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of metasurfaces, constructed with either 
all-dielectric[1–3] or plasmonic[4–6] nanores-
onators, are capable of achieving engi-
neered phase and amplitude control at 
the element level and thus enable accurate 
wave front control with subwavelength 
resolution. The most widely adopted 
metasurface design approach includes 
two steps: 1) calculate the amplitude and 
phase masks necessary for desired func-
tionalities, fitted to square or hexagonal 
grids, and 2) find meta-atoms with per-
formance closest to the target of each grid 
for the final design. Accurate and efficient 
meta-atom on-demand design approaches 
remain the main challenge with metasur-
face designs.

To design meta-atoms with maximum 
efficiency and accurate phase gradients, 
a common method is to consider struc-
tures with simple geometric shapes (such 
as circles,[7,8] rectangles,[9,10] H-shapes,[11,12] 
and plasmonic thin layers[13,14]) and per-
form a parameter sweep over all dimen-
sions to assemble a library covering the 
full design space. Then best-fit meta-

atoms are selected from the library to approximate the ideal 
amplitude/phase map. Beyond this brute-force approach, 
previous literatures have also reported metasurface designs 
that based on solid physical considerations, such as wave-
guiding analysis,[15,16] Huygens surface,[11,17] surface integral 
equations,[18–20] and Pancharatnam–Berry (PB) phase.[4,21] In 

Metasurfaces have provided a novel and promising platform for realizing 
compact and high-performance optical devices. The conventional meta-
surface design approach assumes periodic boundary conditions for each 
element, which is inaccurate in most cases since near-field coupling effects 
between elements will change when the element is surrounded by noni-
dentical structures. In this paper, a deep learning approach is proposed to 
predict the actual electromagnetic (EM) responses of each target meta-atom 
placed in a large array with near-field coupling effects taken into account. The 
predicting neural network takes the physical specifications of the target meta-
atom and its neighbors as input, and calculates its actual phase and ampli-
tude in milliseconds. This approach can be used to optimize metasurfaces’ 
efficiencies when combined with optimization algorithms. To demonstrate 
the efficacy of this methodology, large improvements in efficiency for a beam 
deflector and a metalens over the conventional design approach are obtained. 
Moreover, it is shown that the correlations between a metasurface’s perfor-
mance and its design errors caused by mutual coupling are not bound to 
certain specifications (materials, shapes, etc.). As such, it is envisioned that 
this approach can be readily applied to explore the mutual coupling effects 
and improve the performance of various metasurface designs.
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1. Introduction

Metamaterials, along with their 2D versions, metasurfaces, have 
attracted wide attentions in recent years due to their unique low 
profile and lightweight properties as compared to their conven-
tional bulk optics counterparts. Meta-atoms, the building blocks 
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addition to these methods, recently numerous optimization 
algorithms,[22–26] deep neural networks (DNN),[27–33] and DNN-
optimization adjoint methods[34–36] have also been proposed 
recently for the fast inverse design of meta-atoms with complex 
shapes or multiple objectives.[37] In these meta-atom design 
approaches mentioned above, unit cell boundary conditions 
were adopted during full wave simulations, which assumes 
that each meta-atom structure under consideration is part of 
an infinite 2D array of identical structures. Thus, the ampli-
tude and phase response calculations of the meta-atoms are 
based on the assumption that near-field coupling perturbations 
originate from identical neighbors. However, in real metasur-
face designs, each meta-atom is usually surrounded by noni-
dentical meta-atoms, for which near-field coupling effects will 
differ from those used to calculate the original response. As a 
result, the phase and amplitude of each meta-atom will be per-
turbed from their predicted values; thus, this method is accu-
rate only when the mutual coupling effects between each meta-
atom and its neighbors are vanishingly small, which is gener-
ally not the case. We examine and illustrate near-field mutual 
coupling effects between several types of meta-atoms, including 
circles,[7,8] rectangles,[9] and C-shaped thin layers[6] in Figure S1 
(Supporting Information).

In previous work, instances have been reported where the 
mutual coupling effect (either radiative coupling[38] or dipole 
coupling) plays such an important role in a metasurfaces’ 
overall performance that measures must be taken to minimize 
its effect. In ref. [8], a periodic arrangement of 2 × 2 meta-atoms 
was adopted in order to decrease the coupling effects in a meta-
surface hologram, while in ref. [39], the metasurface hologram 
was divided into several 17.35 × 17.35 µm2 subarrays each con-
structed with identical meta-atoms. In ref. [40], the height and 
diameters of the cylindrical meta-atoms that formed the meta-
surface beam deflector were slightly adjusted to achieve higher 
efficiency. In ref. [41], a genetic algorithm (GA) was employed 
to find the meta-atoms’ optimal dimensions and positions with 
strong coupling between neighbors taken into consideration. 
In some other works, the mutual coupling effects between 
adjacent meta-atoms were not only investigated, but also uti-
lized to enhance the metasurfaces’ performance. In ref. [42], a 
strongly coupled resonator design was proposed and demon-
strated in the terahertz and optical regimes, in which the cou-
pling between neighboring resonators was tuned to enhance 
the effective refractive index. In ref. [43], the near-field effects 
in high-index Mie-resonant nanoparticles were studied, and 
the distances between neighboring meta-atoms were tuned to 
realize continuous relative phase changes. In ref. [44], a deep 
neural network was trained to predict the electric field of each 
50 × 50  µm2 square area in a full-scale metasurface, which 
accounted for the interscatterer coupling effect. In ref. [45], a 
numerical method (so-called local phase method (LPM)) was 
proposed to obtain the phase of each meta-atom within the 
metasurfaces while considering the mutual coupling effects. 
This approach quantifies the phase error of each element inside 
the metasurfaces, which enables the optimization of metas-
urfaces on an element level while accounting for near-field 
coupling effects. While it provides a way to measure the meta-
atoms’ accurate phase responses, the target meta-atom and all 
its neighbors need to be simulated as a whole in order to derive 

the performance of a single meta-atom, which is computation-
ally intensive and time consuming.

In this paper, we propose a DNN approach to efficiently 
predict the meta-atoms’ phase and amplitude responses while 
accounting for the influence of its neighbors. When fully 
trained, the DNN is able to predict the perturbed EM response 
of a meta-atom given the dimensions of itself and its neigh-
bors. Importantly, the accurate forward predictions can be 
achieved in milliseconds, which enables the fast optimization 
of various metasurface devices, including beam deflectors, 
lenses, and holograms that are composed of densely arranged 
meta-atoms prone to amplitude drop or phase error caused 
by mutual coupling. To demonstrate the efficacy of this DNN 
approach, we employed the fully trained DNN to optimize sev-
eral beam deflectors and focusing lenses, demonstrating signif-
icant performance improvement compared to the conventional 
approaches.

2. Data Collection

Without loss of generality, we started our analysis with the 
transmissive all-dielectric metasurface design presented,[9] 
which is comprised of rectangular-shaped high-index (n  = 
3.67) polysilicon nanoblocks sitting on a low-index (n  = 1.45) 
fused silica substrate (Figure 1a). The wavelength of interest 
is 1.55 µm, with the lattice constant of 800 nm and nanoblock 
height of 270  nm. By carefully selecting the length and width 
of each nanoblock, this meta-atom design can cover full 2π 
phase while maintaining high transmission, an essential condi-
tion for most optical applications. First, the actual phase and 
amplitude response of randomly-generated meta-atoms placed 
among different random neighbors (hereinafter referred to 
as “local responses”) were calculated to assemble the training 
dataset. Simulation of each group of data starts by modeling 
the entire structure (Figure 1b), which includes the target meta-
atom and its neighbors, using the commercial software CST 
(Figure  1c). The equivalent sources (Js,Ms) of the target meta-
atom were then obtained (by the Field Source Monitor in CST) 
and imported into a new model, with periodic boundary condi-
tions applied to both x and y directions and open boundary con-
dition applied to ± z directions (Figure 1d). A probe was placed 
on the broad side of the equivalent source, to measure the local 
amplitude and phase responses of the target meta-atom. The 
probe was placed more than 5 wavelength away from the source 
to ensure it’s in the far field. For simplicity, the problem was 
limited to 1D, meaning only coupling effects along the x-axis 
(as shown in Figure 1) were considered, and periodic boundary 
conditions were set along the y-axis.

Considering that mutual coupling effects decrease with dis-
tance, it is necessary to determine the number of neighboring 
meta-atoms that needs to be considered in each simulation. To 
strike a balance between simulation accuracy and optimiza-
tion difficulty (as well as data collection costs), 4 neighbors on 
each side of the target meta-atom were considered during the 
data collection process (Detailed discussions can be found in 
the Supporting Information Section I). The final dataset was 
composed of the physical dimensions and local responses of 
over 100  000 randomly-generated meta-atoms that were each 
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surrounded by 4 randomly-generated meta-atoms on each 
side. The lengths (dx) and widths (dy) of all nanoblocks were 
within the range of [0.25, 0.75  µm] with a minimum step of 
6.25 nm. The local responses of the center meta-atom remains 
unchanged when the whole structure rotates by 180°, so the 
number of training data can be doubled by including input pat-
terns that were flipped in the left-right direction.

3. Network Architecture

In order to realize fast prediction of meta-atoms’ local responses 
under various boundary conditions, a predicting neural net-
work (PNN) was constructed based on a convolutional neural 
network (CNN) architecture. The PNN takes the dimensions of 
the target meta-atom and dimensions of its neighbors as input, 
and quickly predicts local responses of target meta-atoms. As 
shown in Figure 2, 2D cross sections of the target meta-device 
were extracted and pixelated into an 1152 × 128 image. The 
image is binarized such that 1’s represent dielectric regions and 
0’s represent voids. This figure was then processed through 6 
consecutive convolutional layers, during which hidden features 
such as relationships between the nanoblock’s dimensions 
and its local responses as well as the impact of its neighbors 
were extracted and calculated. After flattening the output of the 
CNNs into a 1D vector and passing through 3 fully connected 
layers, the prediction results for the complex transmission coef-

ficients of the target meta-atom were generated. Throughout 
the network, a ReLU activation function was applied to each 
layer except for the last one, for which there was no activation 
function.

The over 200 000 groups of the collected training data were 
randomly split into a training set and a test set, containing 70% 
and 30% of the total training data, respectively. The test set was 
used to evaluate the trained network’s performance on data 
that was not used during training. During training, the PNN-
predicted local responses were compared with the labels (accu-
rate local responses) to calculate the mean square error (MSE), 
defined as

N
y y

i

N

i iMSE
1 ˆ

1

2∑ ( )= −
=
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which was minimized by inversely tuning the parameters in 
the hidden neural layers. When the training was completed, the 
MSE was 9 × 10−6 for the training set and 7 × 10−5 for the test 
set, respectively (Figure 3a), which corresponds to an average 
prediction standard deviation of 0.005 for amplitude and 3.15° 
for phase at the target wavelength for each target meta-atom. 
We demonstrate the accuracy of the well-trained PNN with sev-
eral samples that were randomly selected from the test set. As 
shown in Figure  3b, six target meta-atoms (marked with red) 
surrounded by 4 different meta-atoms on each side (marked in 
yellow) were set as input of the fully-trained PNN. The PNN 
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Figure 1.  Data collection process. a) Schematic of a meta-atom represented as a silicon nanoblock on top of fused silica substrate. b) Randomly 
generated target meta-atoms (red) surrounded by random neighbors (blue) on each side. c) Simulated E-field of the whole structure. d) The extracted 
equivalent field source of target meta-atom. A probe was placed in the far field to measure the EM responses.
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predicted local responses are labeled with blue stars, while the 
accurate results calculated with CST are labeled with red starts. 
Excellent agreements have been achieved between the predicted 
and simulated results, while significant differences between 
the local responses and periodic-boundary responses can also 
be observed, which demonstrates the large impact of mutual 
coupling effects.

4. Results and Applications

With the help of this fully trained PNN, the local responses of 
the target meta-atoms (when deployed in a meta-device) can be 
predicted in milliseconds. This efficient and accurate tool ena-
bles optimization of metasurface devices that suffer from per-
formance deterioration caused by mutual coupling. As shown 
in Figure 4a, we combined the PNN with a global optimization 
algorithm to inversely optimize the performance of metasur-
faces. First, a conventional metasurface was designed based 
on the periodic boundary condition assumption and assigned 
as input. The PNN then evaluates the local responses of the 
current design. Subsequently, the optimization algorithm gen-
erates a new design, with dimensions of each element tuned 
to minimize the difference between the current responses and 

the design goal. The optimization process terminates when the 
stopping criteria are met or the maximum number of iterations 
is reached. A Dual Sequence Simulated Annealing Algorithm 
was adopted as the optimizer. We started with the optimization 
of a beam deflector and compared the performance of the opti-
mized design with the initial design to demonstrate the efficacy 
of this optimization approach.

Figure  4b presents the optimization result of a beam 
deflector composed of periodic arrangements of 4 meta-atom 
unit cells. For the initial design shown in the left, periodic 
responses of each meta-atom are marked with squares in the 
polar plot, while their corresponding local responses (i.e., actual 
responses) are marked with open circles. The phase targets are 
set to 60°, 150°, 240°, and 330°, with the amplitude targets set 
to 1. Although the periodic responses are nearly perfect, with 
almost unity E-field amplitude and precise 90° phase shift 
between each pair of adjacent meta-atoms, their local responses 
deviate from the design goals due to the mutual coupling 
effects, resulting in low average efficiency (41.3%). We then 
started the optimization with this initial design and minimized 
the objective function, defined as

E
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A A
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Figure 2.  Network architecture. 2D cross-section containing the target meta-atom (in red) and its neighbors (in cyan) were processed through six 
consecutive convolution and pooling layers, then flattened into a 1D vector (1 × 2304). After being processed with three more fully connected layers 
(containing 512, 64, and 2 nodes, respectively), the real and imaginary parts of the transmission coefficients of the target meta-atom were retrieved.



www.advancedsciencenews.com

© 2021 Wiley-VCH GmbH2102113  (5 of 10)

www.advopticalmat.de

where N is the number of the meta-atoms in the device, Φi 
and Ai are the local phase and amplitude responses, iΦ̂  and 
Ai
ˆ  are the target phase and amplitude responses, respectively. 

After 1000 iterations of optimization, the local responses of the 
optimized meta-atoms as shown on the right (Figure  4b) are 
much closer to the design goals, which also leads to a higher 
efficiency of 68.8%, meaning nearly 70% of the incident energy 
is deflected to the 1st order. Comparisons of the phase error and 
amplitude between the initial design and the optimized design 
are presented in Figure 4c. The values of the objective function 
during the optimization process are shown in Figure 4d, after 
which the average phase error has been reduced from 30.3° 
(initial design) to 10.4° (optimized design) while the average 
amplitude remains roughly the same, indicating the efficacy of 
the proposed approach.

The advantage of this combined optimization approach 
becomes even more evident when applied to larger size meta-
devices, such as high numerical aperture (NA) metalenses. 
Here we designed a 1D cylindrical metalens composed of 
40 meta-atoms (32  µm) with a focal length of 15.5  µm (NA = 
0.72) using the conventional approach. The real part of the 
transmitted electric field of this lens as simulated with CST 
is shown in Figure 5a. Wavefront distortions produced by the 
initial metalens cause significant scattering of the transmitted 
energy, illustrated as nonconverging wavevectors in Figure 5a. 
The local phase responses of the meta-atoms in the initial 
design are shown in Figure 5b, where the phase error of each 
meta-atom is also calculated and plotted. Due to the sym-
metrical nature of the metalens, we only listed the responses 
of the meta-atoms in the right half. The phase errors between 
the targets and the local responses reach almost 100° for sev-
eral meta-atoms. Subsequently, this initial design was set as a 
starting point for the optimization using the proposed network 

and the same objective function in Equation (2) was adopted. 
After 500 iterations of optimization (finished in 200 s), the local 
phase responses of the optimized meta-atoms (Figure  5c) are 
much closer to the targeted values, with the average phase error 
reduced from 30.4° to 10.4° (Figure 5d). Values of the objective 
function during the optimization are plotted in Figure 5e. As a 
result, the electric field magnitude at focal spot (z = 15.5 µm) 
increased from 3.24 to 4.17  V  m−1, equivalent to a 28.7% and 
65.6% enhancement in electric field and intensity, respectively 
(Figure  5e). The focusing efficiency increases from 52.19% to 
77.62% after the optimization. Here the focusing efficiency is 
defined as the ratio of the light that passes through an aper-
ture with three times the FWHM focal spot size to the total 
electric field intensity that passes through the metalens. This 
clearly indicates that the transmitted energy is better focused 
due to the more accurate phase profile. To further demonstrate 
that this approach is compatible with full size metasurface 
designs, a high NA cylindrical metalens composed of 200 meta-
atoms was also designed and optimized (Figure S3, Supporting 
Information).

5. Discussion and Conclusion

In this paper, we have quantified the effects of mutual coupling 
in metasurface designs and devised a novel way of quickly and 
accurately predicting the perturbed response of a specific meta-
atom after being surrounded by different neighbors through a 
deep learning approach, which can be used to inversely opti-
mize the design’s performance. Although the presented PNN 
and optimizations are showcased on simple rectangular-shaped 
meta-atoms made of a common material (polysilicon) in the 
near infrared range (1550 nm), this approach can be extended 

Adv. Optical Mater. 2022, 10, 2102113

Figure 3.  Learning curve and results. a) MSE of the training set (red curve) and test set (blue curve) during the training process. b) Phase-amplitude 
polar diagrams showing six groups of EM responses from randomly selected test set geometries. The target meta-atoms are marked in red, while the 
neighbors are marked in yellow. Periodic-boundary responses are labeled with green stars, while local responses predicted with PNN and calculated 
with CST are denoted with blue and red stars, respectively.
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to other materials, shapes, or working frequencies. Here we 
extend this mutual coupling analysis to another metasurface 
platform made by patterning a 1 µm thick film of high-index 
dielectric material (n = 5) placed on a low-index dielectric sub-
strate (n = 1.4). The period is set to 2.8 × 2.8 µm2, and the wave-
length is 5.45  µm. In this case, to introduce more degrees of 
freedom, a 2D cross section of each meta-atom is defined by 
a complex image with resolution of 64 × 64 pixels. High index 
meta-atoms allow tighter field confinement and thus are less 
prone to mutual coupling (Figure S4, Supporting Information). 
Therefore, we only consider the influence of 2 neighbors on 
each side during the data collection process, which provides 
the same level of accuracy as the previous setup in Figure  1. 
Similarly, 100  000 groups of data were collected to assemble 
the training dataset, and the network architecture was slightly 
modified to accommodate the new input dimension (320 × 64). 
When the training was completed, the MSE was 2 × 10−5 for the 
training set and 6 × 10−5 for the test set, respectively (Figure 6a). 
Six meta-atoms were randomly selected from the test dataset to 
illustrate the network’s accuracy (Figure 6b). Later in the Sup-
porting Information, we verified that this approach can also be 
extended to 2D cases with similar accuracy.

Besides its applications in optimizing the performance 
of meta-devices, the proposed deep learning approach also 

provides an efficient way to explore the mutual coupling effects 
in existing designs. For example, utilizing this well-trained 
PNN, we are able to visualize the negative correlations between 
the metasurface’s performance and the severity of the mutual 
coupling effects. For demonstration purpose, we generate 
numerous metasurface designs composed of individual meta-
atoms with identical EM responses but different shapes. Spe-
cifically, we employed a Generated Adversarial Network (GAN) 
model to complete this task. Here, 400 meta-atoms were gen-
erated with a fully-trained GAN[31] that’s capable of designing 
meta-atoms based on phase and amplitude targets. Among these 
400 meta-atom designs, each group of 100 meta-atoms is cre-
ated with the same amplitude target of 0.9 and different phase 
targets of 45°, 135°, 225°, and 315°, respectively (Figure 7a). 
Subsequently, one meta-atom was randomly selected from 
each set of 100 geometries to assemble a beam deflector con-
sisting of 4 meta-atoms (the process flow is guided with red 
lines in Figure 7a,b). By repeating this process, a total number 
of 1000 beam deflectors were created and simulated with a full 
wave simulation tool to calculate their efficiencies and local 
responses. The relationship between the efficiency of each 
deflector and the MSE of all meta-atoms inside are plotted in 
Figure 7b. Although the periodic responses of these meta-atoms 
are almost identical, their corresponding local responses can be 

Adv. Optical Mater. 2022, 10, 2102113

Figure 4.  Optimization of a beam deflector composed of 1 × 4 meta-atoms. a) Flow chart of the combined optimization approach. b) Periodic responses 
and local responses of the initial design and the final optimized design. Top view of the two unit cells are shown on the bottom. Dielectric nanoblocks 
are yellow, while dark color represents the void. c) Phase error and amplitude of the optimized design compared to the initial design. d) Value of the 
objective function during the optimization.
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very different when they are placed among different neighbors 
in a large array (Figure  7c) due to the mutual coupling effect. 
To better visualize the relationship between local responses and 
metasurfaces’ performance, we plotted the electric field and 
local responses of two selected deflectors (Figure 7d) from these 

1000 designs. The high efficiency (86.3%) designs shown on 
the right clearly have higher average amplitude and precise 90° 
phase shifts between adjacent meta-atoms as compared to their 
low efficiency (51.6%) counterparts shown on the left. The effi-
ciency of each deflector among the 1000 designs ranges from 

Adv. Optical Mater. 2022, 10, 2102113

Figure 5.  Optimization of a high numerical aperture metalens composed of 40 meta-atoms. a) Simulated electric field (real part) of the initial design, 
with target phase (blue), local phase (red), and phase error (green) of each meta-atom showing in b). c) Simulated electric field of the optimized 
design, with target phase, local phase, and phase error showing in d). e) Value of the objective function during the optimization. f) Simulated electric 
field magnitude along the optical (Z) axis, with an x-polarized incidence for the initial design (red) and the optimized design (blue).

Figure 6.  Learning curve and results. a) MSE of the training set (red curve) and test set (blue curve) during the training process. b) Six groups of results 
randomly selected from the test set are demonstrated.
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only 50% to almost 90%, indicating that these high-index free-
form mid-infrared metasurfaces also suffer from mutual cou-
pling effects. Moreover, the obvious inverse correlation between 
the error and the overall efficiency demonstrates the feasibility 
of using the local responses to optimize the performance of a 
wide variety of metasurfaces.

A major advantage of this deep learning approach is time 
efficiency. Once fully-trained, the PNN calculates the local 
responses of target meta-atoms on a one-time calculation basis. 
As a result, when combined with different optimization algo-
rithms, the PNN can evaluate the performance of the new 
designs instantly, without time-consuming fullwave simulation 
cycles. In conventional meta-optic optimization problems, the 
time-consuming fullwave validations have been the bottleneck 
of the whole design process. For example, one fullwave simu-
lation of the metalens in Figure S3 (Supporting Information) 
takes over 30 min, which makes the iterative optimization of 
such a large structure nearly impossible. In contrast, the local 
responses and the objective function of the metalens can be 
calculated in seconds using the proposed approach, which can 
largely accelerate the adjoint optimization process. Moreover, 
parallel optimization algorithms and parallel computing can be 
introduced to further improve the computational efficiency.

The fabrication tolerance also plays a key role in deter-
mining the performance of fabricated meta-devices. It has been 
reported in previous literatures[40] that the efforts of increasing 
the efficiencies of meta-devices with optimization approaches 
could be diminished by manufacturing defects. In contrast, 
our proposed DNN approach has potentials to overcome this 
issue for two reasons: 1) The PNNs can predict the perfor-
mance of meta-atoms in milliseconds, thus one can easily gen-
erate robust meta-atom designs that are resilient to fabrication 
defects using updated figure of merit with no additional time 
cost. 2) The PNNs trained with high-resolution input data can 
also deal with low-resolution inputs. For example, each meta-
atom in the input images for PNN in Figure 2 are composed of 
128 × 128 pixels, which assumes the minimum fabrication fea-
ture size is 6.25 nm. We can limit the resolution of generated 
designs to 64 × 64 (with the minimum feature size of 13 nm) or 
even coarse than that to make the generated designs compat-
ible to the real fabrication capability. The PNNs can still handle 
the resized inputs with no further training needed.

A major challenge of this adjoint optimization approach is 
that the local responses of the meta-atoms cannot always meet 
the design goals. For example, the optimized beam deflector 
design in Figure  5b only achieved 68.8% efficiency, which is 

Adv. Optical Mater. 2022, 10, 2102113

Figure 7.  Extension to freeform meta-atoms built with high refractive index material. a) Periodic phase and amplitude responses of 400 meta-atoms 
generated with a fully-trained GAN model. Each group of 100 meta-atoms are created with the phase target: 45° (green), 135° (blue), 225° (cyan), and 
315° (red), respectively. Several examples selected from each group are shown as insets. b) MSE versus efficiency of 1000 beam deflectors composed 
of 4 meta-atoms that were randomly selected with one from each group of meta-atoms in a). For demonstration, top views of several deflectors are 
included as insets. c) Corresponding local responses of all meta-atoms in the beam deflectors. d) Simulated electric field of two deflectors selected 
from b) and the local response of each meta-atom in these two designs.
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still far from the theoretical limit. However, we believe that this 
issue can be addressed by introducing more degrees of freedom. 
For example, compared to the simple rectangular-shaped meta-
atom design, the deflector assembled with freeform geometries 
in Figure 7d has the potential to achieve much higher efficiency 
(86%). Meanwhile, more-sophisticated global optimization 
approaches[22,46–48] such as evolution strategies[23,36,49,50] will be 
needed to deal with the massive design degrees of freedom 
brought by the freeform-shaped meta-atoms.

To conclude, we have proposed a deep learning network that 
accounts for mutual coupling effects to efficiently predict the 
local responses of target meta-atoms. The fully-trained network 
takes the dimension of a target meta-atom and its neighbors 
as input and generates its accurate local response in millisec-
onds. We have demonstrated the network’s capability through 
the optimization of a beam deflector and a metalens with sig-
nificantly improved performance. The proposed approach can 
also be extended to other metasurfaces with different mate-
rials, shapes, and working wavelength. Furthermore, we have 
unveiled and visualized the correlation between the devices’ 
performance and local response errors using the well-trained 
network. We envision that this deep learning approach will lead 
to significant improvements in efficiency for large metasurface 
designs and to metasurface designs surpassing conventional 
optical components in many applications, including miniatur-
ized optics, holography, and optical information processing.
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