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Space–time (ST) wave packets are a class of pulsed optical
beams whose spatiotemporal spectral structure results in
propagation invariance, tunable group velocity, and anoma-
lous refractive phenomena. Here, we investigate the refrac-
tion of ST wave packets normally incident onto a planar
interface between two dispersive, homogeneous, isotropic
media. We formulate a new, to the best of our knowledge,
refractive invariant for ST wave packets in this config-
uration, from which we obtain a law of refraction that
determines the change in their group velocity across the
interface. We verify this new refraction law in ZnSe and
CdSe, both of which manifest large chromatic dispersion at
near-infrared frequencies in the vicinity of their band edges.
ST wave packets can thus be utilized in nonlinear optics for
bridging large group-velocity mismatches in highly disper-
sive scenarios. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.450828

Introducing precise spatiotemporal spectral structure into a
pulsed beam can profoundly modify its propagation characteris-
tics [1,2]. For example, space–time (ST) wave packets [3] exhibit
unique characteristics by virtue of their spatiotemporal spectral
structure [4–11], including propagation-invariance [12–16], tun-
able group velocities [17,18], axial acceleration [19], ST Talbot
self-imaging [20], and self-healing [21]. In contrast to earlier
proposed localized waves [1,2], the group velocity of ST wave
packets can depart significantly from that of conventional pulsed
beams while remaining in the paraxial regime [22]. This broad
tunability is possible because only low spatial frequencies are
required in the synthesis process, and we thus refer to these
ST wave packets as “baseband.” Until recently, only “sideband”
wave packets such as Brittingham’s focus-wave mode [23] and
X-waves [24] were accessible, in which the low spatial frequen-
cies are excluded on physical grounds [22], and whose reported
group velocities consequently deviate only minutely from c (the
speed of light in vacuum) [25].

Previous theoretical studies have shown that propagation
invariance can be maintained for baseband ST wave packets
in dispersive media [26–29]. However, because such wave pack-
ets could not be synthesized linearly, they were produced via
nonlinear interactions [30], rather than coupling linearly synthe-
sized ST wave packets into the medium [Fig. 1(a)]. This hurdle

has now been cleared, and the recently developed spatiotemporal
Fourier synthesis methodology can readily produce baseband ST
wave packets [3,14]. Nevertheless, careful consideration must
be paid to refraction at the medium interface. Indeed, recent
studies of the refraction of baseband ST wave packets at a
planar interface between non-dispersive media have revealed
novel refractive phenomena, such as group-velocity invari-
ance, anomalous refraction, group-velocity inversion [31–33],
incident-angle-dependent group velocity of the transmitted wave
packet [34], blind synchronization [31,34], and isochronous ST
wave packets [35], all of which are absent from focus-wave
modes [36] and X-waves [37]. Undergirding these phenomena
is a refractive invariant associated with ST wave packets, the
“spectral curvature,” that leads to a law of refraction govern-
ing the change in their group velocity across an interface. This
invariant vanishes in the case of conventional pulsed fields, thus
precluding the observation of these refractive phenomena.

Here, we study the refraction of ST wave packets normally
incident at a planar interface between two dispersive media
[Fig. 1(a)]. We find that dispersion modifies the refractive
invariant for ST wave packets and thus modifies the law of
refraction for ST wave packets in the presence of chromatic
dispersion. Whereas the spectral curvature in the absence of
dispersion depends on the refractive index at the operating wave-
length, the new spectral curvature in the presence of dispersion
depends on both the refractive index and the group index, both
evaluated at the operating wavelength. We verify this law of
refraction with ST wave packets at a wavelength of 775 nm
incident from free space onto ZnSe (refractive index n ≈ 2.5
and group index ng ≈ 2.7) and onto CdSe (n ≈ 2.6, ng ≈ 3.7),
which are highly dispersive at this wavelength. Such an approach
allows for unprecedented tunability of the group velocity for a
ST wave packet in a dispersive medium, which can help reduce
the axial walk-off due to group-velocity mismatch between dis-
parate wavelengths close to a band edge where dispersion is
high.

We start by describing ST wave packets and their refraction
in a dispersion-free medium, whereupon the relationship k2

x +

k2
z = n2

o(
ω

c )
2 holds, which is represented geometrically by the

surface of a “light-cone” [Fig. 1(b)]; here no is the refractive
index, kx and kz are the transverse and axial components of
the wave vector along x and z, respectively, ω is the temporal
frequency, and we take the field to be uniform along y. The
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Fig. 1. (a) Refraction of ST wave packets at normal incidence
on a planar interface between free space and a dispersive medium.
(b) The spectral support domain of a ST wave packet in free space
is the intersection of the light-cone k2

x + k2
z = (ωc )

2 with a plane.
The spectral projection onto the (kz, ω

c )-plane is a straight line mak-
ing an angle θ1 with the kz-axis. (c) The spectral projection from
(b) onto the (kx, ω

c )-plane is invariant across the interface. (d) In
the dispersive medium k2

x + k2
z = n2(ω)(ωc )

2, the spectral projection
onto the (kz, ω

c )-plane makes an angle θ2 with the kz-axis.

spectral support domain for a propagation-invariant ST wave
packet is the intersection of the light-cone with a plane Ω =
(kz − noko)˜︁v, which is parallel to the kx-axis, and makes an angle θ
with the kz-axis; hereΩ = ω − ωo,ωo is a fixed carrier frequency,
and ko = ωo/c is the associated wave number. This construction
yields a propagation-invariant ST wave packet that travels rigidly
in the medium at a group velocity˜︁v = c tan θ = c/˜︁n determined
by the spectral tilt angle θ, where ˜︁n = cot θ is the group index
[22,38]. In principle, the group velocity can take on arbitrary
values: subluminal (˜︁v<c/n and˜︁n>n) or superluminal (˜︁v>c/n and˜︁n<n). The spectral projection onto the (kz, ω

c )-plane is a straight
line [Fig. 1(b)], thus indicating dispersion-free propagation, and
the projection onto the (kx, ω

c )-plane can be approximated by a
parabola in the vicinity of kx = 0 [Fig. 1(c)].

This constraint in the narrowband (∆ω ≪ ωo) paraxial
(∆kx ≪ ko) regime, kz ≈ noko + no

Ω

c −
k2
x

2ko
, yields

1
2 (kx/ko)

2(ωo/Ω) ≈ no(no −˜︁n). (1)

Because kx and Ω are invariant across a planar interface
[Fig. 1(c)], the quantity no(no −˜︁n), which is related to the curva-
ture of the parabolic spectral projection onto the (kx, ω

c )-plane,
is a refractive invariant. In other words, no(no −˜︁n) for a ST
wave packet is in fact independent of the medium, and when
a ST wave packet traverses an interface between two media of
refractive indices n1 and n2, the group velocity changes (from˜︁v1 = c/˜︁n1 to ˜︁v2 = c/˜︁n2 in the second medium) to maintain the
spectral curvature fixed [31]:

n1(n1 −˜︁n1) = n2(n2 −˜︁n2). (2)

In contrast to conventional wave packets whose group velocity
depends solely on the local optical properties of the medium,
the refraction of ST wave packets features a “memory effect”:
the group velocity of the transmitted ST wave packet depends

also on the group velocity of the incident wave packet, and
the refractive indices of both media [31,39]. This memory
effect has intriguing consequences, including: (1) group-velocity
invariance, whereby the ST wave packet retains its group velocity˜︁n2 =˜︁n1 whenever˜︁n1 = n1 + n2, regardless of the index contrast;
(2) anomalous refraction, whereby the group-velocity increases
in a higher-index media whenever ˜︁n1>n1 + n2; and (3) group-
velocity inversion ˜︁n2 = −˜︁n1 whereby the transmitted ST wave
packet maintains the magnitude of the incident group velocity
but switches its sign when˜︁n1 = n1 − n2 [31–33]. Furthermore, at
oblique incidence,˜︁v2 also depends on the incident angle [31,34].

In the presence of dispersion n = n(ω), Eq. (2) must be modi-
fied. Here k2

x + k2
z = k2 [Fig. 1(d)], and k = n(ω)ω/c is expanded

to first order k ≈ noko +Ω/vg, where vg = c/ng is the group
velocity in the medium, ng is the medium group index evaluated
at ωo, and we neglect higher-order dispersion terms. Combin-
ing the narrowband paraxial approximation with the constraint
kz = noko +

Ω˜︁v for the ST wave packet yields
1
2 (kx/ko)

2(ωo/Ω) ≈ no(ng −˜︁n), (3)

and the quantity no(ng −˜︁n) is the new refractive invariant, which
depends on three quantities: the medium refractive index no; the
group index ng (both evaluated at ωo); and the group index˜︁n of
the ST wave packet. The invariant spectral curvature in Eq. (3) is
the product of two terms: (1) ng −˜︁n that quantifies the deviation
of the group velocity of the ST wave packet from the native
group velocity of the medium at the same wavelength; and (2)
no determines the curvature of the light cone at ωo. Of course,
in the absence of chromatic dispersion, ng → no we retrieve the
invariant in Eq. (1) and the law of refraction in Eq. (2).

Utilizing the refractive invariant in Eq. (3), we formulate a
law of refraction for ST wave packets in dispersive media:

n1(ng,1 −˜︁n1) = n2(ng,2 −˜︁n2). (4)

We compare in Fig. 2 the law of refraction for ST wave
packets traversing a planar interface from free space with
a dispersive medium [Eq. (4)], and with a non-dispersive
medium [Eq. (2)] using the same refractive indices n1 and
n2 to highlight their distinction. The refractive phenomena
displayed by ST wave packets in non-dispersive media are
preserved in their dispersive counterparts after appropriate

Fig. 2. The law of refraction for ST wave packets incident from
free space (n1 = ng,1 = 1) onto dispersive (n2 = 1.5 and ng,2 = 2;
solid curve) and non-dispersive media (n2 = ng,2 = 1.5; dashed
curve), plotted in terms of (a) the spectral tilt angles θ1 and θ2,
and (b) the group indices ˜︁n1 and ˜︁n2 of the incident and transmit-
ted wave packets, respectively. The intersection with the diagonal
θ1 = θ2 corresponds to group-velocity invariance ˜︁v1 =˜︁v2, and the
intersection with the anti-diagonal θ1 + θ2 = 180◦ corresponds to
group-velocity inversion˜︁v1 = −˜︁v2.
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Fig. 3. (a) Experimental setup for the synthesis and characteri-
zation of ST wave packets: diffraction grating (G); cylindrical lens
(Lc); spherical lens (Ls). (b) Setup to acquire the spectra projection
onto the (kx, λ)-plane, and (c) the measured spatiotemporal spec-
trum for a superluminal ST wave packet with θ1 = 50◦, ∆λ ≈ 1 nm,
∆kx ≈ 0.2 rad/µm, and spectral uncertainty δλ ∼ 25 pm. (d) Meas-
ured spatiotemporal intensity profile I(x, τ) of the ST wave packet
from (c) at z = 0, the on-axis pulse width is ∆τ ≈ 2 ps, and the
white curves are I(0, τ) and I(x, 0). (e) Time-averaged intensity
I(x, z) along z for the ST wave packet from (c). The beam size is
∆x = 11 µm, and the white bar is the Rayleigh range of a Gaussian
beam with the same spatial width ∆x.

modifications: group-velocity invariance ˜︁n1 =˜︁n2 occurs when˜︁n1 =
ng,1n1−ng,2n2

n1−n2
; and group-velocity inversion ˜︁n1 = −˜︁n2 occurs

when˜︁n1 =
ng,1n1−ng,2n2

n1+n2
.

To verify the law of refraction in Eq. (4), we synthesize ST
wave packets in free space (n1 = ng,1 = 1) and tune their group
velocity before directing them to planar samples of ZnSe and
CdSe. The ZnSe sample is a 5-mm-thick slab with index n2 = 2.5
and group index ng,2 = 2.7, respectively, at λo ≈ 775 nm [40].
The CdSe sample is 3-mm thick with n2 = 2.6 and ng,2 = 3.7, as
determined by spectroscopic ellipsometry (Woollam M-2000).
These two samples have a large gap between n2 and ng,2 because
λo ≈ 775 nm is close to their corresponding band edges.

The setup to synthesize ST wave packets is shown in Fig. 3(a),
which is based on our recent work [18]. Starting with plane wave
femtosecond pulses from a mode-locked laser (Clark-MXR,
CPA 2010; pulses of width ≈ 150 fs and bandwidth ∆λ ≈ 7 nm
centered at λo ≈ 775 nm), we spatially resolve the spectrum via
a diffraction grating (1200 lines/mm) and a cylindrical lens
(f = 40 cm). At the focal plane of the lens, a reflective, phase-
only spatial light modulator (SLM; Meadowlark 1920 × 1152
series) assigns a prescribed pair of spatial frequencies ±kx(λ)
to each wavelength λ in accordance with Eq. (3). The retro-
reflected field is reconstituted at the grating and the ST wave
packet formed. Modifying the SLM phase pattern allows tuning

Fig. 4. Experimental verification of the law of refraction for ST
wave packets in a dispersive medium. (a) Measured ˜︁n2 while tun-
ing ˜︁n1 for a ST wave packet incident from free space onto ZnSe,
and (b) onto CdSe. The points are data, the blue solid curve is
the prediction based on Eq. (4), and the red dashed curve based
on Eq. (2). The error-bars represent the measurement uncertainty,
which is dominated by the pulse width of the ST wave packet.

the spectral tilt angle θ1, and hence the group index˜︁n1 = cot θ1

of the ST wave packet. The spatiotemporal spectrum projected
onto the (kx, λ)-plane is acquired via a spatiotemporal Fourier
transform [Fig. 3(b)]. The measured spectrum is plotted in
Fig. 3(c) for a superluminal ST wave packet with spectral tilt
angle θ1 = 50◦ (˜︁v1 ≈ 1.19c,˜︁n1 ≈ 0.84).

The intensity profile I(x, τ) at a fixed axial plane z and the
group velocity˜︁v are obtained by placing the ST synthesis setup
in one arm of a Mach–Zehnder interferometer, and using the
original laser pulse as a reference in the other arm containing
an optical delay line τ [18]; see Fig. 3(a). We reconstruct I(x, τ)
[Fig. 3(d)] from the visibility of the spatially resolved interfer-
ence fringes resulting from overlapping the ST wave packet
(pulse width ∆τ ∼ 2 ps) with the reference pulse (∼ 150 fs)
at a charge-coupled device (CCD) camera while sweeping τ.
Because the ST wave packet travels in free space at a group
velocity˜︁v1, whereas the reference pulses travel at c, their differ-
ential group delay results in axial walk-off after displacing the
CCD along z, which eliminates the interference. However, the
interference is restored after inserting a delay τ in the reference
arm, from which we estimate˜︁v1. The group velocity of the ST
wave packet in the medium is estimated by first overlapping the
two wave packets at the CCD and then placing the sample in
their common path [Fig. 3(a)]. The ST wave packet travels in
the medium at˜︁v2 = c/˜︁n2 and the reference pulses at vg,2 = c/vg,2.
The group-delay difference eliminates the interference of the
two wave packets until it is compensated by a delay τ in the
reference arm, from which we estimate ˜︁v2 and ˜︁n2. Finally, we
confirm the diffraction-free propagation of the ST wave packets
by recording the axial evolution of their intensity profile I(x, z)
[Fig. 3(e)].

In Fig. 4 we plot the measured group indices for the ST wave
packets in ZnSe [Fig. 4(a)] and in CdSe [Fig. 4(b)], for normal
incidence from free space. The measurements follow closely the
theoretical expectations from Eq. (4). For comparison, we add
the prediction based on the law of refraction for non-dispersive
media [Eq. (2)], which is displaced from the data by ∆˜︁n2 =

ng,2 − n2 ≈ 0.25 in the case of ZnSe, and by∆˜︁n2 ≈ 1.15 for CdSe,
as expected from Eqs. (2) and (4). In both dispersive media, the
transmitted light travels slower that the incident light (˜︁n2>˜︁n1,˜︁v2<˜︁v1) over the whole range of measurements, as expected in
the normal refraction regime.
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The wide tunability of the group velocity of a ST wave packet
independently of the medium group index is particularly useful
for nonlinear interactions involving disparate wavelengths. A
particularly interesting example is non-degenerate two-photon
absorption, which can lead to the efficient absorption of a probe
photon near the band edge when accompanied by a far-from-
resonance photon. However, in most materials the difference in
the group indices for such non-degenerate photons is extremely
large. For example, in CdSe (bandgap Eg = 1.7 eV) the group
index at λo = 775 nm close to the band edge is ng ≈ 3.7, whereas
that at λ = 1900 nm is ng ≈ 2.6. This large difference in group
indices reduces the interaction length to ≈ 250 µm for ∼ 1-ps
pulses [41]. It is challenging to compensate for such a large
mismatch in group velocities along the propagation axis using
traditional approaches (tilted pulse fronts require a non-collinear
configuration [42]). ST wave packets can be potentially utilized
to address this challenge by making use of a ST wave packet as
the probe. One can then change the group index of the probe
(at λo = 775 nm) by ∆ng ≈ 1.1 to match the group index of a
conventional pump pulse at λ = 1900 nm.

In conclusion, we have formulated theoretically and verified
experimentally a law of refraction for ST wave packets in disper-
sive media. In the presence of chromatic dispersion, the group
velocity of the transmitted wave packet depends on the refractive
and group indices of both media, as well as the group velocity of
the incident ST wave packets. The spatiotemporal refractive phe-
nomena displayed by ST wave packets in non-dispersive media
are preserved in the presence of dispersion. We verified this
law of refraction in highly dispersive ZnSe and CdSe, both of
which have a large gap between their refractive index and group
index at the operating wavelength. Results reported in this work
are crucial for applications of ST wave packets in nonlinear
and quantum optics; for example, group-velocity matching of
pump and probe pulses in non-degenerate two-photon absorp-
tion [43]. Finally, we have examined the impact of the first-order
dispersion term (the group index), but not the second-order term
(group-velocity dispersion), which we will pursue elsewhere. In
particular, the dynamics exhibited by tuning the ST wave packet
group velocity in dispersive media as predicted in [28,29,44,45]
can now be put to test.

Note that after completing our experiments, a new theoretical
study [46] came to our attention that derives the same law of
refraction for ST wave packets in dispersive media in Eq. (4).
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