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The heating of a semiconductor laser bar imbedded between two heat spreaders has been studied
theoretically and experimentally. The model included thep-cladding layer, active region,n-cladding
layer, and n-substrate. Heat sources from the active region and both cladding layers were
considered. An analytical relation was obtained between the temperature distribution in the laser and
the bar geometry. The analytical approach revealed features that are usually missing in purely
numerical modeling. It was shown that the current density across the active region is nonuniform,
and that the magnitude of the nonuniformity grows when the resistance of thep-cladding layer
decreases. This nonuniform current distribution can lead to higher temperatures at the edges of the
laser stripe than in the middle. It was found that mutual heating of the individual lasers in the bar
is controlled mainly by the overlap of the temperature fields in the heat spreaders. The theoretical
results obtained without any fitting parameters show good agreement with the experimentally
measured dependence of the active region temperature on pumping current. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1655687#

I. INTRODUCTION

High-power infrared diode laser arrays are effective
sources for pumping solid-state lasers.1–3 These laser arrays
are composed of one or more laser bars; each laser bar con-
sists of numerous individual laser emitters formed on a
single piece of semiconductor. There are a number of factors
that limit the output power and reliability of diode lasers, for
example, catastrophic optical damage and overheating. For
the 1.5mm InGaAsP/InP lasers used in this experiment, the
output power and reliability are limited mainly by overheat-
ing. A deep understanding of all overheating mechanisms can
facilitate further progress with these lasers.

The purpose of the present article is to study the tem-
perature rise~overheating! in the laser structure induced by
power dissipation in the active region,p- and n-cladding
layers, and the substrate. The analysis was developed for
single-emitter lasers, but much of it is directly applicable to
multi-emitter broad-area laser bars.

Previous theoretical work considered the temperature
distribution along the laser cavity,4,5 the temperature distri-
bution in the direction perpendicular to the layers of the
structure,6,7 and the facet heating4,5,8 ~see also the review by
Erbertet al.9!. The first studies of the temperature profile in
the lateral direction10,11 were based on the assumption of
uniform heat sources. In this article, we consider a more
realistic and complicated model, including nonuniform lat-
eral current distribution.

In previous publications, the current density was some-
times calculated under the assumption that it was constant at

the contact stripe and falls off as the square of the distance
away from the contact.12–17 An exact analytical solution to
the Laplace equation that controls the current spread when
carrier diffusion can be neglected was obtained by Lengyel
et al.18 They studied a narrow stripe geometry in which the
width of the stripe is of the order of its distance from the
active region. Similar models have been considered by
Wilt,19 Joyce,20 and Agrawal.21 A comprehensive comparison
of these models has been made by Papannareddyet al.22 The
geometry considered by Lengyelet al.18 corresponds to the
situation encountered in ridge lasers. For high-power lasers,
the width of the stripe is much larger than the cladding thick-
ness, and the substrate thickness is comparable to the stripe
width. In the present article, it is shown that this geometry
leads to a high current density near the edges of the active
region.

We have considered a structure typical of broad-area la-
sers. We found an analytical expression for the current den-
sity in the lateral direction. From the current density, we
determined the resulting heat sources, and we then analyti-
cally solved the heat conduction equation for the whole sys-
tem, taking into account the thermal resistance of the layers
separating the laser structure from the heat sinks. Experimen-
tal results obtained using a high-power 1.5mm InP-based
laser array demonstrated good agreement between the theo-
retical results and the measured laser temperature.

The structure of the article is as follows. In Sec. II, we
describe the model and present a picture of relevant phenom-
ena and qualitative results. Sections III and IV contain the
main points of the calculations of the current spread and
temperature distributions, respectively. In Sec. V, we present
the results of the calculations and compare them with experi-
ment, followed by the conclusion.
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II. MODEL

The temperature field in an array of lasers is the sum of
the fields produced by each laser emitter separately. For this
reason, we start the analysis using a theoretical model that
contains only one laser emitter~Fig. 1!. The lasing hetero-
structure consists of ap-contact stripeCp , a p-cladding
layer, an active region A, ann-cladding layer, the substrate,
and ann-contactCn . We consider a cooler design in which
the heat is removed from both thep- andn-sides. Typically,
a water-cooled microchannel heat sink is used for high-
power laser arrays. We assume that such a heat sink is ideal,
and it is connected to the laser structure via two buffer layers
with finite thermal resistance.

The length of the laser cavity is generally much larger
than the stripe width and the thickness of the whole structure.
This allows us to neglect the effect of facets while studying
the temperature distribution far from the ends of the cavity.
Thus, we reduced a three-dimensional problem for electric
potential and temperature field to a two-dimensional one that
facilitated analytical solution. The laser structure that we
used in the calculation was typical in that thep-cladding
thicknessb1 was small compared to the width of the stripea
and the total thickness ofn-cladding and substrate,b2b1 .
Here, b is the distance between thep- and n-contacts. We
considereda andb of the same order. The thickness of the
active region, which includes the quantum wells~QWs! and
a relatively lightly doped waveguide, is a few hundred Å,
which is significantly smaller thanb1 . For this reason, we
neglected the active region thickness and considered this re-
gion as an interface between thep- andn-regions. We also
assumed a uniform doping of thep- andn-regions and char-
acterized them by electrical conductivitiessp and sn , re-
spectively, and the same thermal conductivityk.

We considered laser operation above threshold and with
only moderate overheating. Under these conditions, we can
assume that the voltage drop across the active region (U0)

remains constant while the voltage across thep- andn-layers
increases with current. Our problem is to calculate the tem-
perature distribution in the structure and specifically in the
active region as a function of the total current, given the
geometry of the structure, all necessary physical parameters,
U0 , the threshold current, and the differential efficiency.

Throughout the article we use analytical approaches,
leaving numerical calculation for the last stage~evaluation of
integrals!. The advantage of analytical calculation as com-
pared to numerical calculation is that the result contains sym-
bolic parameters, such asa, b, sn , sp , etc. A reader who
wants to calculate the temperature distribution in another
structure needs only to substitute the parameters of the struc-
ture in the final expressions. Using a numerical approach, the
calculation for a new structure requires the repetition of the
calculation with the help of a program that may not be ac-
cessible to the reader. In addition, an analytical result allows
one to understand the qualitative dependence of device char-
acteristics on the parameters without performing time-
consuming calculations. A disadvantage of the analytical ap-
proach is that analytical solutions can be obtained only for
rather simple models, for example, we assumed that the con-
ductivity sn does not change across the wholen layer, which
is equivalent to a uniform doping. Fortunately, relations be-
tween typical geometrical parameters are such that many of
the complications of real laser heterostructures lead to small
effects that are beyond the accuracy of experiments and can
be neglected for the first approximation. Taking this into con-
sideration, we use small parameters to obtain analytical so-
lutions to both the electric and the thermal problems.

The first use of a small parameter comes from very high
doping of both thep- andn-layers, which leads to a screen-
ing length smaller than all characteristic lengths~e.g., the
thickness of thep-cladding!. This strong screening greatly
reduces the concentration gradients in both thep- and
n-regions that would create an electric field. This leads to
reduction of the diffusion current, and with very good accu-
racy, the diffusion current can be neglected compared to the
drift current. As a result, the current distribution is controlled
by the Laplace equation for the electric potential. We ob-
tained an analytical solution to this equation in the region
including thep-cladding, then-cladding, and the substrate. It
is well known that the electric field is singular near sharp
edges of a conductor. As a result, the current density near the
edges of the contact stripe is significantly larger than at the
middle. The effects of this singularity also appeared in our
solution, leading to a higher current density near the edges of
the active region, as seen in Figs. 2 and 3. The effect is
weakened because the higher current near the edges leads to
a higher potential drop between the stripe and the active
region edges, which smears the singularity. The lateral cur-
rent spread takes place mainly in then-layer because its
thickness is comparable with the width of the stripe. The
lateral current spread in thep-cladding is negligible because
of its very small thickness compared to the width of the
stripe.

To simplify the solution of the thermal problem, we con-
sidered the buffer layer as a thermal resistance of the bound-
ary between the laser structure and the ideal heat sink. In

FIG. 1. The structure of the laser. Then-layer consists of a thinn-cladding
andn-substrate.Cp andCn arep- andn-contacts, A is the active region.
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reality, a significant part of the heat spread in the lateral
direction takes place in the bulk of the buffer layer. A de-
tailed discussion of the heat spread in the buffer layer is
given elsewhere.3 In this work, we considered the heat
spread only in the laser structure.

The high current density near the edges of the active
region leads to greater heating there. This effect competes
with better cooling conditions: the current density drops very
quickly in the lateral direction away from the active region,
and the material there is not heated. As a result, for small
p-cladding resistance, the edges of the active region have

higher temperature than its middle, while, when the resis-
tance ofp-cladding is large, the temperature in the middle is
higher.

The lateral heat spread is determined by the geometrical
parameters of the structure and the ratio of the thermal resis-
tances of the buffer layer and the structure. We consider the
regime of moderate current when most of the dissipated
power comes from the active region. Because the active re-
gion is much closer to thep-contact than to then-contact,
the active region is cooled mainly from thep-side. If the
thermal resistance of the buffer layers were zero, the heat
would spread laterally away from the active region at a dis-
tance on the order ofb1 . A finite thermal resistance of the
buffer layer makes this distance larger. The heat generated in
the relatively thickn-layer spreads over a significantly wider
region. This is of little practical concern because the amount
of heat generated inn-layer is relatively small.

In our model, the magnitude of the laser overheating
depends strongly on the thermal resistance of the thermal
buffers that separate the laser structure from the ideal heat
sink. When this thermal resistance is zero, the overheating is
very small.

In the next two sections, this qualitative description is
supported by quantitative calculation that allow us to present
a complete picture of the temperature distribution inside the
laser structure.

III. CURRENT SPREAD

The calculation of the current spread is hindered by the
fact that the structure consists of two layers with different
conductivities. The small thickness of thep-cladding (b1),
compared to the width of the contact (a), however, allows us
to assume the current spread in thep-cladding is negligible.
The potential drop across this layer isUp(x)
5b1 j y(x,0)/sp , wherej y(x,y) is the component of the cur-
rent density across the layer. The potential at the contact
stripeU is constant, and the potential drop across the active
region U0 is also constant above threshold. However, the
potential at then-side of the active region,

Ua~x!5U2U02b1 j y~x,0!/sp , ~3.1!

depends on the distribution ofj y(x,0). The approximation
Eq. ~3.1! is not valid in a small vicinity of the edges of the
active region. We discuss this problem at the end of Sec.
III B.

First, we find the electric potential in then-layer, assum-
ing that the potentialUa(x) is known and that the normal
current across thep–n interface j y(x,0)50 away from the
active region. The other boundary condition for then-layer is
zero potential at then-contact. The solution to this problem
is given in Sec. III A. This solution allows us to find the
current densityj(x,y) everywhere in then-layer and, in par-
ticular, the current density normal to thep–n interface,
j y(x,0), at uxu,a/2. This current density depends onUa(x)
and substitution of it in Eq.~3.1! provides an integro-
differential equation forUa(x). This equation is solved in
Sec. III B. This completes the calculation of the current den-
sity in the structure.

FIG. 2. The dimensionless current density~in units of I /Lb, whereI is the
total current,L is the cavity length, andb is the thickness of the structure!
as a function ofx/b given y. The ratio of thep- andn-layer resistances is
b1sn /bsp54. The numbers on the curves are dimensionless distances from
the active region,y/b. The edges of the active region as shown by the
dashed lines correspond tox/b560.357. Singularities of the current near
the edges of the stripe are very pronounced at smally/b and disappear with
the growth ofy. The lateral spread of the current does not grow much even
at largey/b, close to then-contact.

FIG. 3. The dimensionless current density~in units of I /Lb, whereI is the
total current,L is the cavity length, andb is the thickness of the structure!
as a function ofx/b for different p-cladding resistances. The edges of the
active region correspond tox/b560.357. The distance from thep-contact
y5b150.01b, the numbers on the curves are the values of the ratio of the
p- and n-layer resistances,b1sn /bsp . The smaller this parameter is, the
more pronounced are the singularities at the edges of the stripe.
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A. Current spread in the n -layer

The current densityj(x,y) can be found from current
conservation¹• j50 and Ohm’s law,j52sn¹f, wheref
is the electric potential. The carrier concentration is typically
large, which allows us to neglect the diffusion current. Then,

¹2f50. ~3.2!

The boundary conditions for Eq.~3.2! are

y50, uxu,a/2: f5Ua~x!, ~3.3a!

y50, uxu.a/2:
]f

]y
50, ~3.3b!

y5b: f50. ~3.3c!

In addition, the potential goes to zero whenuxu goes to in-
finity. It follows from the symmetry of the problem that
Ua(2x)5Ua(x). To simplify the notation, we chosey50
in this section to be the level of the active region.

The mixed boundary conditions aty50 do not allow us
to use separation of variables for the solution of Eq.~3.2!, so
that we must make use of a more powerful method: confor-
mal mapping. According to this method,f can be considered
as the real part of an analytic function of the complex vari-
ablez5x1 iy :

x~z!5f~x,y!1 ic~x,y!. ~3.4!

The problem now is to find the functionx(z) analytic in the
stripe 0,y,b that satisfies the boundary conditions

y50, uxu,a/2: f5Ua~x!, ~3.5a!

y50, uxu.a/2: c5const, ~3.5b!

y5b: f50. ~3.5c!

Eq. ~3.5b! follows from Eq.~3.3b! due to Cauchy–Riemann
conditions

]f

]x
5

]c

]y
,

]c

]x
52

]f

]y
, ~3.6!

that provide the analytic property ofx(z).
The boundary problem for the stripe~3.5! can be re-

duced to a problem in the upper half-plane of another com-
plex variablew5u1 iv, where its solution is simpler. This is
done with the transformation

w5tanh
pz

2b
, z5

b

p
ln

11w

12w
. ~3.7!

This transformation maps the segment of the real axisuxu
,a/2 to the segment of the real axisuuu,ua , where ua

5tanh(pa/4b). The negative and positive parts of the real
axis outside of this segment are mapped to the parts of the
real axis where21,u,ua andua,u,1, respectively. The
parts with x,0 and x.0 of line y5b are mapped to the
regions of the real axis whereu,21 andu.1, respectively,
so that the pointz5 ib is mapped to infinity atw-plane. Now
the problem is to find the functionx(w) analytic in the upper
half-plane ofw and satisfying the following conditions at the
real axis:

uuu,ua : f5~U2U0!F~u!, ~3.8a!

ua,uuu,1: c5const, ~3.8b!

1,uuu: f50, ~3.8c!

where

F~u!5
1

U2U0
UaS b

p
ln

11u

12uD . ~3.9!

Additional conditions are continuity off(u,v) near singular
points of the transformationw5ua , w51, and a decrease of
f(u,v) to zero whenw goes to infinity. Apparently,F
(2u)5F(u).

The difficulty of the problem is that boundary conditions
~3.8! are mixed, that is, at some parts of the boundary only
the real part ofx(w) is given, while at the others only the
imaginary part is known. The problem can be solved with the
Keldysh–Sedov method,23 and the result is

x~w!52
2~U2U0!

p
wA~12w2!~w22ua

2!

3F E
0

ua F~ t !

A~12t2!~ua
22t2!

dt

t22w2

2

PS 2
12ua

2

12w2 ,A12ua
2D

~12w2!K~A12ua
2!

E
0

ua F~ t !dt

A~12t2!~ua
22t2!

G ,

~3.10!

whereK(k) andP(s,k) are complete elliptic integrals of the
first and the third kind, respectively.

The total current across the device can be easily calcu-
lated by the integration of the current density aty50 with
the help of Eq.~3.6!:

I 52LE
2a/2

a/2

j ydx52Lsnc~x5a/2, y50!

52Lsnc~ua,0!, ~3.11!

whereL is the length of the stripe. The value ofc(ua,0) is
obtained in the boundary problem for the potential, and the
result is

I 5
U2U0

r
,

r 5
K~A12ua

2!

2Lsn
F E

0

ua F~ t !dt

A~12t2!~ua
22t2!

G21

. ~3.12!

For the calculation of the current density, it is convenient
to introduce a complex current,

j ~z!5 j x2 i j y . ~3.13!

With the help of Eq.~3.6! Ohm’s law can be written as

j 52sn

dx

dz
5

I

Lb
J~w!, ~3.14!

where
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J~w!52
p

4~U2U0!
K~A12ua

2!

3F E
0

ua F~ t !dt

A~12t2!~ua
22t2!

G21

~12w2!
dx

dw
. ~3.15!

After a quite tedious calculation ofdx/dw, the result is re-
duced to

J~w!5
1

2 F E
0

ua F~ t !dt

A~12t2!~ua
22t2!

G21

3A 12w2

w22ua
2 @J1~ua!2J2~w,ua!#, ~3.16!

where

J1~ua!5E~A12ua
2!E

0

ua F~ t1!dt1

A~12t1
2!~ua

22t1
2!

2K~A12ua
2!E

0

ua F~ t !t2dt

A~12t2!~ua
22t2!

, ~3.17a!

J2~w,ua!5K~A12ua
2!E

0

ua A~12t2!~ua
22t2!

t22w2 F8~ t !tdt,

~3.17b!

where E(k) is the complete elliptic integral of the second
kind.

If the resistance of thep-cladding can be neglected~the
exact criterion is given in Sec. III B!, then F(t)51,
J2(w,ua)50, and

J1~ua!5K~ua!E~A12ua
2!2@K~ua!2E~ua!#K~A12ua

2!

5
p

2
, ~3.18!

due to the Legendre relation.24 As a result,

J~w!5
p

4K~ua!
A 12w2

w22ua
2, ~3.19!

and the resistance of the structure

r 5
1

2Lsn

K~A12ua
2!

K~ua!
. ~3.20!

Expression~3.19! has a very remarkable property: it is
singular atw56ua . In other words, the current density goes
to infinity at the edges of the active region. The reason for
this behavior is very simple. It is known that at sharp edges
of a charged piece of metal, the electric field goes to infinity.
The infinite value of the current density results from the in-
finite electric field.

The singular behavior of the current at the edges of the
active region came from the approximation used in Eq.
~3.19!. In reality, the current density is singular at the edges
of the contact stripe, while at the edges of the active region
the singularity is smeared by the resistance of thep-cladding
and by a small spread of the current there. The first reason is
considered in the next subsection.

B. Potential distribution at the active region

According to Eqs. ~3.13! and ~3.14! j y

52(I /Lb)Im J(w). At the active region,y50 anduxu,a/;
that is, atv510 anduuu,ua , Eq. ~3.16! gives

Im J~u1 i0!52
1

2 F E
0

ua F~ t !dt

A~12t2!~ua
22t2!

G21

3A 12u2

ua
22u2 @J1~ua!2ReJ2~u,ua!#.

~3.21!

The substitution of this expression in Eq.~3.1! leads to the
equation

F~u!512
b1sn

bsp
A 12u2

ua
22u2F J1~ua!

K~A12ua
2!

2V.p.E
0

ua A~12t2!~ua
22t2!

t22u2 F8~ t !tdtG . ~3.22!

We solve Eq.~3.22! with a variational method by mini-
mizing functional

F@F#5E
2ua

ua FF~u!212
b1sn

bsp

2

K~A12ua
2!

3E
0

ua F~ t !dt

A~12t2!~ua
22t2!

Im J~u1 i0!G 2

du.

~3.23!

A good approximation is given byF(u)5c12c2u22c3u8,
wherec1 , c2 , andc3 are variational parameters.

The current density resulting from this calculation is pre-
sented in Figs. 2 and 3. In Fig. 2, the dependence of the
dimensionless currentuJu on x/b is given at different dis-
tances from thep-contacty/b. The larger this distance, the
less pronounced the current singularities are. The active re-
gion is aty/b50.01.

In Fig. 3, the dependence ofuJu on x/b at y/b50.01 is
presented for different ratios ofp-cladding andn-layer resis-
tances. It is clearly seen that the resistance of thep-cladding
smears the current singularities. Equation~3.22! shows that
the effect of p-cladding is controlled by the ratio of the
p-cladding andn-layer resistancesb1sn /bsp . When this
ratio is not small, the potential drop across thep-cladding
significantly affects the potential distribution.

One also has to keep in mind that there is another factor
that smears the current singularity within a small vicinity of
the edges of the active region. This is a small current spread
in the lateral direction that is neglected in Eq.~3.1!. It is easy
to show that the ratio of two current components in the
p-cladding j x / j y;b1 /a!1. This estimate is not valid, and
j x / j y;1 only at the vicinity on the order ofb1 near the
edges. Compared to the finite resistance of thep-cladding
that affects the current distribution over the whole width of
the active region, the effect ofj x can be neglected.
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IV. TEMPERATURE DISTRIBUTION

The calculation of the temperature distribution is re-
duced to the solution of the equation

]2T

]x2 1
]2T

]y2 52
1

k
Q~x,y!, ~4.1!

in the region 0,y,b where T is the temperature excess
above the temperature of the heat sink,k is the thermal con-
ductivity, andQ(x,y) is the dissipated power density. Simi-
lar equations with zero on the right-hand side have to be
solved in the thermal buffers. The buffers can be modeled by
layers with thermal conductivityk1 and the widthb2 .

In this article, we are interested only in the temperature
distribution inside the laser structure, and will disregard the
lateral heat spread in the buffer layer~this spread is consid-
ered elsewhere3!. In this case, the temperature derivatives
normal to the interfacey50 or y5b inside the buffer are
T(x,0)/b2 and T(x,b)/b2 , respectively, and the respective
heat fluxes are2k1T(x,0)/b2 and k1T(x,b)/b2 . The heat
flux at any interface is continuous, giving the boundary con-
ditions

]T

]y U
y50

5
g

b
Tuy50 ,

]T

]y U
y5b

52
g

b
Tuy5b , ~4.2!

whereg5bk1 /b2k is ratio of thermal resistances of the la-
ser structure and the thermal buffer. In general,g includes
the thermal resistance of the solder layer. Its value also can
be modified in the case of a nonideal heat sink.

The solution to Eq.~4.1! with boundary conditions~4.2!
can be written in the form

T~x,y!5
1

k E
2`

`

dx8E
0

b

dy8GS x2x8

b
,
y

b
,
y8

b DQ~x8,y8!,

~4.3!

where the Green function is

G~j,h,h8!5 (
n51

`
b

2mn
e2mnujuYn~h!Yn~h8!, ~4.4!

Yn~h!5Bn cosS mnh2
dn

2 D , Bn
25

2

b

mn
21g2

mn
21g212g

,

~4.5!

and the eigenvalues can be represented asmn5(n21)p
1dn , n51,2,. . . , wheredn is the root of the equation

tan
dn

2
5

g

~n21!p1dn
, ~4.6!

in the interval~0,p!.
There are three main sources of heat: the active region

sourceQa(x,y), the p-cladding sourceQp(x,y), and the
n-cladding and substrate sourceQn(x,y). Respectively, there
are three contributions to the temperature:Ta(x,y), Tp(x,y),
andTn(x,y). The total temperature rise is

T~x,y!5Ta~x,y!1Tp~x,y!1Tn~x,y!. ~4.7!

When comparing the different contributions, it is instructive
to pay attention to two features. The first is their dependence
on b1 /b!1. The higher the power of this parameter, the

smaller the heating. The second feature is the fall-off of
T(x,b1) away from the active region that characterizes the
mutual heating of different laser stripes in a bar.

A. Heating by the active region

An important feature ofQa(x,y) is that, due tob1!a,
the spread of the current between thep-contact and the ac-
tive region can be neglected, that is,Qa(x,y) is zero when
uyu.a/2. Above threshold, the voltage across the active re-
gion (U0) is constant, so that the electric power dissipated in
the active region per unit volume isU0 j yd(y2b1). Assum-
ing the optical power per unit area of the stripe isp
5hd( j y2 j th) (hd is the differential efficiency andj th is the
threshold current density!, we have

Qa~x,y!5@U1 j y~x,b1!1pth#

3d~y2b1!u~a/22x!u~a/21x!, ~4.8!

where U15U02hd and pth5hdj th . In integral ~4.5!,
G(x,y,y8) is simplified, and

Ta~x,y!5
U1I

Lk
Qa1~x/b,y/b!1

pthb

k
Qa2~x/b,y/b!,

~4.9a!

Qa1~j,h!52E
2a/2b

a/2b

G~j2j8,h,b1 /b!Im J

3S tanh
p~j81 ib1 /b!

2 Ddj8, ~4.9b!

Qa2~j,h!5E
2a/2b

a/2b

G~j2j8,h,b1 /b!dj8. ~4.9c!

The second term in Eq.~4.9a! is the temperature rise due to
power dissipated by the threshold current, while the first
term comes from the dissipation produced by the current
above threshold. The dependence ofQa1 andQa2 on x/b at
the level ofy corresponding to the active region is shown in
Figs. 4 and 5.

B. Heating by p -cladding

Due to negligible current spread in thep-cladding, Eq.
~3.14! gives

Q~x,y!5H I 2

L2b2sp
UJS tanh

pz

2bD U2

, if uxu,a/2,0,y,b1 ,

0, otherwise.
~4.10!

Equation~4.5! takes the form

Tp~x,y!5
I 2

L2spk
Qp~x/b,y/b!, ~4.11a!

Qp~j,h!5E
2a/2b

a/2b

dj8E
0

b1 /b

dh8G~j2j8,h,h8!

3UJS tanh
p~j81 ih8!

2 D U2

. ~4.11b!
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The dependence ofQp on x/b at the level ofy corre-
sponding to the active region is shown in Fig. 6.

C. Heating by n -cladding and substrate

In this region, the heat source is

Qn~x,y!5H I 2

L2b2sn
UJS tanh

pz

2bD U2

, b1,y,b,

0, otherwise.
~4.12!

The contribution of the thinp-cladding, 0,y,b1 , is rela-
tively small and can be neglected. As a result,

Tn~x,y!5
I 2

L2snk
Qn~x/b,y/b!, ~4.13a!

Qn~j,h!5E
2`

`

dj8E
b1 /b

1

dh8G~j2j8,h,h8!

3UJS tanh
p~j81 ih8!

2 D U2

~4.13b!

The dependence ofQn on x/b at the level ofy corre-
sponding to the active region is shown in Fig. 7.

V. RESULTS

The first important result that we obtained is a descrip-
tion of the nonuniform current distribution in the active re-
gion. The current singularities near the edges of the active
region~Fig. 3! can substantially affect the mode composition

FIG. 4. The dimensionless temperature created by the above threshold cur-
rent across the active region as a function ofx/b at the level of the active
region. The labels on the curves give the ratiog of the thermal resistances of
the structure and the thermal buffer. The inset shows the dependence ofQa1

at x50 as a function ofg.

FIG. 5. The dimensionless temperature created by the threshold current
across the active region as a function ofx/b at the level of the active region.
The numbers on the curves give the ratio of the thermal resistances of the
structure and the thermal buffer~g!. The inset shows the dependence ofQa2

at x50 as a function ofg.

FIG. 6. The dimensionless temperature created by the series resistance of
p-cladding as a function ofx/b at the level of the active region. The labels
on the curves give the ratio of the thermal resistances of the structure and
the thermal buffer~g!. The inset shows the dependence ofQp at x50 as a
function of g.

FIG. 7. The dimensionless temperature created by the series resistance of
then-layer as a function ofx/b at the level of the active region.~a! and~b!
correspond, respectively to different values of the ratio of thep-cladding
andn-layer resistances,b1sn /bsp . The labels on the curves give the ratio
g of the thermal resistances of the structure and the thermal buffer. The inset
shows the dependence ofQn at x50 as a function ofg.
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of the generated light. In this article, we do not study this
effect, and are concerned only with the nonuniform heating
of the active region.

The temperature in the structure is represented as

T~x,y!5
pthb

k
Qa2S x

b
,
y

bD1
U1I

Lk
Qa1S x

b
,
y

bD
1

I 2

L2spk
QpS x

b
,
y

bD1
I 2

L2snk
QnS x

b
,
y

bD ,

~5.1!

where the first term is the heating in the active region due to
the threshold current, the second term is the heating in the
active region due to the current above threshold, and last two
terms come from the heating by thep-cladding andn-layer
series resistances, respectively. The dimensionless functions
Qa2(x/b,y/b), Qa1(x/b,y/b), Qp(x/b,y/b), and
Qn(x/b,y/b) describe the coordinate dependence of the tem-
perature and are represented in Figs. 4–8. Typically, the tem-
perature of the active region is nearly proportional to the
current,3,12,25,26which means that the main heat source is the
power dissipation in the active region.

The edges of the active region can be heated more
strongly than the middle at a relatively smallp-cladding
layer resistance~Figs. 4 and 6! when the current singularity
at the edges is strong enough~see Fig. 3!.

The temperature distribution in the active region de-
pends substantially on the ratio of the thermal resistances of
the structure and buffer layer~g!. For a smallg ~i.e., rela-
tively large thermal resistance of the buffer layer!, the ther-
mal exchange between the structure and the heat sink is hin-
dered. Thus, a wider region of the interface is needed to
transfer the heat generated in the structure to the heat sink.
When this region is wider than the active region, a significant
part of the heat flux from the active region goes in the lateral
direction. As a result, the edges of the active region have
better cooling conditions and their temperature is lower. At
large g, the heat flux is directed perpendicular to the inter-
face, and cooling conditions of all parts of the active region
are more or less the same. As a result, the temperature is

higher in the places where more heat is generated; that is, at
the edges. These details are reflected in Figs. 4 and 6.

The spread of the heat generated in the active region and
p-cladding in the lateral direction away from the active re-
gion is relatively weak. This results from the relatively short
distance between the active region and the boundary of the
structure. One has to keep in mind that the model we used
here considers only the lateral heat flow in the laser bar. If
the thickness of the buffer layer is large compared to the
laser structure, most of the lateral spread takes place in the
buffer layer. The situation is different for the heat generated
in the n-layer. It can spread at the distance about the thick-
ness of the layer before it is transferred to the heat sinks.
Typically, however, the amount of this heat is very small and
its effect on the lateral heat spread is negligible.

The heat generated inp-cladding and the active layer is
transferred to the heat bath mainly via thep-side just because
the thickness ofp-cladding is significantly smaller than that
of n-layer resulting in a smaller thermal resistance. The pro-
file of the different contributions to the temperature across
the structure is shown in Fig. 8. The power dissipated in the
n-layer leads to a maximum of the contribution in the middle
of the layer, contrary to the others.

We compared the theoretical results with measurements
made on laser bars mounted in metallized grooves in BeO
blocks which were bonded on a water-cooled microchannel
Cu heat sink~see inset in Fig. 9!. The InGaAsP/InP hetero-
structure was grown by metalorganic chemical vapor depo-
sition. The active region consisted of three 6-nm-thick com-
pressively strained QWs incorporated into a two-step graded
index waveguide with a total thickness of 710 nm. Zn doping
of the 1.5-mm-thick p-cladding provided optical loss as low
as 2 – 3 cm21.27,28The separation betweenn- andp-contacts
was 140 mm. The laser facets were high-reflection/anti-
reflection coated with reflection coefficients of 95% and 3%,
respectively. We used a 1-cm-long laser bar containing ten
100-mm-wide emitters equally spaced 1 mm center-to-center.

FIG. 8. The profile of different contributions to the temperature across the
n-layer.Ta1 andTa2 cannot be distinguished. Contrary to all others,Tn has
a maximum in the middle ofn-region.

FIG. 9. Measured output power and wall-plug efficiency of a 10-emitter
laser bar versus current. The inset shows how the laser bar was mounted on
the heat sink.
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The laser cavities were 1 mm long. The laser power versus
current is presented on Fig. 9. The measured resistance is
consistent with sn5320 V21 cm21 and sp

51.6 V21 cm21. The voltage across the active regionU0

50.91 V. The power dependence on the current gives effi-
ciencyhd50.51 W/A and the threshold current for one emit-
ter is 0.5 A.

The temperature of the laser active region was estimated
from the emission spectrum shift with drive current. To cal-
culate the temperature change a calibration factor of 0.55
nm/K was obtained by measuring the spectral shift under
low-duty-cycle~0.02%!, low-pulse-width~200 ns! excitation
at a variety of heat-sink temperatures.29 To estimate the con-
tribution of factors related to current change, we fixed the
heat-sink temperature and increased the current in low-duty-
cycle pulse operation. The spectral shift due to current under
these conditions was insignificant. We conclude that the ob-
served redshift under cw and quasi-cw operation is due to
heating in the active region. For the theoretical calculation of
the temperature we took the thermal resistance of BeO as
that of a plane layer of 830mm width ~see Ref. 3!. This
corresponded to the ratio of the thermal resistances of the
laser structure and the buffer layerg50.62.

We did not consider a longitudinal nonuniformity of the
temperature in the cavity.4,5,9 In other words, we assumed
that the pumping current is uniform along the cavity and the
measured temperature is an average of the temperature dis-
tribution along the cavity. Agreement between the theoretical
and experimental results can be seen from Fig. 10. Our cal-
culation shows that at the currentI 520 A, the temperature
near the edges of the active region is lower than the tempera-
ture in the middle by about 2°. At this current, 50% of the
heating comes from the active region. With an increase in
current, the role of the active region diminishes. To estimate
the importance of the nonuniform lateral current distribution,
we calculated this contribution also for the uniform lateral
current distribution. In this case, the heating in the middle of
the active region appears nearly two times larger, and the
difference between the heating in the middle and near the
edges is about 30%. This is understandable because for the

nonuniform lateral current distribution, most of the current
flows more close to the edges of the active region where the
cooling is better.

VI. CONCLUSION

The results of the calculation allow us to make the fol-
lowing conclusions.

• The current is nonuniformly distributed laterally across
the active region. The smaller the thickness of
p-cladding and the larger its conductivity, the larger the
magnitude of the current density near the edges of the
active region compared to the middle.

• The nonuniform current distribution across the active
region can~i! affect the optical energy distribution be-
tween high- and low-order modes and~ii ! lead to a
higher temperature at the edges of the active region than
in the middle.

• Heat spread in the lateral direction comes mainly from
the current spread and the heat conductance in the rela-
tively thick n-substrate. The width of the lateral spread
in then-layer is about the thickness of this layer. Due to
the relatively small contribution of the heat dissipated in
the n-layer, significant lateral heat spread and mutual
heating of lasers in a bar takes place in the buffer layers.

• The thermal resistance of the buffer layers crucially af-
fects the heating of the active region and the lateral
width of the temperature distribution.

• The active region edges may experience higher than
expected temperatures, which could have implications
for the device lifetime. This may be especially impor-
tant near the facets where additional heat loads are ap-
plied.
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