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Abstract

This paper deals with the problem of non-linear
landmark-based registration of CT and PET images of tho-
racic regions. We propose a general method to introduce
a breathing model in a registration procedure in order to
guarantee physiologically plausible deformations. Initial
results are very promising and demonstrate the interest of
this method to improve the combination of anatomical and
functional images for diagnosis and oncology applications.

1. Introduction

Registration of multimodal medical images is a widely
addressed topic and is important in many different domains,
in particular for oncology and radiotherapy applications.
We consider Computed Tomography (CT) and Positron
Emission Tomography (PET) in thoracic regions, which
provide complementary information about the anatomy and
the metabolism of human body (see Figure 1). Their regis-
tration has a significant impact on improving medical deci-
sions for diagnosis and therapy [6]. Linear or affine regis-
tration is not sufficient to cope with the local deformations
produced by cardiac and respiratory motions. Therefore,
non-linear registration methods are required to register mul-
timodality images of thoracic and abdominal regions, even
with combined PET/CT [19].

Most of the existing non-linear registration methods use
intensity information or features in order to calculate the
transformation between the images [7, 12, 22]. Thus they
have to either find the transformation that maximises the
similarity between the registered image and the target image
(iconic methods) or compute a transformation that matches
some particular features (landmarks) in both images (geo-
metrical methods). In the case of landmark-based meth-
ods, the selection of these particular features is an important

task. In many of these methods, the curvature of the sur-
faces to register is used. However, in most of them, the se-
lection of the landmarks is not studied and detailed [3, 14].
Moreover, most registration methods are based on image
information, but do not take into account any physiology of
the human body. However, physiological information can
be useful in order to ensure realistic deformations and to
guide the registration process. While several papers present
breathing models built for medical vizualisation [23], butno
paper exploits such a model in a registration process. Con-
sequently, in this paper, we propose an approach in which
we integrate a physiologically driven breathing model in a
non-linear registration procedure based on landmarks in or-
der to guarantee physiologically plausible deformations.

In Section 2, we summarize existing works which use
breathing models combined (or not) with registration al-
gorithms and then we provide an overview of the selected
model. The proposed model-based non-linear registration
algorithm is detailed in Section 3. Then, the application of
a landmark-based registration method adapted to patholog-
ical cases combined with the breathing model is described
in Section 4. Section 5 discusses some results.

Two CT images corresponding to dif-
ferent instants of the breathing cycle

PET image

Figure 1. Equivalent coronal views of the same patient.

2 Breathing Models

2.1 Thoracic Imaging Registration

In this paper we focus on thoracic image registration and
more specifically on breathing models that can be applied



to registration of lung images. Different bio-mathematical
formulations of the respiratory mechanics that describe the
human lung have been developed since the middle of the
XX th century [9]. A recent study highlighted the effects of
breathing during non-rigid registration process and the im-
portance of taking it into account [20]. There are two main
approaches to take into account breathing [11]: develop a
mathematical model or employ an empirical algorithm. A
third approach exploits the Pressure-Volume (PV) relation
in a physically-based model.Mathematical tools can be em-
ployed to estimate the breathing motion artefacts. The most
popular technique is called NCAT (NURBS-based cardiac-
torso). This model is based on Non-Uniform Rational B-
Spline (NURBS) for CT scans of actual patients. It has
been proposed in order to correct respiratory artifacts of
SPECT images [18]. Rohlfinget al. [13] used NURBS in
a multi-resolution registration approach based on normal-
ized mutual information for 4D Magnetic Resonance Imag-
ing (MRI). Empirical models use external measurements
in order to adapt radiation protocols to the tumor’s mo-
tion. These techniques are not proposed for registration and
are dedicated to specific equipments [8].Physically-based
models estimate a physical model which is based on the im-
portant role of airflow inside the lungs. Many of these meth-
ods are based on Active Breathing Coordinator (ABC) [17]
and introduce a PV relation [23].

Finally, Rohlfing et al. [13] and Sundaramet al. [20]
proposed to register MRI in order to estimate the breathing
model. From a modeling point of view, physically-based
deformation methods are suitable for simulating lung dy-
namics as they allow the precise generation of intermediate
3D lung shapes. These models are easier to adapt to indi-
vidual patients, without the need of physical external adap-
tations for each treatment as in the case of empirical models.

2.2 Physics-Based Dynamic 3D Surface
Lung Model

An approach for physics and physiology-based model-
ing of 3D lung dynamics was previously discussed in [15].
The components involved in the modeling and visualization
efforts include:

(1) the parameterization of PV data of a human subject
which act as an active breathing coordinator for the
lung dynamics;

(2) the estimation of the deformation operator from both
4D CT lung data and two 3D CT lung data sets;

(3) the optimisation of the computation in GPU (Graphic
Processing Unit) for real-time purposes.

It is to be noted that while items (1) and (2) of the method-
ology are critical to the registration of PET and CT, item (3)
is only reported here for completeness but is not required

for the applied problem of this paper. Returning to detail-
ing (2), the deformation operator is computed as follows:
The computation takes as inputs the nodal displacements of
the 3D lung models and the estimated amount of applied
force. The displacements have been shown to be obtained
from either 4D or a pair of 3D CT data sets of a normal hu-
man subject [16]. The estimated amount of applied force
on each node that represents the air-flow inside lungs is es-
timated based on the lung’s orientation with respect to the
gravity that controls the air flow. The validation of the lung
deformations using 4D-CT datasets were detailed in [16].

3 Using the Breathing Model in Registration

We have conceived an original algorithm in order to in-
troduce the advantages of using the breathing model de-
scribed above in a registration procedure. Figure 2 shows
the computational workflow of the complete algorithm. The
inputs consist of one PET volume and two CT volumes of
the same patient, corresponding to two different instants
of the breathing cycle (intermediate expirations). The first
step of the algorithm consists in segmenting the lungs (and,
eventually, the tumors) on the PET data and on the two CT
data sets, using a robust mathematical-morphology-based
approach [4] and meshes (called CT mesh and PET mesh)
corresponding to the different segmentation results are com-
puted. The subsequent steps are detailed next.

REGISTRATION

SEGMENTATION

PET

Chosen CT mesh

CT(s)

Mesh 3D+t

Lungs segmentation + meshes

CT SELECTION (Section 3.2)

BREATHING MODEL (Section 3.1)

Landmarks selection (Section 4.1)

Computation of the deformation (Section 4.3)

Figure 2. Computational workflow of the algorithm for reg-
istration of CT and PET images using a breathing model.

3.1 Computation of a Patient-Specific
Breathing Model

With respect to CT-PET registration, we estimate a de-
formation operator from two CT data sets (i.e. intermediate



expirations) collected with breath-hold maneuver. The dis-
placements of the surface lung vertices can be estimated by
using the direction of displacement computed using 4D CT
datasets of normal human subjects. This methodology is
further detailed in [15].

3.2 CT Selection

By applying the continuous breathing model, we can
obtain different instants (“snapshots”) of the breathing cy-
cle, generating simulated CT meshes. By comparing each
CT mesh with the PET mesh, we select the “closest” one.
Let us denote the CT simulated meshes byM1, M2,. . . ,
MN . The meshMN corresponds to the CT in maximum
inhalation andM1 to maximum exhalation. By using the
breathing model, the transformationφi j between any two
instantsi andj of the breathing cycle can be computed as:
Mj = φi j(Mi). We compare these CT meshes with the
PET mesh (MPET ) by means of different criteria. We de-
fine a measure of similarity between meshes (or their corre-
sponding volumes) and the mesh that minimizes the chosen
criterion (C) is denoted asMG (for Good):

MG = arg min
i

C(Mi,MPET ). (1)

The Root Mean Square (RMS) distance has been chosen as
the criterionC, as a first approach:

DRMS(M,A) =

√

1

2
[dRMS(M,A)2 + dRMS(A,M)2]

with dRMS(M,A) =

√

1

|M |

∑

p∈M

D(p,A)2 and where

D(p,A) = [minq∈A d(p, q)] with d the Euclidean distance.

3.3 Deformation of the PET

A direct registration can be computed betweenMPET

and the original CT meshMN (dashed line in Figure 3):

MRd
PET = fRd(MPET ,MN ), (2)

wherefRd denotes the transformation that registers directly
MPET andMN , andMRd

PET the result of registering the
PET directly to the CT meshMN . The transformationfRd

may be computed by any registration method adapted to the
problem. As an illustrative example, we choose the origi-
nal CT to correspond to the end-inspiration CT,MN , but a
similar process could be applied for any CT image. In this
direct approach the deformation itself is not guided by any
anatomical knowledge. In addition, if the PET and the orig-
inal CT are very different (end-inspiration CT), it is likely
that this registration procedure will provide physically un-
realistic results.

To avoid such potential problems, we propose here an
alternative approach: once the appropriate CT (MG) is se-
lected, we compute the registration between theMPET

mesh and theMG mesh as:

Mr
PET = fr(MPET ,MG), (3)

wherefr is the registration transformation andMr
PET de-

notes the registered mesh. Then, the transformation due to
the breathing is used to register theMr

PET to the original
CT (continuous line in Figure 3). The transformation due to
the breathing betweenMG andMN can be computed as the
following composition:

ΦGN = φN−1 N ◦ . . . ◦ φG+1 G+2 ◦ φGG+1. (4)

We apply toMr
PET the same transformationΦGN in order

to compute the registration withMN :

MRbm
PET = ΦGN (Mr

PET ) = ΦGN (fr(MPET ,MG)), (5)

whereMRbm
PET denotes the PET registered mesh using the

breathing model.

CT Meshes
. . .

superimposed

M1

Registration from PET to
CT original mesh directly

and PET mesh
CT G mesh

MPET

MNMG

. . .

Registration from PET
to CT original mesh

using the
breathing model steps

Figure 3. The meshMG is the closest to the meshMPET .
We can register it to the (original) CTMN mesh following
one of the two paths (notations are defined in Section 3.3).

4 Registration Adapted to Pathologies

The algorithm described in Section 3 can be applied with
any type of registration method. We show here how the
proposed approach can be applied for landmark-based reg-
istration of multimodality images in pathological cases, in
particular for diagnosis, follow-up and radiotherapy treat-
ments.



4.1 Landmark selection and study of their
influence

Features selection is an important task in registration. In
this section, we focus on voxel selection but more com-
plex features can be detected [1]. The selection can be
manual (as in most methods) [21], semi-automatic [14],
or automatic [14]. Manual selection is tedious and time-
consuming. The authors in [5] suggest that semi-automatic
selection is interesting because the knowledge of experts
can be integrated in an automatic process. Automatic se-
lection permits reduced execution time with high accuracy.
Most of these automatic methods exploit curvature [14]. In
[3], an auto-correlation method is also combined with cur-
vature.

In the present work, landmark selection is automatic and
based on Gaussian and mean curvatures, according to the
following steps:

(1) compute curvature for each voxel of the lung surface;
(2) sort voxels in decreasing order of curvature;
(3) select local maxima (detailed in the following para-

graph);
(4) if a uniform selection is needed then add voxels with

zero-curvature in the area where no voxels have been
considered as landmark.

This algorithm is proposed in order to select particu-
lar voxels that provide relevant information. Moreover,
we intend to obtain an approximately uniform selection
to take into account the entire surface of the lungs for
computing the deformation. In step 3, we considerV =
{vi}i=0..N , the set of voxels in decreasing order of curva-
ture, whereN is the number of voxels of the surface and
VL = {vLi}i=0..NL

, the set of landmarks, whereNL is
the number of landmarks. For each voxelvi ∈ V (for
i = 0 to N ) with non-zero-curvature, we addvi in VL,
if ∀ vj ∈ VL, dg(vi,vj) > T wheredg is the geodesic
distance on the lung surface andT is a threshold to be cho-
sen. With this selection process, some regions (as the most
flat ones) may contain no landmark, hence the addition of
step 4: for each voxel on the surface of the lungvi ∈ V
and with zero-curvature, if there is no voxelvj ∈ VL with
dg(vi,vj) < T , we addvi in VL.

Four variants are tested:

(1) MEA – Mean curvature without step 4;
(2) GAU – Gaussian curvature without step 4;
(3) MEA-GAU – Using mean and Gaussian curvature

without step 4;
(4) MEA-GAU-UNI – Using mean and Gaussian curvature

with step 4.

When mean and Gaussian curvatures are employed
(methods MEA-GAU and MEA-GAU-UNI), the set V

merges the set of voxels in decreasing order of mean cur-
vature and the set of voxels in decreasing order of Gaus-
sian curvature. These strategies for landmark selection are
compared in Figure 4. Results given by the MEA and GAU

methods are different, and it is interesting to combine them
(see the results obtained with the MEA-GAU method). The
MEA-GAU-UNI method permits to add some points in lo-
cally flat regions (see Figure 4).

Same axial views of the lung.
MEA GAU

VL = 3431 VL = 2885
MEA-GAU MEA-GAU-UNI

VL = 3484 VL = 3794

Figure 4. Selection of landmarks – In each images, the
same regions are highlighted in small rectangles (and re-
spectively in large rectangles). In the areas surrounded by
a large rectangle, there is no landmark withGAU method
whereas there are four landmarks with theMEA method.
In the fusion method (MEA-GAU), these landmarks are se-
lected. In the areas surrounded by a small rectangle, no
landmark is selected with the mean and/or the Gaussian cur-
vatures. However, a landmark is added in this area with the
MEA-GAU-UNI method.

4.2 Registration with Rigidity Con-
straints

We have developed a registration algorithm for the tho-
racic region in the presence of pathologies [10]. The ad-
vantage of our approach is that it takes into account the



tumors, while preserving continuous smooth deformations.
We assume that the tumor is rigid and thus a linear trans-
formation is sufficient to cope with its movements between
CT and PET images. This hypothesis is relevant and in ac-
cordance with the clinicians’ point of view, since tumors
are often compact masses of pathological tissue. The regis-
tration algorithm relies on previously segmented structures
(lungs and tumors). Landmarks corresponding to homolo-
gous points are defined in both images, and will guide the
deformation of the PET image towards the CT image. The
deformation at each point is computed using an interpola-
tion procedure based on the landmarks, the specific type of
deformation of each landmark (depending on the structure
it belongs to), and weighted by a distance function, which
guarantees that the transformation is continuous. We have
shown that a consistent and robust transformation is ob-
tained [10].

4.3 Registration with Rigidity Con-
straints and Breathing Model

Once the different CT meshes are computed and the clos-
est CT mesh,MG, is selected, the PET and the original CT
(in our exampleMN ), are registered as follows:

(1) Select landmarks on the CT meshMG (with Gaussian
and mean curvatures);

(2) Estimate corresponding landmarks on the PET (us-
ing the Iterative Closest Point (ICP) algorithm is in-
volved [2]);

(3) i = G;
(4) Track landmarks fromMi to the next CT meshMi+1;
(5) If Mi+1 = MN , go to step (6) else go to step (4) with

i = i + 1;
(6) Register (with the method summarized in Section 4.2)

the PET and the original CT using the estimated corre-
spondences.

5 Results and Discussion

In this section we present some results we have obtained
using the general methodology described in Section 3 and
the registration method summarised in Section 4.

We have applied our algorithm on a normal case and on
a pathological case, exhibiting one tumor. In both cases,
we have one PET and two CT images. First, the breath-
ing model is computed using the meshes of the segmented
lungs. Then, we compare 10 (regularly distributed) instants
of the generated model with the PET. Figure 5 shows the re-
sults of volume/surface comparison for two instants of the
CT: the closest and the end-inspiration.

The results obtained with this algorithm are physically-
based and more realistic than results obtained by registering

the PET directly with the original CT. First results confirm
this statement, as shown in figures of results.

(a) (b)
DRMS = 12.1 DRMS = 24.2

Figure 5. Superimposition of the contours of the PET
(black) and the CT lungs (grey) at two instants of the breath-
ing cycle: (a) closest instantMG, (b) end-inspiration instant
MN .

6 Conclusion and Future Work

We have developed a CT/PET registration method that
uses a breathing model to guarantee physiologically plau-
sible deformations. The method consists in computing a
deformation guided by a breathing model.

First results on two cases (one normal case and one
pathological case) are very promising and show the im-
provement brought by the breathing model.

In particular, for pathological cases, our algorithm avoids
undesired tumor misregistrations and preserves tumor ge-
ometry and intensity. Moreover, as the tumor in CT and
PET has not necessarily the same size and shape, the reg-
istration of these two modalities is very useful because all
the information of the PET image is preserved. This is very
important in order to know the true extension of the pathol-
ogy for diagnosis and for the treatment of the tumor with
radiotherapy, for example.

In this paper, as a first step we consider the impact of
physiology on lung surface deformations from normal hu-
man subjects. We are in the process of modeling the impact
of changes in the human lung physiology on lung surface
deformations according to the lung tumor size and location.
Therefore the methodology presented in this paper will fur-
ther benefit upon the inclusion of patho-physiology once es-
tablished. Nevertheless, the use of normal lung physiology
serves to demonstrate improvements in CT and PET reg-
istration using a physics-based 3D breathing lung model.
Moreover, future work includes a refined “snapshot” selec-
tion, using further subdivisions of time intervals, a more
precise characterisation of the tumor movement and its in-
fluence on the breathing, and a deeper evaluation on a larger
database, in collaboration with clinicians.
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