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Abstract
Using analytical methods, we obtain compact theoretical expressions for the
electrical and thermal resistances of a laser bar as a function of its fill factor.
The theoretically determined values of the thermal resistance are in
excellent agreement with the measured ones. We use the theoretical values
of the electrical and thermal resistances to find the fill factor that gives the
maximal output power for a given active region temperature and the fill
factor that gives the minimal active region temperature for a given output
power. The optimal fill factor is dependent on the bar operating regime;
higher power operation favours the use of higher fill factors to minimize the
active region temperature rise.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A growing demand for high power optical sources led to a
race to improve device reliability and increase output power.
Technological development produced a gradual increase of
single laser output power; however, a significant improvement
took place with the fabrication of laser bars. The laser bar
contains numerous individual laser emitters arranged side-by-
side to form a single monolithic array. A typical laser bar
might contain twenty 100 µm wide emitters equally spaced
to span a 1 cm wide bar. The fill factor for such an array is
defined to be the ratio of pumped bar area to total bar area.

Two solutions are most evident for increasing the laser
bar output power: one is to increase the current per emitter,
and the other is to increase the number of emitters. Increasing
the number of fixed-width emitters on a fixed-width bar is
equivalent to reducing the distance between individual emitters
(i.e. increasing the fill factor). Both solutions, however,
encounter an overheating problem. An increased pumping
current leads not only to an increased output power but also,
due to limited efficiency, to an increased dissipated power.
As a result, the temperature in the active region grows which
reduces the carrier confinement and increases the rate of non-
radiative recombination processes. This causes an efficiency

reduction so that eventually the output power saturates with
increased pumping current (thermal rollover) [1].

Reducing the distance between emitters operating at
constant dissipated power results in a similar heating problem.
Decreasing the separation between adjacent emitters in a laser
bar causes mutual heating which also leads to an active region
temperature rise and decreased efficiency [2]. A natural step is
to reduce the distance between the emitters while also varying
the pumping current in such a way that the total output power
would increase. That is, we come to the problem of the optimal
fill factor: finding the fill factor that allows for maximal laser
bar output power.

Practically, however, laser bars are not normally operated
in the regime of maximal output power. The laser temperature
in this regime is quite high which reduces the device
lifetime. The reliability issue leads to other approaches to the
optimization problem: optimization of the distance between
emitters to produce (1) maximal output power for a given
active region temperature rise or (2) minimal active region
temperature rise for a given output power.

Basically, all these approaches are related to the general
problem of the optimization of the laser bar design. The search
for the optimal fill factor when all other elements of the laser
geometry (e.g., the width of the contact stripes) are fixed is an
approach that allows an exact mathematical solution.
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The calculation of the optimal fill factor is based on
the standard phenomenological equations that describe the
operation of a laser bar [1, 3]. Some of the main parameters in
these equations, namely, the thermal resistance characterizing
the cooling rate and the series resistance characterizing the
power dissipated away from the active region, depend on the
fill factor. The dependence is controlled by the laser design. To
the best of our knowledge, no compact analytical expressions
for the resistances have been suggested so far and this impedes
the improvement of the temperature characteristics of laser
bars. In this paper, we derive analytical expressions for the
thermal and electrical series resistance for typical laser bar
designs, and then use these expressions to find the optimal fill
factor for a given laser bar architecture.

The central point in the evaluation of the electric
resistance is the current spread calculation. In some previous
publications, the current density was calculated under the
assumption of constant density at the contact stripe which then
falls off as the square of the distance away from the contact
[4–8]. An exact analytical solution to the Laplace equation
that controls the current spread when carrier diffusion can be
neglected was obtained by Lengyel et al [9]. They studied a
narrow stripe geometry where the width of the stripe is of the
order of its distance from the active region. Similar models
have been considered by Wilt [10], Joyce [11] and Agrawal
[12]. A comprehensive comparison of these models has been
made by Papannareddy et al [13]. The geometry considered
by Lengyel et al [9] corresponded to the situation in ridge
lasers. In high power lasers the width of the stripe is much
larger than the cladding thickness, and the n-layer thickness
is comparable to the stripe width. Previously, we have shown
that such a relation leads to a high current density near the
edges of the active region [14]. In this paper, we consider the
current spread from a system of parallel stripes in a laser bar.

The thermal resistance substantially depends on the
thermal conductivity and geometry of the heat spreader located
between the laser and the heat sink [15, 16]. Determining
the thermal resistance requires the solution of the thermal
conductance equation with non-trivial boundary conditions.
For this purpose, a finite element method is typically used
[17, 18]. In the present paper, we use analytical approaches
that allow one to understand the qualitative dependence
of device characteristics on different parameters without
performing the time consuming numerical calculation required
in finite element methods.

The calculated electrical series resistance is weakly
dependent on fill factor. In contrast, the dependence of the
thermal resistance on the fill factor is substantial. The
expression obtained for the thermal resistance gives an
excellent agreement with measured values without any
adjustable parameters [19]. Analytical results for both
resistances facilitate the calculation of the optimal fill factor.

This paper is organized as follows. In section 2 we
formulate the fill factor optimization problem for a laser bar.
In sections 3 and 4, we present analytical solutions to the
electrical and thermal problems and calculate the electric and
thermal resistances. In section 5, we compare the theoretical
and experimental values of the thermal resistance and present
the theoretical results of the bar optimization.

2. Optimal fill factor

We consider a laser bar with N contact stripes with a distance
a1 between their centres (figure 1(a)). The laser bar is mounted
on a heat spreader which conducts heat from the laser bar to the
heat sink. The heat sink is assumed ideal, i.e., its temperature
is fixed and does not depend on the power dissipated in the
bar. We assume that the cooling conditions for all lasers in
the bar are the same and we can neglect the edge effects. In
other words, the difference between the cooling of the lasers
close to the ends of the bar and those in the middle can be
neglected and the temperature of their active regions is the
same. Indeed, we did not detect any temperature difference
between different lasers in a 25 W 1.47 µm laser array that
contained 20 elements [19] (compare with [2]).

If jth is the threshold current in one emitter and j > jth is
the pumping current then the optical power generated in this
emitter is

popt = η(j − jth) (2.1)

where η is the differential efficiency. Well above the threshold
the voltage drop across the active region, U0, does not depend
on the current and the power dissipated in one laser is

pd = U0j + rj 2 − popt, (2.2)

where r is the series resistance of one laser.
To make the result more general and avoid specifying the

number of emitters (N) in a bar and the length of the bar it
is convenient to deal with power dissipated per unit length
of the bar, Npd/Lb, where Lb is the length of the bar. The
temperature of the active region is connected to the power
dissipated per unit length by the relation T = RT(Npd/Lb),
where RT is the thermal resistance of the unit length of the bar.
At this stage it is convenient to introduce the fill factor that is
defined as

f = Na

Lb
(2.3)

where a is the width of the stripe. Then with the help of
equations (2.1) and (2.2) the active region temperature can be
expressed as

T = f RT

a
[ηjth + (U0 − η)j + rj 2]. (2.4)

The optical power per unit length of the bar, Popt = Npopt/Lb,
with the help of equation (2.1) can be written as

Popt = f η

a
(j − jth). (2.5)

The definition of Popt and T by equations (2.4) and (2.5)
is not complete for two reasons. The first is that jth and η

depend on T . With a good accuracy this dependence is usually
described as

jth = jr e(T −Tr)/T0 , (2.6a)

η = ηr e−(T −Tr)/T1 , (2.6b)

where Tr is the reference temperature and the constants
jr, ηr, T0 and T1 depend on the details of the laser structure.

The second reason is more serious and presents the main
technical difficulty for the calculation of the optimal fill factor.
Namely, both the thermal resistance and the series resistance
depend on the fill factor. This dependence is controlled by
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(a)

(b)

Figure 1. Perspective views of the mounted laser bar. (a) The planar model with the laser bar, heat spreader and heat sink describing
parallel planes. Light is emitted from the electrically pumped active regions defined by the multiple p-contacts of width a. The
centre-to-centre distance between p-contacts is a1, and the thickness of the heat spreader is d. A detailed view of the laser bar is shown in the
circular inset. The inset shows that the laser bar consists of an n-layer (n-cladding and substrate) of thickness b, a thin active region and a
p-clad of thickness b1. Different coordinate systems have been used. The electrical resistance modelling employs the coordinate origin
shown in the inset, the thermal resistance modelling employs the coordinate origin shown in the main drawing. (b) The perpendicular model
with a similar laser bar mounted in a grooved heat spreader. The laser bar cavity length L and heat spreader thickness D are shown in the
inset. The asymmetry of the n and p layer thicknesses means that the heat transfer is through the p-side of the bar which is modelled as a
planar heat source of negligible thickness.

the geometry of the laser structure and the heat spreader. The
calculation of RT(f ) and r(f ) is the main content of the paper.

Equations (2.4) and (2.5) with known jth(T ), η(T ),

RT(f ) and r(f ) make up the basis for the optimization
problems described above, and these problems can be
formulated as

• Given T , find maximal Popt.
• Given Popt, find minimal T .

It is necessary to note that mathematically the two
problems are equivalent. Given Popt(j, T , f ) and T (j, f ),
both of them are reduced to the solution of the equation

∂Popt

∂f

∂T

∂j
− ∂Popt

∂j

∂T

∂f
= 0 (2.7)

together with one of equations (2.4) and (2.5). The equivalence
can be seen from the results (figures 3 and 4), where the plots
Popt(T ) and T (Popt) can be obtained from each other by the
transposition of the axes.

In the next two sections, we present the calculation of
RT(f ) and r(f ) for simple but practically important models.
For both cases we succeeded in obtaining analytical results that
are quite flexible and convenient for practical applications.

3. Electric resistance of the bar

The model of the laser structure used for calculating the electric
resistance is shown in figure 1(a). It consists of a p-cladding
and n-layer (n-cladding with a substrate) separated by a thin
region containing the waveguide and quantum wells [16]. The
thickness of this quantum well region is typically smaller than
1 µm and we consider it as an interface. The n-side of the
bar is uniformly covered by a metal n-contact, the p-side of
the bar has multiple p-contact stripes of width a and centre-
to-centre separation a1. The thickness of the p-cladding b1 is
much smaller than the thickness of the n-layer b and the stripe
width a. Previously, we considered a similar structure with one
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stripe [14]. In the system with many stripes current spreads
from adjacent stripes limit each other and as a result, the
resistance of the structure decreases with increasing distance
between the stripes. We consider a bar with a large number
of stripes so that the difference of the current spread around
two stripes at the edges of the bar can be neglected. Then it is
possible to consider a periodical system of stripes with period
a1 and fill factor f = a/a1.

Due to the small thickness of the p-cladding, the current
spread in it can be neglected and the width of the pumped active
region is the same as the stripe width. If the current density
components in the p-cladding are jx = 0, jy(x, y) = jy(x, 0)

and the potential at the contact stripe, U, is constant then the
potential at the n-side of the active region is

Ua(x) = U − σpjy(x, 0) − U0, (3.1)

where σp is the conductivity of the p-cladding and U0 is
the potential drop across the active region which is assumed
constant above threshold.

The current spread problem for the n-layer now can be
solved independently of the p-cladding. Due to high doping
in the n-layer the screening radius there is very small which
makes the diffusion current negligible compared to the drift
current. As a result, the potential distribution in the n-layer
φ(x, y) is controlled by the Laplace equation. One of the
boundary conditions for this equation is a constant potential
at the n-contact, y = b. At the pn interface the potential
is Ua(x) which can be considered given only in the pumped
regions while between the pumped regions the current normal
to the interface is zero. The solution to this problem allows
one to find jy(x, 0) as a functional of Ua(x). The substitution
of this functional into equation (3.1) provides an equation for
Ua(x). The solution to this equation gives the final result.
In section 3.1 the potential distribution in the n-layer is found
analytically, in section 3.2 the potential Ua(x) is found with the
help of a variational method, and in section 3.3 the resistance
of the structure is calculated.

3.1. Potential distribution in n-layer

The boundary problem for the Laplace equation in the n-layer
formulated above is equivalent to the boundary problem for
the complex potential,

χ(z) = φ(x, y) + iψ(x, y), (3.2)

where z = x + iy. Apparently, χ(z + a1) = χ(z) and it is
enough to consider the period |x| < a1/2. The system is
symmetric with respect to the lines x = ±a1/2 in the middle
between the stripes, and the current normal to this line is zero,
σn[∂φ/∂x]x=±a1/2 = 0 (σn is the conductivity of the n-layer).
Then due to Cauchy–Riemann relations,

∂φ

∂x
= ∂ψ

∂y
,

∂ψ

∂x
= −∂φ

∂y
, (3.3)

the boundary conditions can be written as

φ = Ua(x), −a

2
< x <

a

2
, y = 0, (3.4a)

ψ = const,
a

2
< |x| <

a1

2
, y = 0, (3.4b)

ψ = const, x = ±a1

2
, (3.4c)

φ = 0, y = b. (3.4d)

To solve this problem it is convenient to map it first to the
upper half-plane of another complex variable w = u + iv.
This can be done with the help of the transformation (see, e.g.,
[20, 21])

z = CF(arcsin w; k), (3.5)

where F(θ; k) is the elliptic integral of the first kind. Constants
C and k < 1 are defined by the condition that point z = a1/2
is mapped onto w = 1 and point z = a1/2 + ib is mapped onto
w = 1/k,

a1 = 2CK(k), (3.6a)

b = CK(k′). (3.6b)

where K(k) = F(π/2; k) is the complete elliptic integral of
the first kind and k′ = √

1 − k2. When w → ∞ equation (3.5)
gives z = ib. The transformation inverse to equation (3.5) is
expressed in elliptic sinus,

w = sn(z; k). (3.7)

Now it is necessary to find the function χ(w) = φ(u, v)+
iψ(u, v) analytic at the upper half-plane of w and satisfying
the following boundary conditions at v = 0:

φ = (U − U0)	(u), −ua < u < ua, (3.8a)

ψ = const, ua < |u| < 1/k, (3.8b)

φ = 0, |u| > 1/k, (3.8c)

where

ua = sn(a/2C; k) < 1, (3.9)

	(u) = 1

U − U0
Ua[CF(arcsin u; k)]. (3.10)

The solution to this problem can be found with the help
of the Keldysh–Sedov method [21, 22] and is [14]

χ(w) = U − U0

π
[−f (w) + ψ0g(w)], (3.11)

where

f (w) = 2w

√
(1 − k2w2)

(
w2 − u2

a

)
×

∫ ua

0

	(t)√
(1 − k2t2)

(
u2

a − t2
) dt

t2 − w2
, (3.12a)

g(w) = 2w

√
(1 − k2w2)

(
w2 − u2

a

)
×

∫ 1/k

ua

1√
(1 − k2t2)

(
t2 − u2

a

) dt

t2 − w2
. (3.12b)

Here
√

1 − k2w2 is defined on the plane of w with the cuts
along the real axis from w = 1/k to ∞ and from w = −1/k

to −∞, and is positive at the real axis between the points
−1/k and +1/k.

√
w2 − u2

a is defined on the plane of w

with the cut along the real axis between the points w = −ua

and w = ua and positive at the real axis at u > ua . Thus, the

function
√

(1 − k2w2)
(
w2 − u2

a

)
is real and positive at the real
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axis between the points ua and +1/k and changes sign when
w changes sign. The integrals in both f (w) and g(w) are
defined at the upper half-plane of w. They can be analytically
continued to the lower half-plane across the part of the real
axis where they are real.

Potential χ(w) is limited at w → ∞ only if

ψ0 = 1

K
(√

1 − k2u2
a

) ∫ ua

0

	(t) dt√
(1 − k2t2)

(
u2

a − t2
) . (3.13)

3.2. Potential at the active region

For the calculation of jy(x, 0) it is convenient to introduce

j (z)= jx(x, y)− ijy(x, y)= −σn

(
∂φ

∂x
− i

∂φ

∂y

)
= −σn

dχ

dz
.

(3.14)

In new variables according to equation (3.5)

j (w) = −σn

C

√
(1 − w2)(1 − k2w2)

dχ

dw
. (3.15)

After the calculation of the complex potential derivative this
is reduced to the form

j (w) = 2σn(U − U0)

πCK
(√

1 − k2u2
a

)
√

1 − w2

w2 − u2
a

× [J1(ua, k) − J2(w, ua, k)]. (3.16)

where

J1(ua, k) = E
(√

1 − k2u2
a

) ∫ π/2

0

	(ua sin θ) dθ√
1 − k2u2

a sin2 θ

− K
(√

1 − k2u2
a

)
k2u2

a

∫ π/2

0

	(ua sin θ) sin2 θ dθ√
1 − k2u2

a sin2 θ
.

(3.17a)

J2(w, ua, k) = K
(√

1 − k2u2
a

) ∫ ua

0
	′(t)t

×
√

(1 − k2t2)
(
u2

a − t2
)

t2 − w2
dt, (3.17b)

and E(k) is the complete elliptic integral of the second kind.
The substitution of jy(u, 0) from equation (3.16) into

equation (3.1) leads to the equation

	(u) = 1 − b1σn

bσp

2K(k′)
π

√
1 − u2

u2
a − u2

J3(ua, k), (3.18)

where

J3(ua, k) = J1(ua, k)

K
(√

1 − k2u2
a

) − V.p.
∫ ua

0
	′(t)t

×
√

(1 − k2t2)
(
u2

a − t2
)

t2 − u2
dt. (3.19)

Integral equation (3.18) determines 	(u). The solution to
equation (3.18) gives a minimum to the functional

F [	]

=
∫ ua

0

[
1 − 	(u) − b1σn

bσp

2K(k′)
π

√
1−u2

u2
a−u2

J3(ua, k)

]2

du.

(3.20)

This functional can be used to find an approximate solution
with the help of the variational method. A good approximation
is 	(u) = c1 − c2u

2 − c3u
8.

3.3. Calculation of the resistance

The current across the n-layer is

I = L

∫ a/2

−a/2
jy(x, 0) dx = 2Lσnψ(a/2, 0) = 2Lσnψ(ua, 0),

(3.21)

where L is the length of the stripe. With the help of
equation (3.11) it is possible to show that

χ(ua) = (U − U0)[	(ua) + iψ0], (3.22)

and then

I = U − U0

r
, r = 1

2Lσnψ0
. (3.23)

The substitution of equation (3.13) gives

r(f ) = K
(√

1 − k2u2
a

)
2Lσn


∫ ua

0

	(t) dt√
(1 − k2t2)

(
u2

a − t2
)



−1

.

(3.24)

If the resistance of the p-cladding can be neglected, i.e.,
b1σn/bσp � 1 then 	(t) = 1 and

r = K
(√

1 − k2u2
a

)
2LσnK(kua)

. (3.25)

4. Thermal resistance

Typically the laser bar is mounted on a heat spreader and
actively cooled heat sink. The thermal resistance of the laser
bar crucially depends on the geometry of the heat spreader.
In this section, we calculate the thermal resistance for two
different models. The first is the planar model where the bar is
parallel to the heat sink and is separated by a heat spreader with
given thickness d (figure 1(a)). The second model represents
the bar imbedded in the heat spreader perpendicular to the
interface between the spreader and the heat sink (figure 1(b)).
The arrays used to verify our model were fabricated using the
perpendicular geometry [19]. In both models, we assume an
ideal heat sink in which temperature is maintained constant at
any dissipated power.

4.1. Planar geometry

In this case the temperature field in the heat spreader is two-
dimensional; there is no temperature gradient along the laser
cavity (figure 1(a)). The temperature distribution can be found
from the equation

∂2T

∂x2
+

∂2T

∂y2
= 0, (4.1)

with boundary conditions

T (x, 0) = 0, (4.2a)
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κ
∂T

∂y

∣∣∣∣∣
y=d

=
{
q, na1 − a/2 < x < na1 + a/2,

0, (n − 1)a1 + a/2 < x < na1 − a/2.

(4.2b)

Here T is the temperature excess above the heat sink
temperature, d is the width of the heat spreader and κ is
the thermal conductivity of the heat spreader material. The
heat flux from each laser equals the power dissipated there,
q = pd/La. For the calculation of the thermal resistance of
the unit length of the bar it is convenient to express the flux as
the power dissipated per unit length:

q = Pd

f L
. (4.3)

Due to the periodicity of the boundary conditions the solution
to equation (4.1) can be found with the help of Fourier
expansion and the result is

T (x, y) = qa

κ

[
y

a1
+

a1

π2a

∞∑
n=1

sin(nπa/a1)

n2

× sinh(2nπy/a1)

cosh(2nπd/a1)
cos

2nπx

a1

]
. (4.4)

The temperature of the bar,

T (x, d) = qa

κ

[
df

a
+

1

π2f

×
∞∑

n=1

sin(nπf )

n2
tanh

2nπdf

a
cos

2nπxf

a

]
, (4.5)

oscillates with x, i.e., along the bar. It reaches its maximum
in the middle of a stripe, x = 0, and minimum between two
stripes, x = a1/2. The amplitude of the oscillations decreases
with increasing fill factor and at f = 1 the temperature of the
bar is x independent: T (x, d)|f =1 = qd/κ

The measured laser temperature corresponds to the
temperature averaged across the laser, i.e.,

Tav = 1

a

∫ a/2

−a/2
T (x, d) dx

= qa

κ

[
df

a
+

1

π3f 2

∞∑
n=1

sin2(nπf )

n3
tanh

2nπdf

a

]
. (4.6)

This gives the following expression for the thermal resistance
of the unit length of the bar,

RT = Ta

Pd
= d

κL
+

a

κπ3f 3L

∞∑
n=1

sin2 nπf

n3
tanh

2nπdf

a
.

(4.7)

The thermal resistance decreases with increasing fill factor and
reaches the value of d/κL when f = 1. A decreasing thermal
resistance with increasing fill factor has also been obtained
using the finite element method [18].

4.2. Perpendicular geometry

In the perpendicular geometry (figure 1(b), the temperature
depends on all three coordinates: it depends on the distance
from the bar, it changes along the cavity due to the varying

distance to the heat sink and it changes in the direction
along the bar similarly to the planar model. The exact
calculation of the three-dimensional temperature field gives
quite cumbersome results. However, practically it is necessary
to know the temperature close to the maximal one. For the
temperature close to the maximum a very good approximation
can be obtained in a relatively simple way.

For this reduction, first the temperature field in the
perpendicular geometry is calculated for a fill factor of 100%.
Then the effective thickness of an equivalent planar geometry
heat spreader is determined such that it provides the 100% fill
factor bar temperature equal to the maximal temperature in
the perpendicular geometry at the same 100% fill factor. After
the effective thickness is chosen the bar temperature can be
calculated with any fill factor with the help of equation (4.7).
An excellent matching of this approximation to experimental
results has been achieved.

The calculation of the maximal temperature in the
perpendicular geometry with a fill factor of 100% is reduced to
a two-dimensional problem for equation (4.1) at a stripe with a
cut (see figure 1(b)). The boundary conditions for this equation
are the following. The temperature excess equals zero at the
interface with the heat sink, y = 0. The heat flux comes in
only from the p-side of the bar, D − L < y < D, x = +0.
The heat flux from the n-side, D − L < y < D, x = −0, can
be neglected because of the large thickness of the substrate
compared to the thickness of the p-cladding. That is

T (x, 0) = 0,
∂T

∂y

∣∣∣∣
y=D

= 0, (4.8a)

∂T

∂x

∣∣∣∣ x=−0
D−L<y<D

= 0, κ
∂T

∂x

∣∣∣∣
x=+0

D−L<y<D

= −q. (4.8b)

The problem can be solved with the conformal mapping of
the stripe with the cut x = 0,D − L < y < D at the plane
z = x + iy to the stripe 0 < v < π at the plane w = u + iv.
The mapping is carried out with the help of the function [21]

w = ln
cos πL

2D

√
coth2 πz

2D
+ tan2 πL

2D
+ 1

cos πL
2D

√
coth2 πz

2D
+ tan2 πL

2D
− 1

. (4.9)

The Laplace equation for T in the plane z remains the
Laplace equation in the plane w. The boundary conditions at
the plane w are

T (u, 0) = 0, (4.10a)

∂T

∂v

∣∣∣∣
v=π

=




q

κ

D

π

cos πL
2D

tanh u
2√

sin2 πL
2D

− tanh2 u
2

, 0 < u < uD,

0, otherwise.

(4.10b)

The solution in the stripe 0 < v < π can be found with the
help of expansion in Fourier integral in u or Fourier series in
v and the result can be reduced to the form

T (u, v) = 1

2π

qD

πκ

∫ uD

0
ln

[
cosh[(u − u′)/2] + sin(v/2)

cosh[(u − u′)/2] − sin(v/2)

]

× cos πL
2D

tanh u′
2√

sin2 πL
2D

− tanh2 u′
2

du′. (4.11)
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The temperature reaches its maximum at y = D, x = +0 or
u = uD, v = π and it is

Tm = 1

2π

qD

πκ

∫ uD

0
ln

[
cosh[(uD − u)/2] + 1

cosh[(uD − u)/2] − 1

]

× cos πL
2D

tanh u
2√

sin2 πL
2D

− tanh2 u
2

du. (4.12)

A comparison of this expression with the temperature in the
plane geometry for f = 100%, Tm = qd/κ , immediately
gives the following expression for the effective thickness:

d = D

2π2

∫ uD

0
ln

[
cosh[(uD − u)/2] + 1

cosh[(uD − u)/2] − 1

]

× cos πL
2D

tanh u
2√

sin2 πL
2D

− tanh2 u
2

du. (4.13)

Now the thermal resistance can be calculated with the help
of equation (4.7) where d is taken from equation (4.13).

5. Results and discussion

We compare our optimization theory with results obtained on
laser bars based on InGaAsP/InP and operating at 1.5 µm.
The measurements were made on bars with different fill
factors, 10%, 20% and 40%. In all bars the width of the
n-contact stripes was a = 100 µm. The distance between the
n- and p-contacts was 140 µm, the thickness of the p-cladding
was b1 = 1.5 µm and the conductivities of the n-layer and
p-cladding were σn = 320 �−1 cm−1 and σp =
1.6 �−1 cm−1. This gives the ratio of the resistances of
the p-cladding and the n-layer necessary for the calculation of
the electric resistance b1σn/bσp = 2 (here b1 and σp are the
thickness of the conductivity of the p-cladding).

The laser bars were mounted in metallized grooves in
BeO heat spreaders which were bonded to water-cooled
microchannel heat sinks (figure 1(b)). The thickness of the
heat spreader was D = 1.5 mm, and the cavity length for
these bars was 1 mm. According to section 4.2 the thermal
resistance of the bar in this geometry is equivalent to the
thermal resistance in the planar geometry (figure 1(a)), with an
effective thickness of d = 8.3a obtained from equation (4.13).
Using d = 830 µm in equation (4.7) the thermal resistance
was calculated for laser bars in the perpendicular geometry
for different bar designs. These results were compared to
experimentally measured thermal resistances. The measured
dependence of the active region overheating versus the
dissipated power density is given in figure 2(a). The slopes of
the straight lines fitted to the experimental data in figure 2
provide estimates of the thermal resistance for bars with
different fill factors. Thermal resistances of bars with f

equal to 0.1, 0.2 and 0.4 are, respectively, 0.56, 0.40 and
0.36 K cm W−1. The standard deviation of measured points
from the linear fits gives the accuracy of the thermal resistance
around 4% or smaller. The maximal error coming from
the error of the temperature measurements is close to this
value. Equation (4.7) gives for these bars 0.58, 0.41 and
0.35 K cm W−1. That is the discrepancy between the
theoretical and experimental results is within the accuracy
of the measurements. The thermal resistances of bars with

(a)

(b)

Figure 2. Measured overheating of the active region versus
dissipated power density pdis (a) for different fill factor laser bars
with 1 mm long cavities mounted in BeO heat spreaders and (b) for
different fill factor laser bars with 2 mm long cavities mounted in
CuW heat spreaders. Solid symbols indicate data points (circles,
squares, and triangles for 10%, 20%, and 40% fill factors
respectively). Lines fit to the experimental data are used to
determine the thermal resistance.

2 mm cavities mounted in heat spreaders of CuW were also
evaluated (figure 2(b)). For these bars, we compare the ratio of
the thermal resistances for the 0.1 and 0.4 fill factor bars. The
experimentally determined ratio is 1.5, close to the calculated
ratio of 1.64.

Along with the calculated dependences of r(f ) and
RT (f ), the temperature dependences of the threshold current
and slope efficiency are required to solve the optimization
problem (2.7). These parameters were measured under short
pulse operation by changing the heat sink temperature for
individual 1 mm cavity length lasers. Both the threshold
current jth and slope efficiency η are well described by
equation (2.6) with jr = 0.5 A, ηr = 0.5 W A−1, Tr = 20 C,
T0 = 54 K and T1 = 160 K. The voltage across the active
region above threshold U0 = 0.91 V.

The solution of the optimization problem (equation (2.7))
yields the maximum output power for a given active region
temperature rise, as shown by the solid line in figure 3. The
dashed line in figure 3 corresponds to the optimal fill factor
design that provides this output power at the given active region
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Figure 3. Optimized fill factor (dashed line) and corresponding
maximum output power (solid line) as a function of laser
temperature rise.

Figure 4. Optimized fill factor (dashed line) and corresponding
minimal laser temperature rise (solid line) as a function of output
power. The dotted lines show the temperature rise for several fixed
fill factor arrays as a function of output power.

temperature rise. A similar optimization based on minimal
temperature rise for a given output power is shown in figure 4.
Here again, the dashed line represents the optimal fill
factor, and the solid line indicates the minimal active region
temperature rise for the given output power.

To understand how critical the optimal fill factor is, we
compare the analytically calculated active region temperature
rise versus output power for an optimal fill factor array and
for several fixed (10%, 20% and 40%) fill factor arrays. This
comparison is given in figure 4. The 40% fill factor array
plot is nearly coincident with the optimal fill factor plot above
about 25 W. For output powers below 17 W, the difference in
active region temperature between the optimal array and the
20% fill factor array is negligible. The 10% fill factor array
has the highest temperature among the rest arrays above 5 W.
Clearly, the optimal fill factor depends on the bar operating
regime.

Earlier we suggested two methods of increasing array
output power: increasing the pumping current per emitter and
increasing the number of emitters. By calculating the optimal
fill factor for a particular operating regime, we have found the
most favourable balance between these two approaches. The
optimal fill factor curve shown in figure 3 illustrates that for
increasing output power in this system, it is preferable to use

a higher fill factor. Higher fill factors offer advantages for
higher power operation since the effect of mutual heating is
weaker than the heating of each one of them by the current.

6. Conclusion

In this paper

• We obtained analytical expressions for the steady state
electrical and thermal resistance of a laser bar. Both
quantities depend on geometry, and in particular, the fill
factor.

• Theoretical results for the thermal resistance are in
excellent agreement with the measured thermal resistance
of 1 and 2 mm cavity length laser arrays with different fill
factors.

• We use the analytical results to calculate the optimal laser
bar fill factor. The value of the optimal fill factor depends
on the working regime of the bar; higher output powers
require higher fill factors for minimum active region
temperatures.
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