar properties regardless of the
specific materials. Previous investigations focus more on
PALOF-based platforms since PALOFs appeared earlier than
GALOFs. The early investigations on ALOF’s beam
multiplexing properties proved that multiple-beam
propagations are feasible for PALOFs [42, 88]. The spatially
multiplexed beams are also highly robust: the TAL beam
propagation channels can withstand substantial bending, the
degree of which goes beyond the limit of conventional optical
fiber [88]. In later research, Giancarlo et al. discovered that the
TAL transmission channels in the PALOF demonstrate a high
degree of resilience to mechanical perturbations and variations of
beam coupling positions, which are strong evidence of single-
mode channels [46]. This explains the high stability of PALOF’s
beam multiplexing against macro bending. The emerging
GALOFs further confirm the ALOFs’ high robustness against
strong mechanical fiber bending through image transport tests
[18, 44]. As shown in Figure 4A, for the samemeter-long GALOF
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sample, the transmitted pattern under a 180-degree mechanical
bending is almost the same as the one delivered through the
straight fiber [44]. Recent research also showed that a
considerable number of transmission localized modes in
GALOFs have low M2 values (close to ∼1) based on both
numerical simulations and experimental measurements
(Figure 4B–D) [49]. Here, M2 value is a widely used metric to
evaluate laser beam quality, which is equal to one for an ideal
diffraction-limited beam. More details regarding the calculations
of M2 values refer to Ref. [104]. A double-slit interference
experiment in this research proves the high spatial coherence
of these localized GALOF modes. The above observations
demonstrate that the localized modes in GALOF exhibit
nearly-diffraction-limited wavefront quality, making the
localized transmission channels comparable to single-mode
optical fibers. Significantly, these high-quality modes can be
excited easily without any expensive and sophisticated devices,

such as spatial light modulators. What further distinguishes the
ALOFs from other imaging fibers is the wavelength independence
of the localization lengths over a reasonably broad spectral range
(∼1 µm bandwidth). Since the width of the point spread function
of the ALOFs is determined by the localization lengths, the
imaging capabilities of the ALOFs should not be degraded
with broadband illumination. This phenomenon has been
observed experimentally for both PALOFs and GALOFs by
different research groups [47, 48]. Referring to Figure 4F, two
different localized spots at the GALOF are picked up to
investigate the dependence of localization length on
wavelength tuning. It appears that the localization length
fluctuates around a stable averaging value for wavelengths
varying from 540 to 1,600 nm. With the same GALOF sample,
the colorful light-emitting array from the smartphone screen
pixels is coupled into the input facet of the GALOF sample. Due
to the wavelength independence properties, after transmitting

FIGURE 4 | (A) Images of digit “4” from group 3 on the 1951 USAF resolution test chart are transported through a 90-cm-long GALOF sample for both straight and
bent status, (B)Histogram of numerically calculated M2 values for 1,500 localized modes in a real GALOF sample. The vertical axis represents the total number of modes
for different M2 values, (C)Numerically calculated density histogram of the positions of the modes in (B) in the GALOF cross-section. The value of each pixel corresponds
to the number of localized modes, (D) Histogram of M2 values for 30 localized modes measured in the experiment, (E) Nearfield image of the smartphone screen
pixels after being transported through a 27 cm-long GALOF. The microscope image shows the pixel arrangement that is imaged onto the input facet of the GALOF. (F)
Localization length obtained from the transmitted beam at the GALOF output facet vs. wavelength for two different spots. The shaded areas indicate the uncertainty. The
two dashed lines correspond to the averaging values of the measurements for each output spot, (A–D) are adapted with permission from [103] © The Optical Society.
(E,F) are adapted with permission from [48].
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through 27 cm long fiber, the individual smartphone pixels are
clearly visible and separable with different colors (Figure 4E). All
above-mentioned unique properties guarantee the device
foundations for robust high-quality colorful image transport
through ALOFs, which breaks the bottlenecks imposed by the
conventional MMFs or MCFs and opens more possibilities for
fiber-optic imaging. We summarize some of the important
imaging-related parameters of three different types of fiber
(MMF, MCF and GALOF) in Table 1. Since the GALOF
developed at CREOL is the first glass-air ALOF that supports
high-quality long-distance imaging, in the following discussions,
we mainly focus on this type of ALOF.

LEARNING-BASED APPROACH FOR
FIBER-OPTIC IMAGING

Fundamentals of CNN
The learning-based approach has attracted lots of attention
recently, mainly focusing on the DCNNs to tackle the inverse
imaging problem of the fiber-optic system [18, 19, 27, 50–52,
105]. DCNN is a specific class of machine learning techniques.
Nowadays, the deep neural network is often praised by mass
media as one of the most fascinated techniques. From a historical
perspective, the neural network has been more than 50 years old
since Frank Rosenblatt first developed the perceptron in 1957
[106, 107]. The concept of CNNs is also well known formore than
30 years. The neural network with the backpropagation was
proposed and deployed to solve imaging problems as early as
the 1980s [108–110]. In the past half century, the research of
neural networks experienced a few degressions and progressions.
The resurgence is spurred by the rise of the graphic processing
unit (GPU), the breakthrough in the algorithms for large-scale
deep neural networks, and the huge amount of data for various
applications brought by the digital era [58, 111–116]. In the
following discussions, we focus on some basics of neural networks
[117]. Neural network architectures are mostly based on
multiple-layer computational geometry. The latter layer
receives output from the previous layer. Every single layer
consists of many processing units, which can be called
“neurons”. We can take a simple two-layer fully-connected
neural network as an example to illustrate the above
framework (Figure 5A). In this two-layer neural network,
neurons in each layer are connected to all the previous layer
outputs (or the input data), which is the so-called fully-connected

or densely-connected architecture. The neurons can take
numerous inputs and generate a new output. The output of
the neurons further serves as the input for the neurons in the
next layers. The processing of each neuron consists of a linear
operation and a nonlinear operation. As shown in Figure 5B, the
linear operation includes weighted averaging plus an additional
bias. In this process, the weighted parameters and bias parameters
are introduced into the neural network. These parameters are
trainable, the values of which are iterated and updated in the
training process. Following the linear operations, the activation
function acts on the output of the linear operation to impose
nonlinearity. There are several widely used activation functions,
such as sigmoid, tanh, or ReLU. Among these different options,
ReLU is the most popular activation function in practice and
plays a central role in DCNNs (Figure 5C).

The first step to solve a specific problem is to “teach” the neural
networks using the data. In this training process, the parameters
are iteratively adjusted by optimizing the cost function so that the
neural network “learns” the underlying model from the data. The
training process can be supervised or unsupervised. We mainly
take supervised learning as an example here. Generally, the data
would be divided into three datasets, the training dataset, the
validation dataset, and the test dataset. The training dataset is
what the neural network sees and learns from. The validation
dataset accompanies the dynamic training process to generate
temporal test errors for real-time evaluation. The neural network
merely evaluates the training and tunes the parameters based on
the validation data but never learns from the validation dataset.
Different from the validation dataset, the test dataset is only be
used once after the training process. It serves to evaluate the
trained model’s capability to what extent it could accurately
generalize problem. A schematic of the training workflow is
shown in Figure 5A. The training data are loaded into the
network after a randomized initialization. The optimization of
the parameters is then evaluated by calculating the loss through
the cost function based on a certain metric. For imaging
problems, mean squared error (MSE), mean absolute error
(MAE), and structural similarity index measure (SSIM) are
widely accepted metrics [118, 119]. The training process aims
to minimize the cost function using these metrics by iteratively
updating each trainable layer’s parameters. In Figure 5D, we
visualize the basic concept of the gradient descent process and
exemplify the equations to update the weights and the bias. In
practice, popular optimization methods, such as the Adam
optimization algorithm, are mainly based on the variants of

TABLE 1 | Comparison of imaging-related parameters for MMF, MCF and GALOF.

Robustness Mode properties Cladding
size (µm)

Penetration
damageSingle-/Multi-mode Wavelength

dependence
Mode density

(per µm2)

MMF Low Single core: Multimode High ∼1 ∼125–∼220 Small
MCF Low Multiple cores: Single mode or multimode for

individual core
High ∼0.1 ∼400–∼1,000 Large

GALOF High Single core: Multimode system formed by spatially
isolated single modes

Low ∼10 ∼125–∼400 Medium
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gradient descent, for example, the stochastic gradient descent
(SGD) [58, 120]. The SGD can use a subset of the data to update
the model iteratively, while gradience descent requires running
through all the data during the training phase. In order to apply
the SGD to train the network, the backpropagation procedure was
developed (Figures 5A,B,D) [108, 109]. The procedure computes
the gradient of the cost function relative to each layer’s weights
based on the chain rules. The gradient propagates backward from
the output to the input such that the gradients relative to the
weights of each layer can be calculated.

The above neural network basics can be directly applied to
the understanding of CNNs. A CNN is designed to handle
multiple array data, which fits the imaging data, such as 3D
array color imaging data or 2D array gray-scale imaging data
[58]. The general purpose of the CNN is to extract feature maps
from the imaging data through convolutional layers and pooling
layers. It usually applies many alternating layers of the

convolutional operation and pooling operation to gradually
extract high-level features from the low-level features. As
shown in Figures 5E,F, each unit of the feature maps is
connected to the previous feature maps’ local area through a
kernel (or a filter) that carries the weight parameters and is
shared by the same feature map. Specifically speaking, the kernel
moves in the feature maps with a certain stride to calculate the
weighted sum. The weighted sum is added with the bias map
(Figure 5F). Then, the above linear operation results are passed
to a nonlinear activation operation, such as the ReLU. It should
be noted that different feature maps are using different kernels.
The choice of the kernel size depends on the specific
applications (3 × 3 kernel in Figure 5). The above
operation’s primary purpose is to detect the local
conjunctions of imaging features of each layer. The reason is
that the local group values of imaging data are often highly
correlated, and the local statistics of imaging data are invariant

FIGURE 5 | (A) Schematic of a neural network with two fully-connected layers and its training workflow, (B) Schematic of the key mathematical operations for a
node (highlighted by blue circle): 1) linear operations by introducing weights parameters “w” and bias parameters “b”; 2) nonlinear operations by activation functions:
such as ReLU, sigmoid, tanh, (B) also shows the backpropagation through chain rule during the training process, (C) An example of the activation function: ReLU is the
most popular nonlinear operation. (D) Illustration of optimization process using gradient descent: iterated updated parameters to look for the local minimum, (E)
Schematic of a classification convolutional neural network: 1) the convolutional operation and pooling operation extract the imaging features; 2) fully-connected layers
classify the learned high-level feature, (F) Illustration of the convolutional layer and the nonlinear operation. A small kernel with 3×3 size is often deployed in this process,
(G) Illustration of pooling operations. 2×2 is a common choice of pooling patch size.
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to locations [58]. For a regular CNN, the pooling layer follows
the above convolutional layer. The pooling operation is to
extract the maximum or average local patch in the feature
maps (Figure 5G). The pooling layer manages to merge
semantically similar imaging features into one. It extracts
dominant features that are invariant to locations [58]. After
going through the convolutional layers and pooling layers, the
feature maps are flattened into a vector. This vector is
subsequently fully connected to other densely connected
layers. The final layer outputs a vector containing the
probability distribution for a classification problem with a
size matching the desired parameters, such as shown in
Figure 5E. The sample architecture shown in Figure 5E is an
oversimplified model. In practice, very deep architecture
containing dozens or even hundreds of layers can be
deployed to tackle various imaging problems. In particular,
the DCNN model to solve the inverse imaging problem is
mostly based on an encoder-decoder architecture in which
the input imaging data are down-sampled first (similar to
Figure 5E) and then up-sampled to output a 2D or 3D array
data with the same size as the image of the object. More details
about a few popular DCNN architectures are shown in the next
section.

The Advantages of the Learning-Based
Approach
The DCNN-based learning approach has great advantages over
model-based approaches. As we can see from Figures 6A,B, a
general fiber-optic imaging problem can be formulated as
recovering the image of the object from noisy and distorted
raw imaging data. In real-world imaging configurations, this
inverse imaging problem is ill-posed. Some conventional
methods aiming to develop a direct inverse operator of the
forward operator H would suffer from significant artifacts for
the ill-posed inverse problems. Model-based conventional
methods develop the regularized formulation to overcome

these difficulties. Assuming that Y�HX (Y: raw image, H:
forward operator, X: Object), the estimation of the object ˜X
can be reconstructed through solving a regularized optimization
problem:

˜X � argmin
X

f(HX,Y) + cφ(X) (1)

In Eq. 1, f is the cost function to measure the error between HX
and Y. φ is the regularizer that encodes the prior knowledge of the
object. It promotes the solutions matching with the prior
knowledge and reduces ill-posedness. c is the regularization
parameter that tunes the relative strength of the two terms.
Although the model-based approach plays an undisputed
central role in dealing with the inverse problem, it imposes
some demanding requirements that limit its application and
performance. From Eq. 1, the model-based methods required
modeling the forward operator accurately and handcrafting the
cost function, the regularizer as well as the optimization
algorithm for each new application. However, it is challenging
to develop a general design that can handle a large class of
problems. For some complex physics systems, such as the
wave propagation in the ALOF, even accurate modeling of the
forward operator is not readily available. Besides, the
optimization procedure has to be performed for each imaging
operation, which may take a few minutes up to a few hours per
frame for a typical optimization process [60]. The DCNN-based
learning approach can overcome these limitations faced by the
conventional model-based approach. As a data-driven solution,
the DCNN “learns” the parametric function for the inverse
problem [59] from the training data directly. There is no need
to handcraft the forward model, the regularizer, the cost function,
and the optimization algorithm. This unique feature circumvents
the unavailability of the physics model for complicated
multimode fiber-optic imaging systems. More than that, a
data-driven learning capability simultaneously contributes to
simplifications of the experimental hardware. For previous
imaging FOIS solutions, the experimental configurations often

FIGURE 6 | (A) A general fiber-optic imaging system. The physics model of the fiber-optic imaging system can be treated as a forward operator H. H acts on the
object X to generate the raw image. A digital camera collects the raw image Y, (B) Learning-based approach (convolutional encoder-decoder architecture) to solve the
inverse problem of reconstructing X from the raw image. R stands the inverse operator that maps the raw image into ˜X , the estimation of the object.
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feature a complicated design in that cracking the underlying
physics model requires multi-dimensional measurements [3, 4,
34]. In contrast, digital camera processed intensity images can be
directly deployed to uncover any complex underlying models
through the neural networks’ self-learning. DCNN stands for a
more general framework that includes the model-based approach
as one of its special cases. It is, therefore, not surprising that the
DCNN architecture can be decoupled from a specific problem

and transferred between various applications. Moreover, the
DCNN is much more computationally efficient than the
model-based approach: trained DCNN merely needs
calculation times of milliseconds per frame. In addition to
generality and speed, recent research has also demonstrated
that the DCNN yields high-quality solutions to inverse
imaging problems [19, 121–129]. In general, the deployment
of the DCNN in the fiber-optic imaging opens a new avenue for

FIGURE 7 | (A) Schematic of the cell imaging setup. The light source can be either a 460-nm LED or a white light lamp. The LED serves for gray-scale imaging. The
white light lamp is used for color imaging. The sample is illuminated under transmission mode. The image of the sample is relayed through the 4f system consisting of a
10× objective and a tube lens. The relayed image is split into two copies: one is recorded by camera 1, working as the reference image (ground truth); the GALOF
samples the other one for generating raw image purpose. The fiber-sampled image is transported through a meter-long GALOF sample (∼80 cm) and finally
recorded by camera 2. The data collected by camera two is the raw images. A heater is attached at the center of the GALOF sample to increase the fiber temperature.
The imaging process is tested under both straight and bent fiber status. As shown in the inset, the input end of the GALOF is fixed while the output end is bent by a
bending shift distance d. The relation between the bending angle θ and the bending shift distance d is given by d � L[1-cos(θ)]/θ, (B) The architecture of the DCNN for
gray-scale cell image reconstruction based on a U-Net framework. The image is adapted with permission from [19]. More details refer to [19], (C) The architecture of the
DCNN for color cell image reconstruction is based on an inception CNN framework. The image is adapted with permission from [134] © The Optical Society, (D)
Schematic of the cell recognition setup. The design of the setup (D) is similar to the setup in (A), except that the beamline for reference image collection is removed due to
its imaging-free capabilities. The setup just collects the raw speckle images for classification purposes. Similar to the inset shown in (A), the imaging recognition process
is also tested under bent fiber status with the same bending mechanism. More details refer to [52]. (E) The architecture of the DCNN for cell recognition is based on a
VGG framework. More details refer to [52].
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high-quality and high-speed FOISs with simple hardware
realizations. Meanwhile, it should be noted that the DCNNs
mostly work as black boxes in fiber imaging tasks. In other words,
it is still quite challenging to understand how the predictions are
made through the DCNNs. Despite the black-box nature, various
approaches have been developed aiming at interpreting the deep
learning model. Interested readers can refer to [130–132]. In the
following sections, we mainly show our recent progress for this
type of FOIS by integrating the ALOF-based FOIS with DCNN.

RECENT PROGRESS OF
LEARNING-BASED FIBER-OPTIC IMAGING
WITH GALOFS
Based on the previous discussions of ALOFs and the DCNN, we
proceed to review our recent progress based on the integration of
GALOFs and DCNNs. In the introduction section, we listed the
issues encountered by conventional FOISs: the high sensitivity to
perturbations, low imaging quality and speed, complex and
expensive systems, and poor compatibility with incoherent
broadband illumination. Our lab recently focuses on
developing the GALOF-DCNN solution to mitigate these
barriers and enhance the FOIS’s performance to the next level
[18, 19, 52, 133, 134]. Our systems can be divided into two
categories: image recovery and image recognition. For image
recovery, the GALOF-DCNN system achieves highly robust
image transport and nearly artifact-free imaging quality as well
as the capability of imaging objects with varying depths. For
image recognition, the GALOF-DCNN system demonstrates
highly accurate and very robust (up to ∼74 bending degree)
classifications without imaging reconstruction.

The image reconstruction system designs are illustrated in
Figures 7A–C. The learning approach for GALOF-DCNN
systems is based on supervised learning. Therefore, the
experimental systems have to collect the raw images and the
reference images for the same area of interest simultaneously. The
setup (Figure 7A) contains two beamlines: one is for ground
truth data; the other is for raw imaging data. Meanwhile, the setup
also incorporates a temperature control module and a mechanical
bending function, aiming to investigate the robustness of the
GALOF-DCNN system under various thermal and mechanical
perturbations. Depending on the light source’s properties, there
are two different DCNN architectures adapted for the image
reconstructions. Referring to Figures 7B,C, the U-Net model is
utilized for gray-scale image reconstruction [135], while the
inception model is applied to color image reconstruction
[136]. The U-Net model or the inception model merely
defines the general framework. Each sampling block’s specific
layer design is carefully customized to fit the GALOF-DCNN
system and a particular illumination. For example, within the
U-Net model, the ResNet framework [137] is applied in each
individual down-sampling block as well as in the up-sampling
blocks (Figure 7B), which dramatically improves the quality of
image reconstruction (more details can be found in Ref. [19]).
Despite that the U-Net model works well for gray-scale fiber
imaging, the inceptionmodel proves to be more effective for color

fiber imaging based on imaging performance evaluation. This is a
consequence of the inception network’s ability to extract image
features at varying scales through simultaneous utilization of
different kernel sizes. It should be noted that the inception model
is also optimized to fit the GALOF-DCNN system: each parallel
branch contains a customized U-Net module (more details are
given in Ref. [134]).

The image reconstruction results are demonstrated in Figures
8A–D. First, the GALOF-DCNN system is able to deliver nearly
artifact-free single-color or full-color cell images in real-time
through a meter-long fiber (Figure 8A), which is a very difficult
task for conventional FOIS. The GALOF’s unique properties,
such as high-quality wavefront, high mode density, and
wavelength-independent localization length, remove the
device-level limitations for high-quality imaging. On the basis
of the GALOF transport, the DCNN accurately simulate the
underlying inverse operator of the imaging system, which
finally recovers the fine features of the cell sample with high
accuracy. The training time for the GALOF-DCNN system is
∼6.4 h for 15,000 imaging pairs. Once trained, the reconstruction
speed is 0.05 s per frame with nearly artifact-free quality (more
details in Ref. [19]). Second, the GALOF-DCNN demonstrates
superior imaging robustness compared to existing FOISs using
other types of optical fibers. Referring to Figure 8B, the quality of
cell imaging is almost not affected even under a 2-cm bending
shift and a 30°C temperature increase. The high robustness is
mainly attributed to the single-mode-like behavior of the
localized modes embedded in GALOF’s disordered structure.
Similar behaviors can hardly be observed in other multimode
waveguide systems, which distinguishes the GALOF-DCNN
system from FOISs based on conventional fibers. It should be
noted that the DCNNmodel deployed in these robustness tests is
only trained one time using the data obtained from straight fiber
operating at room temperature. The test time for any bent fiber or
fiber being heated is just tens of milliseconds. This one-time-only
training method is fundamentally different from other learning-
based FOISs that perform several time-consuming re-trainings
for each individual bending angle or thermal status. The GALOF-
DCNN truly provides a practical one-shot solution for high-
speed, robust and artifact-free cell imaging based on its superior
robustness. Third, the GALOF-DCNN is highly adaptable for
variations of object depth. For objects located at various distances
from the fiber input facet (0–4 mm), the system successfully
transports high-quality cell images without the assistance of
extra distal-end optics (Figure 8C). It shows that the GALOF-
DCNN system can tolerate the defocus up to a few millimeters.
This capability enables a simplified distal-end design that could
minimize the penetration damage to the living object. Fourth, the
GALOF-DCNN is proved to be a general system by a transfer-
learning test, which is also strong evidence of capturing the
underlying physics model well. As shown in Figure 8D, the
DCNN is trained using a mixture of different objects: human red
blood cells, frog blood cells, and polymer microspheres. Then, the
trained model is directly deployed to test the object of bird blood
cells which represent a different cell type. It still maps the raw
image into cell image reconstruction with reasonably high
imaging quality. It should be noted that the learning-based
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research in the area of optics and photonics often train and test
the DCNN using the same type of objects that shares similar
image features. It is not trivial to train and test the DCNN using
objects carrying significantly different image features.

It is well-known that a high-quality image is vitally important
for recognizing cell types. However, we recently prove that high-
quality image recovery is not always necessary for the cell
recognition. We develop the system shown in Figures 7D,E to
realize imaging-free object recognition for various cell types. The
configuration shares a similar layout for the image reconstruction
task except that the beamline for the reference data is removed.

The reason is that the raw data label switches from ground-truth
images to cell type identification numbers. The cell type
identification is the prior knowledge so that it can be
separately processed using the computer. Correspondingly, the
DCNN model is based on a VGG architecture (Figure 7E) [138]
which is designed for image classification tasks (more details are
given in Ref. [52]). Based on the above design, the raw speckle
image data are loaded into the trained VGG model. The VGG
model outputs the probability distributions to identify the specific
cell type (Figure 7E). Similar to the image reconstruction system,
the robustness and the depth variation adaptability of the object

FIGURE 8 | (A–D) Cell image reconstruction results based on GALOF-DCNN systems. (A) Top row: gray-scale cell imaging for cancerous human stomach cells.
Images in the top row are adapted with permission from [19]. Bottom row: color cell imaging for human red blood cells. Images in the bottom rows are adapted with
permission from [134] © The Optical Society. Both gray-scale and color images are obtained under 0 mm object depth, (B) Cell imaging robustness tests under both
mechanical bending and thermal variations at 0 mm object depth, (C)Cell image transport under various object depths for straight fiber status. (A–C) The DCNN is
trained and tested using the same type of cell breed. More details refer to [19], (D) Transfer learning test for cell image transport under straight fiber status and 0 mm
object depth. The DCNN model is trained (human red blood cells, frog blood cells and polymer microspheres) and tested (bird blood cells) using different types of cell
breeds. More details refer to [19]. Images in (B–D) are adapted with permission from [19], (E)Cell recognition test results under different bending (0 mmobject depth) and
object depth (straight fiber) status. The images are adapted with permission from [52]. More details refer to [52] © IEEE.
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recognition system are also evaluated based on the prediction
accuracy. Related results are demonstrated in Figure 8E. The
accuracy of the cell recognition is about ∼92% for straight
GALOF sample with a 0 mm object depth. When fixing the
object depth at 0 mm, a nearly bending-independent
classification accuracy is observed for strong mechanical
deformation up to ∼74° (corresponding to a 45 cm bending
shift distance). The error tolerance of the cell classification is
apparently much larger than the image reconstruction task (∼3°).
The mechanism may be attributed to the fault tolerance of VGG-
based designs in conjunction with the localized mode’s single-
mode nature. It should be noted that the current GALOF is far
from being perfect in that many extending modes co-exist with
the localized modes. Such extending modes do not share the
stability with respect to perturbations. Despite that, the 74-degree
bending angle with a meter-long fiber sample would be sufficient
to enable most practical medical endoscopy applications. In
addition to the high robustness, the depth variation
adaptability tests also show that the GALOF-DCNN system
has a superior capability of handling the defocusing issue. For
an object depth of 0.5 mm, the accuracy is as high as ∼92%, while
for depths smaller than 1 mm, the accuracy remains higher
than 80%.

OUTLOOK

The disordered structure of the current GALOF is far from the
optimal design. To fully exploit the potential of transverse
Anderson localization, further investigations on the fabrication
technique are required to improve the fiber quality and its
random structure parameters, such as air-filling fraction and
the air-hole uniformity. The current stack-and-draw technique
for GALOF faces some challenges. It requires hundreds of
manually assembled capillaries to create the preform and a
recursive manufacturing process to obtain the final product,
which is time-consuming and labor-intensive. More
importantly, the random structures’ parameters are hard to
approach the optimal design due to the limitation of the
packed tube geometry. Due to similar reasons, it is also
difficult to maintain a high degree of repeatability and
accuracy of the random structure. The potential solutions to
these challenges might be in additive manufacturing or 3D
printing technique. It has been proved that 3D printing can be
applied to create complex cross-sections for optical fiber preform
with high accuracy and repeatability [139–142]. Especially,
single-step fiber fabrication can be realized by printing the
preform in just a few hours. A similar 3D printing technique
could be deployed to make the preform for GALOF fabrication
and simplify the recursive manufacturing process. In addition to
the fabrication techniques, the glass material is another important
factor that determines the imaging performance of GALOFs. The
current GALOF mainly works at the visible band. For biomedical
applications, it is desired to extend the spectral range from the

visible band to ∼1,500 nm. This spectral range is the therapeutic
window that enables optical detection and treatment in a living
body [1]. Being limited by the transmission window of silica, it is
difficult to go beyond ∼3 µm. Instead of silica, tellurite glass has a
broad transmission window up to 7 μm, a larger refractive index,
and high thermal and chemical stabilities [143, 144]. It could be
the ideal candidate to develop a novel GALOF reaching the near-
infrared range. Recently reported all-solid-state ALOF has
already shown the great potential of tellurite glasses by
transporting near-infrared (∼1.55 µm) images [100]. For the
algorithms, the current learning approach is based on
supervised learning, which requires a large amount of high-
quality labeled imaging data. However, it is often quite
challenging to meet this requirement in practice. For example,
one important application scenario of a fiber-imaging system is
the endoscopic imaging of organs or tissues. Limited by the
unique imaging objects and environments, it is quite
challenging to access the distal end of the imaging unit and
acquire labeled training data. To resolve these issues,
unsupervised or semi-supervised learning approaches might
be able to provide a new avenue for future systems in that
they do not need strictly labeled data [127, 145–147]. This would
release the demanding requirements on the amount of necessary
training data and time as well as reduce the heavy burden on
system calibrations. To implement unsupervised or semi-
supervised learning, integrating the physics modeling with
the DCNN architecture is shown to be a wise choice [127,
146]. Besides, recently fast-growing generative adversarial
networks would be able to provide another potential solution
to fiber imaging systems as well [148]. Overall, learning-based
GALOF FIOSs appear to make the best use of both the GALOF’s
unique properties based on TAL and the learning approach’s
high performance in solving imaging problems. With more
improvements to come, the interplay between the GALOF
and the deep learning algorithms have great potential to
dramatically enhance the performances of future FOISs. We
are very optimistic that our findings contribute to the
development of next generation high-fidelity fiber optic
imaging systems for basic biomedical research and clinical
practice.
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