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Abstract
Recent years have witnessed the tremendous development of fusing fiber-optic imaging with supervised deep
learning to enable high-quality imaging of hard-to-reach areas. Nevertheless, the supervised deep learning method
imposes strict constraints on fiber-optic imaging systems, where the input objects and the fiber outputs have to be
collected in pairs. To unleash the full potential of fiber-optic imaging, unsupervised image reconstruction is in demand.
Unfortunately, neither optical fiber bundles nor multimode fibers can achieve a point-to-point transmission of the
object with a high sampling density, as is a prerequisite for unsupervised image reconstruction. The recently proposed
disordered fibers offer a new solution based on the transverse Anderson localization. Here, we demonstrate
unsupervised full-color imaging with a cellular resolution through a meter-long disordered fiber in both transmission
and reflection modes. The unsupervised image reconstruction consists of two stages. In the first stage, we perform a
pixel-wise standardization on the fiber outputs using the statistics of the objects. In the second stage, we recover the
fine details of the reconstructions through a generative adversarial network. Unsupervised image reconstruction does
not need paired images, enabling a much more flexible calibration under various conditions. Our new solution
achieves full-color high-fidelity cell imaging within a working distance of at least 4 mm by only collecting the fiber
outputs after an initial calibration. High imaging robustness is also demonstrated when the disordered fiber is bent
with a central angle of 60°. Moreover, the cross-domain generality on unseen objects is shown to be enhanced with a
diversified object set.

Introduction
Optical fibers are well-known for transmitting remote

information out of otherwise inaccessible areas. Because of
their miniature sizes and flexibility, fiber-optic imaging
systems (FOISs)1 have become an indispensable tool in
clinical practice and biological research, such as early
detection of gastrointestinal cancers2–5 and visualization of
neuronal activities in freely moving animals6–10. Most
common FOISs are based on optical fiber bundles or mul-
timode fiber (MMFs). An optical fiber bundle consists of
thousands of closely spaced cores in a shared cladding. Each
core acts as a single-pixel detector to sample the
object6,11–14. Due to the loss of information in the cladding,

the output images from an optical fiber bundle suffer from
the honeycomb effect15. On the other hand, an MMF sup-
ports thousands of optical modes in a single core. Because of
the mode coupling in MMF, object images are scrambled
into speckle patterns. Supervised deep learning16,17 has been
successfully implemented in both cases to reconstruct high-
quality images18–21. A Convolutional Neural Network
(CNN) can “learn” an image reconstruction mapping from
numerous pairs of fiber output images and the input object
images. Despite its success, supervised deep learning
imposes a heavy burden on FOISs. The collection of paired
fiber outputs and input objects in the calibration step
involves time-consuming and demanding alignments of the
FOIS. Especially, a re-calibration is required for any system
variations, which is infeasible for practical applications.
Unsupervised deep learning circumvents these hurdles by

using unpaired training image data. Since the deep learning
model has to uncover the hidden mapping between two
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image domains without paired images, image reconstruction
using unsupervised deep learning is considered to be a
challenging task. Recently, it has been demonstrated that if
the two image domains are similar in the high-dimensional
space, “generator” CNNs and “discriminator” CNNs can
compete in adversarial games to find a “natural” translation
between the two image domains22,23. To achieve this simi-
larity in the high-dimension domain, the FOISs should have
a point-to-point transmission between the input object and
the fiber output with high sampling densities. Unfortunately,
neither optical fiber bundles nor MMFs meet these
requirements. Although optical fiber bundles can directly
convey the images of the objects, they have limited sampling
densities (~0.1 mode/µm2). As more sampling points, i.e.,
more cores, are added, the core-to-core crosstalk becomes
stronger and degrades the point-to-point transmission
fidelity24. On the other hand, the input-output relationship
in MMFs is far deviated from a point-to-point transmission
due to the multimode interference. The recently proposed
glass-air Anderson localizing optical fibers (GALOFs)25–33

provide a promising alternative. With a disordered
arrangement of air holes embedded in a silica matrix,
GALOFs achieve local confinement of light and high sam-
pling densities (~10 mode/µm2) simultaneously34 due to the
transverse Anderson localization (TAL)35,36. Moreover, the
TAL-supported modes are insensitive to external pertur-
bations37 or wavelength shifts38, as opposed to the modes in
optical fiber bundles24,39,40 or MMFs41–45. Therefore, robust
full-color image transport can be achieved.
Here, we demonstrate unsupervised full-color high-fide-

lity image reconstruction through a meter-long GALOF in
both transmission and reflection modes. We show that a
simple histogram equalization step is adequate to reveal the
hidden objects in the GALOF outputs preliminarily due to
the densely-distributed TAL modes. The objects’ fine
details can be further recovered by utilizing the unpaired
image-to-image translation22,23. Unsupervised image
reconstruction significantly simplifies the calibration step,
where the object images only need to be collected once.
Therefore, the GALOF-based FOIS is flexible towards
different conditions. As a remarkable example, we show the
system’s consistent imaging performance within a working
distance of at least 4mm, with a simple one-step re-cali-
bration that only requires GALOF outputs. Moreover, due
to the robustness of the TAL-supported modes, high image
quality is preserved even under substantial mechanical
bending (~60° bent angle). Finally, we show that the cross-
domain generalizability of unseen objects can be enhanced
by increasing the objects’ diversity.

Results
Principles
When propagating through a GALOF (Fig. 1a), the

imaging information of the object is encoded by the TAL-

supported modes. The light confinement provided by the
TAL results in a nearly point-to-point transmission from
the GALOF’s input facet to the output facet. Due to the
different mode losses, the GALOF output pattern is an
unevenly weighted superposition of the TAL-supported
modes. Reconstructing the object from the output pattern
involves standardizing all the TAL-supported modes and
solving an inverse imaging problem. This is a challenging
task since the TAL-supported modes have a very high
mode density. Instead, we tackle this problem by stan-
dardizing the pixels of the GALOF’s output images. In the
calibration step (Fig. 1a), we collect 1000 fiber output
images and another unpaired 1000 objects’ reference
images (“Methods”). Especially, there does not exist a one-
to-one correspondence between these unpaired data sets.
Before standardization, we register the 1000 fiber outputs
according to some arbitrarily chosen fiber outputs
(Methods) to compensate for the image drift caused by
the mechanical instability during experiments. As a result,
each pixel in the fiber output has 1000 different values.
Since a large area of the object is scanned, each pixel
should have captured the comprehensive statistical fea-
tures of the object. Statistically speaking, all these pixels
should have the same Probability Mass Function (PMF) as
those in the reference objects, despite being from different
unknown objects. Therefore, we perform histogram
equalization (“Methods”) to each pixel in the fiber output
image for each RGB (red, green, and blue) channel
(Fig. 1b). We calculate the Cumulative Distribution
Function (CDF) from the PMF of each pixel and look for
the pixel value in the reference objects that has the same
CDF. In this way, we generate a Look-Up Table (LUT) for
each pixel to transform its value. Among the range of
0–255, zeros are assigned to the defective pixels whose
maximum value is less than 10 or whose Standard
Deviation (STD) value is less than 2. For example, the
value of the blue channel is set to zeros, as shown in
Fig. 1b. Next, we perform image inpainting (“Methods”)
on each processed image. For each RGB channel, we
interpolate inward from the pixels whose values are less
than 10. Fuzzy objects are recovered after inpainting.
Finally, the reference objects are used again to further

enhance the imaging quality of the 1000 fuzzy objects. We
utilize our recently proposed image restoration cycle-
consistent adversarial network (Restore-CycleGAN)23

(Fig. 1c). As shown in our previous work, Restore-
CycleGAN exhibits enhanced performance than the ori-
ginal CycleGAN22 in extracting global information. In the
Restore-CycleGAN, a U-Net46 works as a generator G1 to
transform the fuzzy images into high-quality images,
while a PatchGAN47 works as a discriminator D1 to dis-
tinguish the “real” reference objects from the “fake” ones
produced by the generator G1. The generator G1 and the
discriminator D1 compete in an adversarial game through
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the least square adversarial loss LLSGAN. In this adversarial
game, G1 gets rewarded if it successfully “fools” D1,
whereas D1 gets rewarded if it differentiates the “real”
from the “fake”. G1 is also optimized through the identity
mapping loss Lidentity, which requires a reference object to
remain identical if it passes through G1. Similarly, there is
another pair of generator G2 and discriminator D2 in the
opposite direction. To enhance cycle consistency, a cycle-
consistent loss Lcycle is adopted to enforce an unaltered
output if an image goes through the two generators suc-
cessively. The details of the network architectures and the
training processes can be found in the Methods. After
training, only the generator G1 is used. Therefore, unsu-
pervised image reconstruction is achieved without paired
training data. During the test, a fiber output image goes
through the process of: (1) aligning with the arbitrarily
chosen fiber output image; (2) pixel value transformation

using the LUTs; (3) inpainting; and (4) quality enhance-
ment through the generator G1. The set of reference
objects is only needed to recalibrate the system for special
cases, such as changing the working distances (Fig. 1a).

High fidelity
We perform the calibration processes for six different

biological objects: human red blood cells, frog blood cells,
human eosinophils, human cancerous stomach tissues,
human bronchogenic carcinoma tissues, and human sar-
coma of uterus tissues. All calibrations are performed using
the same straight GALOF with a working distance of 0mm.
As shown in Fig. 2a, the data of the first four objects
(human red blood cells, frog blood cells, human eosinophils,
and human cancerous stomach tissues) are collected in the
transmission mode, whereas that of the last two (human
bronchogenic carcinoma tissues and human sarcoma of
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Fig. 1 The calibration process of the unsupervised full-color image reconstruction. a Unknown objects are placed in front of the GALOF input
facet at some working distance. To obtain the objects’ statistical information, we separately collect unpaired reference objects. The calibration process
consists of several steps. First, the GALOF outputs are registered (images ①) according to an arbitrarily chosen fiber output image. b The histogram
equalization step. The PMF of each pixel in ① from (a) is transformed to resemble the PMF of the pixels in the reference objects. For each RGB
channel, a LUT is created by matching the pixel values with the same CDF. “Bad” pixels with maxima less than 10 or STDs less than 2 are set to zero
(e.g., blue channel in (b)), resulting in the images ② in (a). Then, the inpainting is performed on each image to fill in those bad pixels (the images ③ in
(a)). c A Restore-CycleGAN recovers the image details. Two U-Net generators G1 and G2 translate between the images ③ and the reference object
images, whereas two PatchGAN discriminators D1 and D2 distinguish the “real” images in the target domain from the “fake” generated images. Both
the generators and the discriminators are optimized through the least square adversarial losses LLSGAN. The generators are also updated through the
identity mapping loss Lidentity and the cycle-consistent loss Lcycle. Lidentity requires an identical output if the input is in the target domain, while Lcycle
requires an unchanged image if the image goes through a full cycle. After learning, high-quality images ④ can be reconstructed by G1
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uterus tissues) are collected in the reflection mode. For each
case, we separately collect 1000 object images and their
GALOF outputs to evaluate the performance. The recon-
struction time per image is about 1.6 s. Figure 2a shows
some examples of the objects’ reference images, the GALOF
output images, and the results after each reconstruction
step (without the registration step). Although the raw
GALOF outputs are unrecognizable, they preserve the local
information of the objects well at all RGB channels. This is
made clear after the histogram equalization is applied to the
pixels in the registered images. After the inpainting step,
fuzzy images of the objects start to show up. Finally,
Restore-CycleGANs further recover the fine details. The
high fidelity of the reconstructions is quantitatively
demonstrated in Fig. 2b, where we plot the mean absolute

errors (MAEs) and STDs of the 1000 reconstructions. In all
six cases, the MAEs are below 0.035 (maximum ~1). In
addition, we conduct a detailed analysis of the entire ima-
ging pre-processing and reconstruction process, which
reveals the cooperative impact of the pre-processing and the
Restore-CycleGAN (Supplementary Information: Step-by-
step analysis of unsupervised image reconstruction).

Robustness
To test the robustness of the unsupervised fiber-optic

imaging, we bend the GALOF with a central angle of 60°
(Fig. 3a). The output images are reconstructed using the
LUTs and the Restore-CycleGAN calibrated on a straight
GALOF. Both the calibration and test stages use the same
type of human red blood cell samples at a working distance
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Fig. 2 Test results of unsupervised full-color image reconstruction on different types of biological objects. a Sample images of the objects,
the intermediate outputs of the reconstructions (excluding the registration step), and the final reconstructed images. The objects are human red
blood cells, frog blood cells, human eosinophils, human cancerous stomach tissues, human bronchogenic carcinoma tissues, and human sarcoma of
uterus tissues. The reconstruction process is calibrated and tested using the images collected through a straight GALOF with 0 mm working distance.
The GALOF-based imaging system is in the transmission mode for the first four cases (the red brackets) and in the reflection mode for the last two
cases (the blue brackets). b MAEs and STDs of the reconstructions are evaluated on 1000 objects for each type of biological object

Hu et al. Light: Science & Applications          (2023) 12:125 Page 4 of 12



of 0mm. As illustrated in Fig. 3b, high-fidelity reconstruc-
tions are achieved despite the large-angle fiber bending. We
repeat the image reconstruction for 1000 GALOF outputs
and calculate their MAE and STD with respect to the input
objects (Fig. 3c). Similar values can be observed from the
test results on a straight fiber. This indicates the consistency
of the GALOF outputs, as attributed to the excellent light
confinement of the TAL-supported modes.

Flexible working distance
Benefiting from the unsupervised image reconstruction,

the reference objects only need to be collected once. When
the working distance varies, we re-calibrate the LUTs and
the Restore-CycleGAN using the same reference objects
collected under a working distance of 0mm. Figure 4 shows
the test results on human red blood cells under the working
distance of 1–6mm with a step of 1mm. Due to the loss of
high-frequency information over the distance, the processed
images after inpainting only demonstrate blurry profiles of
the objects (Fig. 4a). Nevertheless, Restore-CycleGANs can
still recover the images of objects with fine details. High-
fidelity reconstructions are preserved up to a working dis-
tance of at least 4mm. With increased working distances,
the processed images after inpainting lost more information
with significantly degraded imaging qualities, resulting in
false blood cell reconstructions by the Restore-CycleGANs,

such as the reconstructions obtained at 6mm working
distance in Fig. 4a. To quantify the imaging performance,
we calculate the MAEs and STDs of 1000 pairs of recon-
structions and ground truths at each working distance
(Fig. 4b). It shows that the increased working distance does
not rapidly degrade the image quality. Therefore, our
unsupervised image reconstruction approach enables flex-
ible working distances through a simple re-calibration
procedure. Imaging under various working distances serves
as a showcase of the flexible re-calibration brought by
unsupervised image reconstruction. The flexibility is further
demonstrated in Supplementary Information, where we
conduct numerical investigations to analyze the imaging
performance under other extreme conditions, including
low-light, high-noise, and uneven illuminations (Supple-
mentary Information: “Imaging under low-light conditions”,
“Imaging under high-noise levels”, and “Imaging under
uneven illuminations”). The simulations demonstrate that a
simple re-calibration can enable high-fidelity imaging even
under low-light illuminations of 5% visibility, illuminations
with additional Gaussian noise (0 mean and 50 variance), or
Gaussian-distributed uneven illuminations.

Cross-domain generalizability
In the abovementioned results, the calibration and test

are conducted on the same type of biological objects. Yet,
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FOISs are expected to perform high-fidelity imaging on
unseen objects in real-world applications. To enhance
cross-domain generalizability, it is necessary to enrich the
statistical information of the objects for image recon-
struction. For this purpose, we include image data gen-
erated from various types of biological samples (Fig. 5a),
such as human red blood cells, frog blood cells, human
eosinophils, and cancerous stomach tissues. For each
object type, we collect 300 reference object images and
300 GALOF output images from a straight GALOF with
0mm working distance in the transmission mode. These
two sets of images are unpaired and uncorrelated. We
follow the same calibration procedure demonstrated in
Fig. 1. After obtaining the LUTs and the Restore-Cycle-
GAN, we test the unsupervised image reconstruction on
GALOF outputs from unseen objects, i.e., bird blood cells.
Figure 5b shows sample object images, the corresponding
GALOF outputs, and the processed images after each
reconstruction step (excluding the registration step). The
profiles and orientations of the bird blood cells can be
clearly identified, despite slightly degraded image quality.
This corresponds to a higher MAE over 300 reconstructed
images (Fig. 5c). The increase in MAE originates from the
limited data size and object variations, which could be
addressed by improving the training data further.

Discussion
Robust full-color high-fidelity image transport using

unsupervised learning is achieved through the combined
effects of the GALOF’s properties, the pre-processing

steps (registration, standardization, and inpainting), and
the Restore-CycleGAN. First, the high-density localized
modes result in a point-to-point transmission of the
object with a high sampling ratio, which makes the
inverse imaging problem well-suited for unsupervised
learning. In addition, the TAL-supported modes have
flat responses to different wavelengths38, enabling full-
color imaging. In contrast, an optical fiber bundle
designed to transmit images at one wavelength may not
be suitable for another wavelength13. Moreover, the
robustness of the TAL-supported modes makes the
imaging performance stable under large fiber deforma-
tions, whereas a translation of a few millimeters in one
end of a meter-long optical fiber bundle or MMF tends
to significantly degrade the output image24,41–43. Second,
the pre-processing steps help bring the two image
domains of the GALOF outputs and the objects closer,
enabling the Restore-CycleGAN to find a ‘natural’
translation23, since unsupervised image-to-image trans-
lation often fails when an extreme transformation occurs
between the two image domains22 (Supplementary
Information: Step-by-step analysis of unsupervised
image reconstruction). Third, the Restore-CycleGAN
determines the high-fidelity reconstructions using the
pre-processed images. Its crucial role is even more sig-
nificant under high-noise conditions (Supplementary
Information: Imaging under high-noise levels).
Free from strictly paired training imaging data, unsu-

pervised image reconstruction streamlines the system
design and calibration process, facilitates simpler and
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faster data acquisition, and enhances GALOF-based
FOISs as a flexible and efficient imaging platform for
practical applications in various circumstances. Without
the constraint of paired data, the reference object images
in our system can be used repeatedly, with only the
GALOF outputs needed for re-calibrations when the
system changes. For example, a wide range of working
distances is desirable in endoscopy applications to reduce
penetration damage. System re-calibration by supervised
learning is impractical since it requires collecting paired
images for a changed working distance. As shown in this
work, unsupervised learning enables simple re-
calibrations of the system to acquire high-quality images
up to a working distance of at least 4 mm. Moreover, the
amount of data needed in calibrations is dramatically
reduced. In our experiments, we only acquire 1000
GALOF outputs and 1000 reference object images for one
calibration. In contrast, supervised learning typically
requires tens of thousands of paired images to train
a CNN.
Further improvement can be made in the GALOF

fabrications and the unsupervised image reconstruction
process. Currently, there are many defective pixels in the
GALOF outputs, which lead to the loss of information.
Future work can be devoted to investigating methods of
eliminating these defective pixels. Moreover, the geo-
metrical parameters of the GALOF can also be
improved. The GALOF used in this work has an air-
filling fraction of ~28 %. In contrast, an air-filling frac-
tion of ~50% has been shown to be favorable for redu-
cing the localization lengths and improving spatial
resolution48,49. On the other hand, there is still much
room for improvements in cross-domain generalizability.
We expect a larger and more diversified image dataset
would enhance the image reconstruction of unseen
objects in future work. Furthermore, while it only takes
the Restore-CycleGAN about 70 ms to reconstruct an
image, the steps preceding the Restore-CycleGAN add a
significant amount of time to the whole reconstruction
process. The reconstruction time per image is about
1.6 s. Future studies can focus on speeding up the pro-
cessing speed for steps preceding the Restore-CycleGAN
to realize real-time imaging.
Future studies could also investigate the behaviors of

unsupervised learning-based fiber imaging under extreme
conditions, both experimentally and numerically, to
develop system enhancement solutions. As detailed in the
Supplementary Information, our unsupervised-learning-
based fiber imaging method maintains high-quality ima-
ging capabilities under low-light, high-noise, or uneven
illuminations, demonstrating significant resistance to
these challenging conditions. However, we also show that
our imaging method fails beyond certain critical thresh-
olds, such as 6 mm long working distance, extremely low-

light illumination of 2% visibility, or high-level Gaussian
noise of 100 variances, due to the significant alternations
in the statistical features of GALOF’s outputs. This raises
the question of how to quantitatively monitor the entire
imaging process and evaluate the reconstruction fidelity.
In Supplementary Information: “Confidence metric for
image reconstruction”, we propose the correlation coef-
ficient between the pre- and post-processed images by the
Restore-CycleGAN as a confidence metric for alerting to
model failures. The correlation coefficient demonstrates
great conformity to image fidelity. Despite the progress, it
remains an open question whether the limitations of
unsupervised learning-based fiber imaging have been fully
understood and whether a more suitable confidence
metric could be employed. Consequently, further sys-
tematic experimental and numerical investigations are
necessary to uncover better answers.
In conclusion, we achieve unsupervised image recon-

struction in a meter-long GALOF based on its unique
property of point-to-point transmission with high sam-
pling densities. Full-color high-fidelity image transport is
demonstrated on different types of biological samples in
both transmission and reflection modes. The image
quality is preserved when the GALOF is substantially bent
with an angle of 60°. Enabled by unsupervised image
reconstruction, the GALOF-based FOIS is flexible to
different circumstances. High image quality is maintained
within a working distance of at least 4 mm using a much-
simplified re-calibration. Increased cross-domain gen-
eralizability on unseen objects is also shown by including
diversified objects. Based on these results, we see the
GALOF-based FOISs as promising candidates for the
next-generation FOISs.

Materials and methods
Experimental setup
In both the transmission mode and the reflection mode

(Fig. 6a, b), we use a quartz halogen lamp as the light
source (wavelength: ~400 nm to ~2000 nm). A lens, L1,
is placed in front of the lamp to collimate the light. In the
transmission mode, the collimated light illuminates the
object from behind. The object image is relayed by a 10×
microscope objective (MO1) (infinity-corrected, NA=
0.3) and a tube lens L2 (f= 200 mm). The magnified
image is then sent to two arms by a beam splitter BS1. In
the reference arm, the image is further magnified by a
20x microscope objective (MO2) (NA= 0.75) and a tube
lens L3 (f= 200 mm), and then collected by the CCD1
camera (Manta G-145C). In the imaging arm, the object
image is delivered through the GALOF. The GALOF is
fabricated by the stack-and-draw method. It has a dis-
ordered structure with a diameter of ~278 µm and an
air-hole-filling fraction of ~28.5%. A segment of ~80 cm
is used in the experiment. The GALOF output is
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magnified by a combination of a 20x microscope objec-
tive (MO3) (NA= 0.75) and a tube lens L4 (f= 200 mm)
before being collected by the CCD2 camera (Manta G-
145C). In the reflection mode, the illumination light is
coupled into the back aperture of the MO1 by a beam
splitter (BS2), and focused onto the object. We place a
mirror M as a highly reflective substrate behind the
object without contact. Similar to the transmission
mode, the reflected object image is magnified and sent to
the two imaging arms. For both the transmission and
reflection modes, the reference arm and the imaging arm
collect images separately during calibration. They only
operate synchronously during the test to evaluate the
system’s imaging performance.

GALOF outputs registration and inpainting
We first convert all the GALOF outputs to grayscale

images. To find the transformation for registration, we use
MATLAB “imregtform” function with monomodal regis-
tration and translation geometric transformation.
Inpainting is based on MATLAB’s “regionfill” function
that can interpolates inward from the values of the pixels
on the outer boundary of the regions.

Histogram equalization
The detailed workflow of the histogram equalization

step is illustrated in Fig. 7. For each RGB channel, every
pixel in the 1000 registered GALOF outputs has 1000
values varying between 0 and 255 (Fig. 7a). We calculate
the PMF of each pixel by counting the occurrence of a
particular pixel value among the 1000 values. With the
dimensions of one GALOF output being N × N
(N= 420), there are N × N PMFs (probability versus
pixel value). For the 1000 reference objects, we treat all
the pixels equally and calculate one reference PMF from
the N × N × 1000 pixel values. We convert each PMF to
a CDF by summing up the probabilities of pixels whose

values are smaller or equal to a specific value (Fig. 7b).
The N × N CDFs of the GALOF output pixels are then
compared with the reference CDF individually. For each
GALOF pixel, the pixel values are mapped to new values,
such as 8 to 73, by matching the cumulative probabilities
in the GALOF’s CDF with those in the reference CDF. In
this way, we obtain N×N LUTs. Consequently, the post-
processed PMFs produced by the LUTs resemble the
reference PMF distribution. Finally, the outputs from the
histogram equalization step are generated by trans-
forming the pixel values using the LUTs. It is note-
worthy that, for any pixel with a maximum value of less
than 10 or an STD value of less than 2 among the 1000
values (ranging from 0 to 255), we simply map all their
values to 0. These pixels will be filled in during the
inpainting step.

Restore-CycleGAN
The architectures of the generator and discriminator

networks in the Restore-CycleGAN are shown in Fig. 8a,
b. The generator is a U-Net with skip connections. The
input image has a size of 420 × 420. It passes through
different convolutional layers to a bottleneck and then
passes through different transposed convolutional layers
to the final output. The discriminator is a PatchGAN,
which looks into patches of an input image and decides
whether they are from the real images in the target
domain or from the fake images generated by the gen-
erator. The detailed operations in the convolutional layers
and transpose convolutional layers are shown in Fig. 8c.
The numbers of filters in the layers of the generator are
64-128-256-512-512-512-512-512-512-512-512-512-256-
128-64-3. The numbers of filters in the layers of the dis-
criminator are 64-128-256-512-512-1.
The weights in the generators and the discriminators

are initialized by random Gaussian distributions with a
zero mean and a standard deviation of 0.02. For
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Object

MO2

L3

CCD1

BS1

White 
light L1

Transmission mode

a b

Reflection mode

MO1
L2

MO3
L4

GALOF

CCD2

MO2

L3

CCD1

BS1

White
light

L1

Object

M

BS2

Fig. 6 Schematic of the GALOF-based imaging systems. a Experimental setup under the transmission mode. b Experimental setup under the
reflection mode. L1: collimating lens. L2, L3, L4: tube lenses. MO1, MO2, MO3: microscope objectives. BS1, BS2: beam splitters. M: reflective mirror. In
the transmission mode, the white light illuminates the biological object from the back. In the reflection mode, the sample illumination and the image
acquisition use the same objective, MO1. In both modes, the object image is relayed by MO1 and L2, split by BS1 into two copies. Each copy
transmits through the imaging arm GALOF-MO3-L4-CCD2 and the reference arm MO2-L3-CCD1. The two arms operate separately to collect unpair
images for calibration, while both arms operate synchronously to collect unpaired images for the test
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translating between the domain x and the domain y, there
are two generator-discriminator pairs: Gx!y and Dy in the
direction from x to y, and Gy!x and Dx in the other
direction. The loss function of a generator Gx!y can be
written as:

LGx!y ¼ Ex½ðDyðGx!yðxÞÞ � 1Þ2�
þα1Ey½kGx!yðGy!xðyÞÞ � yk1�
þα1Ex½kGy!xðGx!yðxÞÞ � xk1�
þα2Ey½kGx!yðyÞ � yk1�

ð1Þ

The four terms in Eq. (1) are the least square adversarial
loss LLSGAN, the cycle-consistent losses Lcycle in both
directions, and the identity mapping loss Lidentiy,

respectively. α1 and α2 are the weights controlling the bal-
ance among the losses. We use α1 ¼ 10, and α2 ¼ 5. The
weights in Dy and Gy!x are fixed when we train Gx!y. The
loss function of Dy is the least square adversarial loss
LLSGAN:

LDy ¼ Ey½ðDyðyÞ � 1Þ2� þ Ex½DyðGx!yðxÞÞ2� ð2Þ

The weights in Gx!y are fixed when we train Dy. The
real images y to train Dy are randomly selected from all
the images in the target domain, whereas the fake images
Gx!yðxÞ are randomly selected from a pool of 50 fake
images. The pool is randomly updated through newly
generated fake images. The loss of the discriminators is
divided by half during training. The loss functions of Gy!x
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and Dx can be written in a similar way. We train the
discriminators and generators for 100 epochs with a batch
size of 1. We use an Adam optimizer with a learning rate
of 0.0002 and the exponential decay rate for the first
momentum β1= 0.5. The training takes ~40 h on a dual-
GPU (GeForce GTX 1080 Ti) desktop.
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