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Semiconductor laser diodes and laser diode arrays are efficient electrical to optical 
power converters providing their output energy in relatively narrow emission spectra. The 
different wavelength ranges are well covered by different semiconductor materials. InP-
based laser diodes cover the wavelength range from 1-µm to 2-µm. The region between 2 
and 3-µm is well handled by type-I devices based on the GaSb material system.

We designed, fabricated and characterized InP-based and GaSb-based laser arrays with 
record high continuous wave output power emitting at 1.5-µm and 2.3-µm, 
correspondingly. A laser array based on the InGaAsP/InP material system was developed 
for optical pumping of erbium doped solid state lasers emitting eye-safe light around 1.6-
µm. The 2.3-µm laser arrays can be used for optical pumping of recently developed type-
II semiconductor lasers operating in the mid-infrared atmospheric transparency window 
between 3.5-µm and 5-µm.

Optical pumping requires pump sources that reliably provide output energy in a 
relatively narrow spectral range matching with absorption bands of illuminated materials. 
Also the compact size of laser diodes and laser arrays is preferable and convenient in 
different implementations, but it leads to significant overheating in high power 
operations. The inherent properties of semiconductor materials result in a red-shift of the 
laser emission spectrum with increased temperature. This thermal drift of the laser 
emission spectrum can lead to misalignment with the narrow absorption bands of 
illuminated materials. We have developed an experimental technique to measure the 
time-resolved evolution of the laser emission spectrum. The data obtained from the 
emission spectrum measurements have been used to optimize the laser device design.

In this dissertation the progress in the development of high-power infrared laser arrays 
have been discussed. The different aspects of laser array design, thermal analysis and 
laser bar optimization have been studied analytically and experimentally.
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I. HIGH POWER LASER ARRAYS

A. Introduction

The remarkable improvement of high-power diode lasers makes them very at-

tractive for different applications, like material processing, optical pumping, secure

free-space communication and infrared countermeasures. The key requirements for

successful commercialization of high-power laser diodes are high output power, high

efficiency, reliable operation, and low fabrication cost.

One basic approach for higher output power is to enlarge the laser diode gain

area: increase the stripe width (emitting aperture) and/or cavity length. However,

this approach encounters optical field filamentation and lateral mode instabilities,

leading to the appearance of so-called hot spots and the degradation of the laser.

Usually, the width of a single emitter does not exceed 200 µm.

Another way to increase the gain area is to increase the number of emitters

integrated side by side on a monolithic laser bar. These emitters are electrically

connected in parallel, and are optically isolated from each other. Figure 1 shows

a section of such a laser bar. The output power from laser bar scales with the

number of emitters, so each stripe can emit a moderate output power which does

not cause facet degradation. Today, commercially available high-power diode laser

arrays demonstrate output powers up to 100 W from a single bar [1–5]. Higher

output powers up to the kW-regime are obtained from stacked arrays of these bars

[6–8].

The integration of laser emitters in a monolithic bar implies some crucial prob-
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FIG. 1: Schematic diagram of an edge emitting laser bar.

lems: 1) technological problems 2) spurious modes 3) high heat dissipation in a

relatively small volume 4) mutual heating of adjacent emitters.

The technological steps to process the laser diode bar are similar to the ones for

single laser diode, the difference is only in the mask layout. However, each process

step must be carried out to a very high reliability level. A defect of one emitter can

cause the failure of the entire bar by electrical or thermal effects.

Another problem arising from the integration of broad area emitters is the ap-

pearance of so-called spurious modes that decrease the overall output power from

the laser bar. These modes have a propagation direction perpendicular to the de-

sired output. These parasitic modes appear in bars with a high fill factor, and have

to be suppressed by increasing the optical losses for such modes. The filling factor

is the ratio of the active (pumped) area to the whole area of the laser bar. There

are several approaches to suppress spurious modes. One approach is to etch deep

grooves between the emitters. Another approach is to use the etched mesa structure

itself to create an asymmetric optical field distribution for parasitic modes, resulting

in high optical leakage from the waveguide layers into the substrate.

Recently, some groups sponsored by the Defense Advanced Research Projects

Agency (DARPA) Super High Efficiency Diode Sources (SHEDS) Program demon-
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strated record high peak power conversion efficiencies approaching 70% [1, 2, 9, 10].

Conversion efficiency is defined as the ratio between output optical power (Pout) and

input electrical power (Pout). Usually, the conversion efficiency varies significantly

for laser diodes based on different semiconductor materials and is less than 50%. As

a result, a considerable amount of heat is generated in diode lasers and laser bars

during high-power operation. The relatively small size of diode laser bars results in

a relatively high thermal resistance Rth, which is defined as the temperature rise of

the active region divided by the dissipated power:

Rth =
∆T

Pin − Pout
(1.1)

Depending on the thermal resistance, the heat dissipation in laser diodes results in

an active region temperature rise. This temperature rise limits the output power

(through so-called thermal rollover) and enhances the device degradation mecha-

nisms. It is therefore critical to minimize the thermal resistance in high-power laser

devices.

The close proximity of adjacent laser emitters results in an overlapping of heat

fluxes from neighboring stripes. The overlapping of heat fluxes leads to an additional

temperature rise due to mutual overheating of adjacent stripes [11, 12]. However,

it was shown in Ref. [13] that the thermal resistance decreases with increased

filling factor. A detailed analysis of fill factor influence on laser bar overheating is

considered in chapter III.

In this dissertation, progress in the development of high-power infrared laser

arrays is discussed, including the development of InP-based and GaSb-based laser

3



arrays operating at 1.5-µm and 2.3-µm, correspondingly. The different aspects of

laser array design, thermal analysis and laser bar optimization have been studied

analytically and experimentally.

B. Applications of 1.5-µm high-power laser arrays

Optically pumped erbium doped solid state lasers operating between the 4I13/2

and 4I15/2 laser transition are well suited for the production of high power eye-

safe laser light between 1.5 - 1.65-µm. These lasers provide the combination of

beam quality, efficiency, and high optical power required for different applications.

Erbium doped solid state lasers are typically pumped at a wavelength between 940

and 980 nm (∼ 1.3 eV/photon) and emit in the eye-safe region 1.5 - 1.65-µm (∼0.8

eV/photon). The difference in energy between the pump light photons and the laser

emission photons is known as the quantum defect, and represents energy that is lost

to heat in the solid state laser. The quantum defect for our example laser is near 0.5

eV; at least 38% of the pumping optical power is wasted to heat due to the quantum

defect alone.

This inefficiency is undesirable anywhere in the high power laser system, but it

is particularly undesirable to apply high heat loads in the solid state laser medium.

High temperatures in the solid state laser material limit both the output beam

power and quality. A temperature gradient in the laser material leads to an index-

of-refraction gradient which induces self-focusing and degrades beam quality. It may

be possible to compensate for this index variation through advanced design, but this

becomes increasingly difficult in the presence of thermal transients. Non-uniform
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heating also introduces mechanical forces that can lead to crystal fractures. Finally,

the solid state laser structure is poor from a heat transport perspective; the long

path from the pumped region to the cooled periphery acts to virtually guarantee

large temperature variations if the laser is pumped with a high quantum defect

source. Various designs (e.g. the spinning disk solid state laser) have been proposed

to address the heating problem, each with its own disadvantages.

There are more difficulties associated with high quantum defect solid state laser

pumping schemes. One of these difficulties lies in the requirement for sensitizer

atoms (typically ytterbium for erbium based lasers) to be co-doped into the solid

state host material. These sensitizer atoms allow for efficient absorption of the rel-

atively shortwave length pump light, but their use places constraints on the erbium

concentration, which in turn constrains the gain, absorption and energy storage

capability of the solid state laser.

Sensitizer atoms and a high quantum defect combine to facilitate up conversion,

process whereby already excited dopant atoms absorb additional energy and enter

very high energy states that do not contribute to the 1.5 - 1.65-µm laser emission.

This process depletes the upper laser state population, while simultaneously wasting

pump power and increasing host heating.

An alternative to high quantum defect pumping is to pump directly into the

upper part of the narrow band of energies available to excited Erbuim atoms [14–

19]. This near resonant pumping scheme requires high power laser diodes that can

put a large fraction of their output energy in a fairly narrow energy band. This

pump light spectral precision must be maintained over a range of diode operating
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FIG. 2: Absorption (blue line) and emission (red) for Er:YAG

temperatures. Figure 2 shows the absorption and emission spectra for a Er:YAG

laser material. In this material, absorption of pump light in the 1.47 - 1.49-µm

region can be used to generate emission at 1.5 - 1.64-µm, for a quantum defect of

only around 0.06 eV. Semiconductor sources can be tailored to deliver their energy

into the spectral region required by the solid state laser designer. The material in

Figure 2 can also be pumped at 1.52-µm for emission at 1.64-µm [17]. There are

technical challenges for such a system, but the resulting quantum defect of only

a few thousandths of an eV makes this approach very attractive. These quantum

defects are two orders better than is obtained with traditional high quantum defect

pumping methods.
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C. Applications of 2.3-µm high-power laser arrays

Diode laser arrays operating in the spectral range 2 - 3-µm are promising as com-

pact and efficient light emitters for different applications. Atmospheric transparency

in the 2.0 - 2.4-µm region permits applications as diverse as secure free-space com-

munication and infrared countermeasures (IRCM). Further, these lasers are ideally

suited for use as pump sources for new solid state and optically pumped semi-

conductor sources operating in the mid-infrared atmospheric transparency windows

between 3.5-µm and 5.0-µm.

Type-I GaSb-based semiconductor lasers operate up to 2.85-µm [20] and output

hundreds of milliwatts in continuous-wave (CW) mode at room temperature [21–

29]. These devices can be used as low quantum-defect pumping sources for a new

generation of optically pumped semiconductor lasers operating in band-II of the

atmospheric transparency [30]. High-power CW laser arrays based on InP material

system were fabricated with the longest wavelengths of 1.9-µm (11 W per 1 cm bar)

[31] and 2-µm (8.5 W per 1 cm bar) [32]. Further increasing the operating wave-

length within the InP-based material system leads to dramatic laser performance

degradation. The longest reported operating wavelength of the diode laser arrays

was 2.05-µm achieved with In(Al)GaAsSb/GaSb material system [33] though the

array was not designed to work in high-power CW regime.

As an example of the advantages of high-power 2.3-µm pump arrays, we will con-

sider the 4-µm type-II lasers recently reported by the Air Force Research Laboratory

[34]. As can be seen in Figure 3, these devices have an active region consisting of
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FIG. 3: Schematic band diagram showing the energy gap sequence of two repetitions of

an InAs/InGaSb/InAs active region, three repetitions of InGaAsSb integrated absorbers,

and one clad layer. Dashed lines represent upper and lower lasing levels

multiple layers of InAs and InGaSb sandwiched between integrated absorber (IA)

layers of InGaAsSb. Light emission is due to transitions between electrons confined

in the InAs wells and holes confined in the InGaSb wells [35]. Carriers are provided

by absorption of pump radiation in the quaternary integrated absorber layers.

The alloy composition of the IA layers is chosen for lattice matching to the GaSb

substrate, and also to provide an appropriate band gap for efficient absorption of the

pump radiation. The energy difference between the pump photons and the emitted

photons is known as the quantum defect, and this energy is dissipated by heating

the laser structure.

Since device heating adversely affects the devices performance, it is desirable to

minimize the quantum defect. Recently, type-II lasers have been pumped with 1.85-
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µm laser light (0.67 eV pump photon energy). These type-II devices emit light at

around 4.0-µm (0.31 eV), producing a quantum defect of 0.36 eV. The proposed

2.3-µm source emits photons with energy of 0.54 eV, yielding a quantum defect of

just 0.23 eV. By switching from the 1.85-µm pump sources to 2.3-µm pump sources

the quantum defect is reduced by 36%.

There are limits as to how much the quantum defect can be reduced in these struc-

tures. In particular, the edge of the miscibility gap for lattice matched GaInAsSb

will cause problems in designing the IA for wavelengths much longer than 2.3-µm

[36].
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II. PERFORMANCE OF INFRARED LASER DIODES

A. Introduction

InGaAsP/InP is one of the basic material systems of modern optoelectronics.

Well-developed metal organic chemical vapor deposition (MOCVD) technology al-

lows for high yield fabrication of InP-based lasers in the wavelength range from

1-µm to 2-µm. The region between 2-µm and 3-µm is well handled by type-I

laser devices based on the GaSb material system, grown by molecular beam epitaxy

(MBE). Recently, lasers with continuous-wave operation up to 3.04-µm have been

demonstrated [22, 38, 39]. These lasers comprise compressively strained GaInAsSb

quantum wells (QWs) with indium concentrations up to 50% and lattice matched

AlGaAsSb barriers and waveguides.

In this chapter we consider the details of laser heterostructure design of diode

lasers operating at 1.5-µm and 2.3-µm wavelength. The design of both lasers is

focused on high-power operations. That requires low threshold current and high

efficiency. The common feature of both designs is a broadened-waveguide layer.

The broadened waveguide (BW) approach reduces overlap of the optical field with

highly doped cladding layers and minimizes the optical losses due to free carrier

absorption [40]. This chapter is organized as follows. In section IIB we present

the design and performance details of InP-based single emitters. In section IIC the

design and performance of GaSb-based single lasers are considered.
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B. Design and performance of 1.5-µm single lasers

The InGaAsP/InP laser structure emitting at 1.5-µm was grown by metalloor-

ganic chemical vapor deposition. The schematic energy band-gap diagram of laser

structure is shown on Figure 4. The active region contains three 6-nm InGaAsP

quantum wells (QWs) with 1% compressive strain separated by 16-nm InGaAsP

barriers. A double-step graded-index separate confinement heterostructure (SCH)

with 300-nm-thick outer and 30-nm-thick inner InGaAsP layers provides optical

confinement. The broadened waveguide (710 nm) was incorporated between n- and

p-clad layers, each 1.5-µm thick. The n-cladding was doped with Se with a concen-

tration of 5 ∗ 1017cm−3 and the p-cladding was gradually doped with Zn with an

average concentration of 7.5 ∗ 1017cm−3. Zn doping of the p-cladding was optimized

to exhibit optical losses as low as 2-3 cm−1 [41, 42]. All layers, the composition

and thickness of which are given in Table I, except the QWs were grown lattice-

matched to the InP substrate. The total thickness of the laser structure including

the substrate was 140 µm. Details of the laser heterostructure design were reported

elsewhere [41–44].

The wafer was processed into single emitters. The laser emitters had 100-

µm stripe width, 1-mm and 2-mm cavity length. The laser facets were high-

reflection/antireflection coated with reflection coefficients of 95% and 3%, respec-

tively. These lasers were indium-soldered epi-side down onto copper heat sinks and

were characterized.

Figure 5 shows CW current characteristics of output power and wall-plug effi-
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FIG. 4: Schematic energy band diagram of the broadened waveguide 1.5-µm wavelength

InGaAsP/InP laser.

ciency for 1-mm and 2-mm-long single lasers, measured at a heat sink temperature

of 18 C. The lasers output 1.2 W and 2.2 W in CW operation. The wall-plug effi-

ciency of 28% and 30% peaked at 2 A and 3 A for the 1-mm and 2-mm-long single

lasers, correspondingly. The far field radiation pattern was measured for a single

laser at 1.5 A CW drive current. The fast axis divergence was 44o FWHM, the slow

divergence 8o FWHM.

Figure 6 shows the performance of 100-µm-wide 1-mm-long single laser measured

in pulse operation (200 ns, 1 MHz) at different heat sink temperatures. The thresh-

old current density was around 480 A/cm2 and a differential efficiency was 60 % at

a 20 oC. Over the temperature range from 20 to 70 oC, the threshold characteristic

temperature T0 was 54 K and the slope-efficiency characteristic temperature T1 was

160 K, Figure 7.
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FIG. 5: Continuous-wave output-power and conversion efficiency characteristics of 1.5-µm

wavelength lasers.

FIG. 6: Pulse mode output-power characteristics of 1 mm long and 100 µm wide single

laser operating at 1.5-µm wavelength.
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FIG. 7: Temperature dependencies of the threshold current, and the external quantum

efficiency, for 1-mm-long laser measured in the pulsed regime.

To estimate the heating of the laser active region caused by power dissipation, we

measured the emission spectrum red-shift with increasing drive current using an in-

tegrating sphere and an optical spectrum analyzer. To correlate wavelength shift to

temperature change, a calibration factor of 0.55 nm/K was obtained by measuring

the spectral shift under low-duty cycle (LDC) (0.02%), narrow-pulse-width (200 ns)

excitation at a variety of heat-sink-coolant temperatures. The contribution of fac-

tors related to current change was estimated by fixing the heat sink temperature and

increasing the current in LDC pulsed-mode operation. The spectral shift of laser

emission spectrum due to current under LDC pulsed-mode operation was insignif-

icant. It was concluded that the observed red-shift under cw and q-cw operation
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was caused by the heating of the active region.

Layer Composition Thickness (nm)

p-clad InP:Zn 1500

Outer SCH InGaAsP (1.13 eV) 300

Inner SCH InGaAsP (1 eV) 30

Barrier (2) InGaAsP (1 eV) 16

QW (3) InGaAsP (0.8 eV) 1% of compressive strain 6

Inner SCH InGaAsP (1 eV) 30

Outer SCH InGaAsP (1.13 eV) 300

n-clad InP:Se 1500

TABLE I. InGaAsP/ InP laser heterostructure.

C. Design and performance of 2.3-µm single lasers

The laser heterostructure was grown by solid source molecular-beam epitaxy

on n-GaSb substrates. The schematic energy band-gap diagram of laser structure

is shown on the Figure 8. An 830 − nm-thick undoped Al0.25Ga0.75As0.02Sb0.98

broadened-waveguide layer including the two quantum wells (QWs) is sandwiched

between two 2−µm-thick Al0.9Ga0.1As0.07Sb0.93 cladding layers. Two 200-nm-spaced

11.5-nm-wide In0.41Ga0.59As0.14Sb0.86 QWs provided optical gain. The n-cladding

was Te-doped to 3 ∗ 1017cm−3. The p-cladding was Be-doped to 1 ∗ 1018cm−3 over
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FIG. 8: Schematic energy band diagram of the broadened waveguide 2.3-µm wavelength

In(Al)GaAsSb/GaSb laser.

the 0.2−µm-thick layer adjacent to the waveguide, and the rest 1.8−µm-thick layer

was doped to 5∗1018cm−3 [21, 22]. This was done to reduce the internal optical loss

caused by intervalance-band absorption in the p-cladding layer [40]. Heavily doped

40-nm-thick regions, compositionally graded from GaSb to Al0.9Ga0.1As0.07Sb0.93,

have been grown between the cladding layers and the n-GaSb substrate and the

p-GaSb cap layer improve electron and hole conduction. The n region is Te doped

to 1 ∗ 1018cm−3 and the p region is Be doped to 2 ∗ 1019cm−3. All layers, the

composition and thickness of which are given in Table II, except the QWs were

grown lattice-matched to the GaSb substrate.

The wafer was processed into single emitters and was characterized. Each single
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gain-guided element aperture was 100 µm defined as a window in a 0.2 µm-thick

SiN dielectric layer. The facets were coated to reflect 3% and 95%. Single lasers

were indium-soldered epi-side down onto copper heat sinks.

Figure 9 shows CW light-current characteristics and wall-plug efficiency for a

1-mm-long single 2.3-µm laser, taken at a heat sink temperature of 16 C. The

output power was recorded by a 50-mm-diameter thermopile detector. The CW

near threshold slope efficiency and threshold current were 0.2 W/A and 0.4 A. The

output power saturated with current due to heating. Single lasers output 650-mW

CW at 3.8 A. The wall-plug efficiency of 12% peaked at 1A. The output spectrum

(insert in Figure 2) was centered near 2.36 µm; its full-width at half-maximum

(FWHM) was about 14 nm at a current 2-A CW. The FWHM of the transverse

far-field pattern is about 63o and is current independent.

Figure 10 shows the performance of 100 µm-wide 1 mm-long single laser measured

in pulse operation (200 ns, 1 MHz) at different heat sink temperatures. The pulsed

laser external quantum efficiency and threshold current were 0.21 W/A and 360

mA (180 A/cm2 per QW) at 20 oC. Figure 11 shows the threshold current and

slope efficiency for a single laser as a function of temperature over the temperature

range of 15oC−65oC. The empirical characteristic temperature T0, which describes

the exponential dependence of threshold current on temperature, is 95 K. T1, the

empirical characteristic temperature for slope efficiency, is 183 K.

Figure 12 shows the single laser laser emission spectra under both pulsed and
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FIG. 9: Continuous-wave output-power and conversion efficiency characteristics of 2.3-µm

wavelength lasers.

CW operation. To correlate wavelength shift to temperature change, we measured

the spectral shift under narrow-pulse-width (200 ns) excitation at a variety of heat-

sink-coolant temperatures, Figure 12a. The calibration factor of 1.2 nm/K was

determined from the obtained data. The peak laser wavelength increases with tem-

perature from about 2.33-µm at 20 C up to 2.38-µm at 60 C due to band gap

reduction with increasing temperature, Figure 12b. The full-width, half-maximum

(FWHM) spectral width was approximately 10 nm at a drive current of 1.5 A,

broadening to 18 nm at a drive current of 3 A.
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FIG. 10: Pulse mode output-power characteristics of 1 mm long and 100 µm wide single

laser operating at 1.5-µm wavelength.

FIG. 11: Temperature dependencies of the threshold current, and the external quantum

efficiency, for 1-mm-long laser measured in the pulsed regime.
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FIG. 12: Laser spectra of 2.3-µm wavelength lasers measured at several temperatures in

pulsed (left) and CW (right) operation.
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Layer Thickness Doping

cap p-GaSb 50nm Be: 2 ∗ 1019cm−3

p-grading 40nm Be: 2 ∗ 1019cm−3

p-clad Al0.9Ga0.1As0.07Sb0.93 1.8 µm Be: 5 ∗ 1018cm−3

p-clad Al0.9Ga0.1As0.07Sb0.93 200nm Be: 1018cm−3

guide Al0.25Ga0.75As0.02Sb0.98 300nm undoped

QW 2 In0.41Ga0.59As0.14Sb0.86 11.5nm undoped

guide Al0.25Ga0.75As0.02Sb0.98 200nm undoped

QW 1 In0.41Ga0.59As0.14Sb0.86 11.5nm undoped

guide Al0.25Ga0.75As0.02Sb0.98 300nm undoped

n-clad Al0.9Ga0.1As0.07Sb0.93 2µm Te: 3 ∗ 1017cm−3

n-grading 40nm Te: 1018cm−3

buffer n-GaSb 500nm Te:1018cm−3

substrate n-GaSb 140µm Te: 5 ∗ 1017cm−3

TABLE II. In(Al)GaAsSb/ GaSb laser heterostructure.
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D. Conclusion

In this chapter

• We present the heterostructure designs of laser diodes lasing at 1.5-µm and

2.3-µm.

• The laser diodes operating at 1.5-µm output up to 2.2 W in cw mode. The

peak wall-plug efficiency was 30%.

• The GaSb-based laser diode demonstrated a cw output power of 0.65 W at

2.3-µm wavelength. The conversion efficiency peaked at 9%.
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III. THERMAL RESISTANCE AND OPTIMAL FILL FACTOR OF A

HIGH POWER DIODE LASER BAR

A. Introduction

A growing demand for high power optical sources led to a race to improve device

reliability and increase output power. Technological development produced a grad-

ual increase of single laser output power, however, a significant improvement took

place with the fabrication of laser bars. The laser bar contains numerous individual

laser emitters arranged side-by-side to form a single monolithic array. A typical

laser bar might contain twenty 100 µm wide emitters equally spaced to span a 1 cm

wide bar. The fill factor for such an array is defined to be the ratio of pumped bar

area to total bar area.

Two solutions are most evident for increasing the laser bar output power: one

is to increase the current per emitter, and the other is to increase the number

of emitters. Increasing the number of fixed-width emitters on a fixed-width bar

is equivalent to reducing the distance between individual emitters (i.e. increasing

the fill factor). Both solutions, however, encounter an overheating problem. An

increased pumping current leads not only to an increased output power but also, due

to limited efficiency, to an increased dissipated power. As a result, the temperature

in the active region grows which reduces the carrier confinement and increases the

rate of non-radiative recombination processes. This causes an efficiency reduction

so that eventually the output power saturating with increased pumping current

(thermal rollover) [45].
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Reducing the distance between emitters operating at constant dissipated power

results in a similar heating problem. Decreasing the separation between adjacent

emitters in a laser bar causes mutual heating which also leads to an active region

temperature rise and decreased efficiency [11, 12]. A natural step is to reduce the

distance between the emitters while also varying the pumping current in such a way

that the total output power would increase. That is, we come to the problem of the

optimal fill factor: finding the fill factor that allows for maximal laser bar output

power.

Practically, however, laser bars are not normally operated in the regime of maxi-

mal output power. The laser temperature in this regime is quite high which reduces

the device lifetime. The reliability issue leads to other approaches to the optimiza-

tion problem: optimization of the distance between emitters to produce 1) maximal

output power for a given active region temperature rise or 2) minimal active region

temperature rise for a given output power.

Basically, all these approaches are related to the general problem of the optimiza-

tion of the laser bar design. The search for the optimal fill factor when all other

elements of the laser geometry (e.g., the width of the contact stripes) are fixed is an

approach that allows an exact mathematical solution.

The calculation of the optimal fill factor is based on the standard phenomeno-

logical equations that describe the operation of a laser bar [45–47]. Some of the

main parameters in these equations, namely, the thermal resistance characterizing

the cooling rate and the series resistance characterizing the power dissipated away

from the active region, depend on the fill factor. The dependence is controlled by
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the laser design. The analytical expressions for the thermal and electrical series

resistance for typical laser bar designs are determined, and then these expressions

are used to find the optimal fill factor for a given laser bar architecture.

The central point in the evaluation of the electric resistance is the current spread

calculation. In some previous publications the current density was calculated under

the assumption of constant density at the contact stripe which then falls off as the

square of the distance away from the contact [48–54]. An exact analytical solution

to the Laplace equation that controls the current spread when carrier diffusion can

be neglected was obtained by Lengyel et al. [55]. They studied a narrow stripe

geometry where the width of the stripe is of the order of its distance from the active

region. Similar models have been considered by Wilt [56], Joyce [57], and Agrawal

[58]. A comprehensive comparison of these models has been made by Papannareddy

at al. [59]. The geometry considered by Lengyel et al. [55] corresponded to the

situation in ridge lasers. In high power lasers the width of the stripe is much larger

than the cladding thickness, and the n-layer thickness is comparable to the stripe

width. Previously, it has been shown that such a relation leads to a high current

density near the edges of the active region [60].

The thermal resistance substantially depends on the thermal conductivity and

geometry of the heat spreader located between the laser and the heat sink [61, 62].

Determining the thermal resistance requires the solution of the thermal conductance

equation with non-trivial boundary conditions. For this purpose, a finite element

method is typically used [13, 63]. However, the analytical approach allows one to

understand the qualitative dependence of device characteristics on different param-
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eters without performing time consuming numerical calculation required in finite

element methods.

The calculated electrical series resistance is weakly dependent on fill factor. In

contrast, the dependence of the thermal resistance on the fill factor is substantial.

The expression obtained for the thermal resistance gives an excellent agreement with

measured values without any adjustable parameters [43]. Analytical results for both

resistances facilitate the calculation of the optimal fill factor.

The chapter is organized as follows. The fill factor optimization problem is formu-

lated for a laser bar in Section IIIB. In sections IIIC and IIID we present analytical

solutions to the electrical and thermal problems and calculate the electric and ther-

mal resistances. In Sec. III E we compare the theoretical and experimental values

of the thermal resistance and present the theoretical results of the bar optimization.

B. Optimal fill factor

We consider a laser bar with N contact stripes with a distance a1 between their

centers, Figure 13a. The laser bar is mounted on a heat spreader which conducts

heat from the laser bar to the heat sink. The heat sink is assumed ideal, i.e., its

temperature is fixed and does not depend on the power dissipated in the bar. We

assume that the cooling conditions for all lasers in the bar are the same and we can

neglect the edge effects. In other words, the difference between the cooling of the

lasers close to the ends of the bar and those in the middle can be neglected and

the temperature of their active regions is the same. Indeed, we did not detect any

temperature difference between different lasers in a 25 W 1.47 µm laser array that
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contained 20 elements [43] (compare with Ref. [11, 12]).

If jth is the threshold current in one emitter and j > jth is the pumping current

then the optical power generated in this emitter is

popt = η(j − jth) (3.1)

where η is the differential efficiency. Well above the threshold the voltage drop across

the active region, U0 does not depend on the current and the power dissipated in

one laser is

pd = U0j + rj2 − popt , (3.2)

where r is the series resistance of one laser.

To make the result more general and avoid specifying the number of emitters (N)

in a bar and the length of the bar it is convenient to deal with power dissipated per

unit length of the bar, Npd/Lb, where Lb is the length of the bar. The temperature

of the active region is connected to the power dissipated per unit length by the

relation T = RT (Npd/Lb) where RT is the thermal resistance of the unit length of

the bar. At this stage it is convenient to introduce the fill factor that is defined as

f =
Na

Lb

(3.3)

where a is the width of the stripe. Then with the help of Eqs.(3.1) and (3.2) the

active region temperature can be expressed as

T =
fRT

a
[ηjth + (U0 − η)j + rj2] . (3.4)
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FIG. 13: Perspective views of the mounted laser bar. (a) The planar model with the

laser bar, heat spreader and heat sink describing parallel planes. Light is emitted from

the electrically pumped active regions defined by the multiple p-contacts of width a. The

center-to-center distance between p-contacts is a1, and the thickness of the heat spreader

is d. A detailed view of the laser bar is shown in the circular inset. The inset shows

that the laser bar consists of an n-layer (n-cladding and substrate) of thickness b, a thin

active region and a p-clad of thickness b1. Different coordinate systems have been used.

The electrical resistance modeling employs the coordinate origin shown in the inset, the

thermal resistance modeling employs the coordinate origin shown in the main drawing.

(b) The perpendicular model with a similar laser bar mounted in a grooved heat spreader.

The laser bar cavity length L and heat spreader thickness D are shown in the inset. The

asymmetry of the n and p layer thicknesses means that the heat transfer is through the

p-side of the bar which is modeled as a planar heat source of negligible thickness.
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The optical power per unit length of the bar, Popt = Npopt/Lb, with the help of

Eq.(3.1) can be written as

Popt =
fη

a
(j − jth) . (3.5)

The definition of Popt and T by Eqs.(3.4) and (3.5) is not complete for two reasons.

The first is that jth and η depend on T . With good accuracy this dependence is

usually described as

jth = jre
(T−Tr)/T0 , (3.6a)

η = ηre
−(T−Tr)/T1 , (3.6b)

where Tr is the reference temperature and constants jr, ηr, T0, and T1 depend on

the details of the laser structure.

The second reason is more serious and presents the main technical difficulty for

the calculation of the optimal fill factor. Namely, both the thermal resistance and

the series resistance depend on the fill factor. This dependence is controlled by the

geometry of the laser structure and the heat spreader. The calculation of RT (f)

and r(f) is the main content of the chapter.

Equations (3.4) and (3.5) with known jth(T ), η(T ), RT (f), and r(f) make up

the basis for the optimization problems described above, and these problems can be

formulated as

• Given T , find maximal Popt .

• Given Popt, find minimal T .

It is necessary to note that mathematically the two problems are equivalent.

Given Popt(j, T, f) and T (j, f), both of them are reduced to the solution of the
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equation

∂Popt

∂f

∂T

∂j
− ∂Popt

∂j

∂T

∂f
= 0 . (3.7)

together with one of Eqs.(3.4) and (3.5). The equivalence can be seen from the

results, Figures 15 and 16, where the plots Popt(T ) and T (Popt) can be obtained

from each other by the transposition of the axes.

In the next two sections we present the calculation of RT (f) and r(f) for sim-

ple but practically important models. For both cases we succeeded in obtaining

analytical results that are quite flexible and convenient for practical applications.

C. Electric resistance of the bar

The model of the laser structure used for calculating the electric resistance is

shown in Figure 13a. It consists of a p-cladding and n-layer (n-cladding with a sub-

strate) separated by a thin region containing the waveguide and quantum wells.[62]

The thickness of this quantum well region is typically smaller than 1 µm and we

consider it as an interface. The n-side of the bar is uniformly covered by a metal

n-contact, the p-side of the bar has multiple p-contact stripes of width a and center-

to-center separation a1. The thickness of the p-cladding b1 is much smaller than the

thickness of the n-layer b and the stripe width a. Previously, we considered a similar

structure with one stripe.[60] In the system with many stripes current spreads from

adjacent stripes limit each other and as a result, the resistance of the structure de-

creases with increasing distance between the stripes. We consider a bar with a large

number of stripes so that the difference of the current spread around two stripes at
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the edges of the bar can be neglected. Then it is possible to consider a periodical

system of stripes with period a1 and fill factor f = a/a1.

Due to the small thickness of the p-cladding, the current spread in it can be

neglected and the width of the pumped active region is the same as the stripe width.

If the current density components in the p-cladding are jx = 0, jy(x, y) = jy(x, 0)

and the potential at the contact stripe, U , is constant then the potential at the

n-side of the active region is

Ua(x) = U − σpjy(x, 0) − U0 , (3.8)

where σp is the conductivity of the p-cladding and U0 is the potential drop across

the active region which is assumed constant above threshold.

The current spread problem for the n-layer now can be solved independently of

the p-cladding. Due to high doping in the n-layer the screening radius there is very

small which makes the diffusion current negligible compared to the drift current. As

a result, the potential distribution in the n-layer φ(x, y) is controlled by the Laplace

equation. One of the boundary conditions for this equation is a constant potential

at the n-contact, y = b. At the pn interface the potential is Ua(x) which can be

considered given only in the pumped regions while between the pumped regions the

current normal to the interface is zero. The solution to this problem allows one to

find jy(x, 0) as a functional of Ua(x). The substitution of this functional in Eq.(3.8)

provides an equation for Ua(x). The solution to this equation gives the final result.

In Sec. IIIC 1 the potential distribution in the n-layer is found analytically, in Sec.

IIIC 2 the potential Ua(x) is found with the help of a variational method, and in

31



Sec. IIIC 3 the resistance of the structure is calculated.

1. Potential distribution in n-layer

The boundary problem for the Laplace equation in the n-layer formulated above

is equivalent to the boundary problem for the complex potential,

χ(z) = φ(x, y) + iψ(x, y) , (3.9)

where z = x+iy. Apparently, χ(z+a1) = χ(z) and it is enough to consider the period

|x| < a1/2. The system is symmetric with respect the lines x = ±a1/2 in the middle

between the stripes, and the current normal to this line is zero, σn[∂φ/∂x]x=±a1/2 = 0

(σn is the conductivity of the n-layer). Then due to Cauchy-Riemann relations,

∂φ

∂x
=
∂ψ

∂y
,

∂ψ

∂x
= −∂φ

∂y
, (3.10)

the boundary conditions can be written as

φ = Ua(x) , −a
2
< x <

a

2
, y = 0 , (3.11a)

ψ = const. ,
a

2
< |x| < a1

2
, y = 0 , (3.11b)

ψ = const. , x = ±a1

2
, (3.11c)

φ = 0 , y = b . (3.11d)

To solve this problem it is convenient to map it first to the upper half plane of

another complex variable w = u + iv. This can be done with the help of the

transformation (see, e.g., Ref. [64, 65])

z = CF (arcsinw; k) , (3.12)
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where F (θ; k) is the elliptic integral of the first kind. Constants C and k < 1 are

defined by the condition that point z = a1/2 is mapped onto w = 1 and point

z = a1/2 + ib is mapped onto w = 1/k,

a1 = 2CK(k) , (3.13a)

b = CK(k′) . (3.13b)

where K(k) = F (π/2; k) is the complete elliptic integral of the first kind and

k′ =
√

1 − k2. When w → ∞ Eq.(3.12) gives z = ib. The transformation inverse to

Eq.(3.12) is expressed in elliptic sinus,

w = sn(z; k) . (3.14)

Now it is necessary to find the function χ(w) = φ(u, v) + iψ(u, v) analytic at the

upper half plane of w and satisfying the following boundary conditions at v = 0:

φ = (U − U0)Φ(u) , −ua < u < ua , (3.15a)

ψ = const. , ua < |u| < 1/k , (3.15b)

φ = 0 , |u| > 1/k . (3.15c)

where

ua = sn(a/2C; k) < 1 , (3.16)

Φ(u) =
1

U − U0
Ua[CF (arcsin u; k)] . (3.17)

The solution to this problem can be found with the help of the Keldysh - Sedov

method Ref. [65, 66] and is [60]

χ(w) =
U − U0

π
[−f(w) + ψ0g(w)] , (3.18)
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where

f(w) = 2w
√

(1 − k2w2)(w2 − u2
a)

∫ ua

0

Φ(t)
√

(1 − k2t2)(u2
a − t2)

dt

t2 − w2
,(3.19a)

g(w) = 2w
√

(1 − k2w2)(w2 − u2
a)

∫ 1/k

ua

1
√

(1 − k2t2)(t2 − u2
a)

dt

t2 − w2
.(3.19b)

Here
√

1 − k2w2 is defined on the plane of w with the cuts along the real axis from

w = 1/k to ∞ and from w = −1/k to −∞, and is positive at the real axis between

the points −1/k and +1/k.
√

w2 − u2
a is defined on the plane of w with the cut

along the real axis between the points w = −ua and w = ua and positive at the real

axis at u > ua. Thus the function
√

(1 − k2w2)(w2 − u2
a) is real and positive at the

real axis between the points ua and +1/k and changes sign when w changes sign.

The integrals in both f(w) and g(w) are defined at the upper half-plane of w. They

can be analytically continued to the lower half-plane across the part of the real axis

where they are real.

Potential χ(w) is limited at w → ∞ only if

ψ0 =
1

K

(

√

1 − k2u2
a

)

∫ ua

0

Φ(t)dt
√

(1 − k2t2)(u2
a − t2)

. (3.20)

2. Potential at the active region

For the calculation of jy(x, 0) it is convenient to introduce

j(z) = jx(x, y) − ijy(x, y) = −σn

(

∂φ

∂x
− i

∂φ

∂y

)

= −σn
dχ

dz
. (3.21)

In new variables according to Eq.(3.12)

j(w) = −σn

C

√

(1 − w2)(1 − k2w2)
dχ

dw
. (3.22)
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After the calculation of complex potential derivative this is reduced to the form

j(w) =
2σn(U − U0)

πCK

(

√

1 − k2u2
a

)

√

1 − w2

w2 − u2
a

[J1(ua, k) − J2(w, ua, k)] . (3.23)

where

J1(ua, k) = E

(

√

1 − k2u2
a

)

∫ π/2

0

Φ(ua sin θ) dθ
√

1 − k2u2
a sin2 θ

− K

(

√

1 − k2u2
a

)

k2u2
a

∫ π/2

0

Φ(ua sin θ) sin2 θ dθ
√

1 − k2u2
a sin2 θ

. (3.24a)

J2(w, ua, k) = K

(

√

1 − k2u2
a

)

∫ ua

0

Φ′(t)t

√

(1 − k2t2)(u2
a − t2)

t2 − w2
dt ,(3.24b)

and E(k) is the complete elliptic integral of the second kind.

The substitution of jy(u, 0) from Eq.(3.23) in Eq.(3.8) leads to the equation

Φ(u) = 1 − b1σn

bσp

2K(k′)

π

√

1 − u2

u2
a − u2

J3(ua, k) , (3.25)

where

J3(ua, k) =
J1(ua, k)

K

(

√

1 − k2u2
a

) − V.p.

∫ ua

0

Φ′(t)t

√

(1 − k2t2)(u2
a − t2)

t2 − u2
dt . (3.26)

Integral equation (3.25) determines Φ(u). The solution to Eq.(3.25) gives a minimum

to the functional

F [Φ] =

∫ ua

0

[

1 − Φ(u) − b1σn

bσp

2K(k′)

π

√

1 − u2

u2
a − u2

J3(ua, k)

]2

du . (3.27)

This functional can be used to find an approximate solution with the help of the

variational method. A good approximation is Φ(u) = c1 − c2u
2 − c3u

8.
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3. Calculation of the resistance

The current across the n-layer is

I = L

∫ a/2

−a/2

jy(x, 0)dx = 2Lσnψ(a/2, 0) = 2Lσnψ(ua, 0) , (3.28)

where L is the length of the stripe. With the help of Eq.(3.18) it is possible to show

that

χ(ua) = (U − U0) [Φ(ua) + iψ0] , (3.29)

and then

I =
U − U0

r
, r =

1

2Lσnψ0
. (3.30)

The substitution of Eq.(3.20) gives

r(f) =
K

(

√

1 − k2u2
a

)

2Lσn

[

∫ ua

0

Φ(t)dt
√

(1 − k2t2)(u2
a − t2)

]−1

. (3.31)

If the resistance of the p-cladding can be neglected, i.e., b1σn/bσp ≪ 1 then Φ(t) = 1

and

r =
K

(

√

1 − k2u2
a

)

2LσnK(kua)
. (3.32)

D. Thermal resistance

Typically the laser bar is mounted on a heat spreader and actively cooled heat

sink. The thermal resistance of the laser bar crucially depends on the geometry

of the heat spreader. In this section we calculate the thermal resistance for two

different models. The first is the planar model where the bar is parallel to the heat

sink and is separated by a heat spreader with given thickness d, Figure 13a. The
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second model represents the bar imbedded in the heat spreader perpendicular to

the interface between the spreader and the heat sink, Figure 13b. The arrays used

to verify our model were fabricated using the perpendicular geometry [43]. In both

models we assume an ideal heat sink in which temperature is maintained constant

at any dissipated power.

1. Planar geometry

In this case the temperature field in the heat spreader is two-dimensional; there

is no temperature gradient along the laser cavity, (Figure 13a). The temperature

distribution can be found from the equation

∂2T

∂x2
+
∂2T

∂y2
= 0 , (3.33)

with boundary conditions

T (x, 0) = 0 , (3.34a)

κ
∂T

∂y

∣

∣

∣

∣

y=d

=















q , na1 − a/2 < x < na1 + a/2 ,

0 , (n− 1)a1 + a/2 < x < na1 − a/2 .

(3.34b)

Here T is the temperature excess above the heat sink temperature, d is the width of

the heat spreader, and κ is the thermal conductivity of the heat spreader material.

The heat flux from each laser equals the power dissipated there, q = pd/La. For the

calculation of the thermal resistance of the unit length of the bar it is convenient to

express the flux as the power dissipated per unit length:

q =
Pd

fL
. (3.35)
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Due to the periodicity of the boundary conditions the solution to Eq.(3.33) can be

found with the help of Fourier expansion and the result is

T (x, y) =
qa

κ

[

y

a1
+

a1

π2a

∞
∑

n=1

sin(nπa/a1)

n2

sinh(2nπy/a1)

cosh(2nπd/a1)
cos

2nπx

a1

]

. (3.36)

The temperature of the bar,

T (x, d) =
qa

κ

[

df

a
+

1

π2f

∞
∑

n=1

sin(nπf)

n2
tanh

2nπdf

a
cos

2nπxf

a

]

, (3.37)

oscillates with x, i.e., along the bar. It reaches its maximum in the middle of a

stripe, x = 0, and minimum between two stripes, x = a1/2. The amplitude of the

oscillations decreases with increasing fill factor and at f = 1 the temperature of the

bar is x independent: T (x, d)|f=1 = qd/κ

The measured laser temperature corresponds to the temperature averaged across

the laser, i.e.,

Tav =
1

a

∫ a/2

−a/2

T (x, d)dx =
qa

κ

[

df

a
+

1

π3f 2

∞
∑

n=1

sin2(nπf)

n3
tanh

2nπdf

a

]

(3.38)

This gives the following expression for the thermal resistance of the unit length of

the bar,

RT =
Ta

Pd

=
d

κL
+

a

κπ3f 3L

∞
∑

n=1

sin2 nπf

n3
tanh

2nπdf

a
. (3.39)

The thermal resistance decreases with increasing fill factor and reaches the value of

d/κL when f = 1. A decreasing thermal resistance with increasing fill factor has

also been obtained using the finite element method [13].
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2. Perpendicular geometry

In the perpendicular geometry, Figure 13b, the temperature depends on all three

coordinates: it depends on the distance from the bar, it changes along the cavity

due to the varying distance to the heat sink, and it changes in the direction along

the bar similarly to the planar model. The exact calculation of the three dimen-

sional temperature field gives quite cumbersome results. However, practically it is

necessary to know the temperature close to the maximal one. For the temperature

close to the maximum a very good approximation can be obtained in a relatively

simple way.

For this reduction, first the temperature field in the perpendicular geometry

is calculated for a fill factor of 100%. Then the effective thickness of an equivalent

planar geometry heat spreader is determined such that it provides the 100% fill factor

bar temperature equal to the maximal temperature in the perpendicular geometry at

the same 100% fill factor. After the effective thickness is chosen the bar temperature

can be calculated with any fill factor with the help of Eq.(3.39). An excellent

matching of this approximation to experimental results has been achieved.

The calculation of the maximal temperature in the perpendicular geometry with

a fill factor of 100% is reduced to a two-dimensional problem for the Eq.(3.33) at a

stripe with a cut, see Figure 13b. The boundary conditions for this equation are the

following. The temperature excess equals zero at the interface with the heat sink,

y = 0. The heat flux comes in only from the p-side of the bar, D − L < y < D,

x = +0. The heat flux from the n side, D − L < y < D, x = −0, can be neglected
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because of the large thickness of the substrate compared to the thickness of the

p-cladding. That is

T (x, 0) = 0 ,
∂T

∂y

∣

∣

∣

∣

y=D

= 0 , (3.40a)

∂T

∂x

∣

∣

∣

∣ x=−0
D−L<y<D

= 0 , κ
∂T

∂x

∣

∣

∣

∣ x=+0
D−L<y<D

= −q , (3.40b)

The problem can be solved with the conformal mapping of the stripe with the cut

x = 0, D − L < y < D at the plane z = x+ iy to the stripe 0 < v < π at the plane

w = u+ iv. The mapping is carried out with the help of the function [65]

w = ln
cos

πL

2D

√

coth2 πz

2D
+ tan2 πL

2D
+ 1

cos
πL

2D

√

coth2 πz

2D
+ tan2 πL

2D
− 1

. (3.41)

The Laplace equation for T in the plane z remains the Laplace equation in the

plane w. The boundary conditions at the plane w are

T (u, 0) = 0 . (3.42a)

∂T

∂v

∣

∣

∣

∣

v=π

=































q

κ

D

π

cos
πL

2D
tanh

u

2
√

sin2 πL

2D
− tanh2 u

2

, 0 < u < uD ,

0 , otherwise .

(3.42b)

The solution in the stripe 0 < v < π can be found with the help of expansion in

Fourier integral in u or Fourier series in v and the result can be reduced to the form

T (u, v) =
1

2π

qD

πκ

∫ uD

0

ln

[

cosh[(u− u′)/2] + sin(v/2)

cosh[(u− u′)/2] − sin(v/2)

] cos
πL

2D
tanh

u′

2
√

sin2 πL

2D
− tanh2 u

′

2

du′ ,(3.43)

The temperature reaches its maximum at y = D, x = +0 or u = uD, v = π and it is

Tm =
1

2π

qD

πκ

∫ uD

0

ln

[

cosh[(uD − u)/2] + 1

cosh[(uD − u)/2] − 1

] cos
πL

2D
tanh

u

2
√

sin2 πL

2D
− tanh2 u

2

du . (3.44)
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A comparison of this expression with the temperature in the plane geometry for

f = 100%, Tm = qd/κ, immediately gives the following expression for the effective

thickness:

d =
D

2π2

∫ uD

0

ln

[

cosh[(uD − u)/2] + 1

cosh[(uD − u)/2] − 1

] cos
πL

2D
tanh

u

2
√

sin2 πL

2D
− tanh2 u

2

du . (3.45)

Now the thermal resistance can be calculated with the help of Eq.(3.39) where d

is taken from Eq.(3.45).
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E. Results and discussion

We compare our optimization theory with experimental results obtained on laser

bars based on InGaAsP/InP and operating at 1.5-µm. In the next chapter IVB

we consider the operational characteristics and design details of laser arrays. The

measurements were made on bars with different fill factors, 10%, 20% and 40%. In

all bars the width of the n-contact stripes was a = 100µm. The distance between

the n- and p-contacts was 140 µm, the thickness of the p-cladding was b1 = 1.5 µm

and the conductivities of the n-layer and p-cladding were σn = 320 Ω−1cm−1 and

σp = 1.6 Ω−1cm−1. This gives the ratio of the resistances of the p-cladding and the

n-layer necessary for the calculation of the electric resistance b1σn/bσp = 2 (here b1

and σp are the thickness of the conductivity of the p-cladding). The details of laser

heterostructure were discussed in the chapter IIB.

The laser bars were mounted in metallized grooves in BeO heat spreaders which

were bonded to water-cooled microchannel heat sinks, Figure 13b. The thickness

of the heat spreader was D = 1.5 mm, and the cavity length for these bars was 1

mm. According to Sec. IIID 2 the thermal resistance of the bar in this geometry

is equivalent to the thermal resistance in the planar geometry, Figure 13a, with an

effective thickness d = 8.3a obtained from Eq.(3.45). Using d = 830 µm in Eq.(3.39)

the thermal resistance was calculated for laser bars in the perpendicular geometry

for different bar designs. These results were compared to experimentally measured

thermal resistances. The measured dependence of the active region overheating vs

the dissipated power density is given in Figure 14(a). The slopes of the straight

42



lines fitted to the experimental data in Figure 14 provide estimates of the thermal

resistance for bars with different fill factors. Thermal resistances of bars with f

equal 0.1, 0.2, and 0.4 are respectively 0.56, 0.40, and 0.36 K cm/W. The standard

deviation of measured points from the linear fits gives the accuracy of the thermal

resistance around 4% or smaller. The maximal error coming from the error of the

temperature measurements is close to this value. Eq.(3.39) gives for these bars

0.58, 0.41, and 0.35 K cm/W. That is the discrepancy between the theoretical and

experimental results is within the accuracy of the measurements. The thermal

resistance of bars with 2 mm cavities mounted in heat spreaders of CuW were also

evaluated (Figure 14(b)). For these bars, we compare the ratio of the thermal

resistances for the 0.1 and 0.4 fill factor bars. The experimentally determined ratio

is 1.5, close to the calculated ratio of 1.64.

Along with the calculated dependencies of r(f) and RT (f), the temperature

dependencies of the threshold current and slope efficiency are required to solve the

optimization problem Eq.(3.7). These parameters were measured (chapter IIB)

under short pulse operation by changing the heat sink temperature for individual 1

mm cavity length lasers. Both the threshold current jth and slope efficiency η are

well described by Eq.(3.6) with jr = 0.5 A, ηr = 0.5 W/A, Tr = 20 C, T0 = 54 K,

and T1 = 160 K. The voltage across the active region above threshold U0 = 0.91 V .

The solution of the optimization problem (Eq(3.7)) yields the maximum output

power for a given active region temperature rise, as shown by the solid line in Figure

15. The dashed line in Figure 15 corresponds to the optimal fill factor design that

provides this output power at the given active region temperature rise. A similar
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FIG. 14: Measured overheating of the active region versus dissipated power density pdis (a)

for different fill factor laser bars with 1 mm long cavities mounted in BeO heat spreaders

and (b) for different fill factor laser bars with 2 mm long cavities mounted in CuW heat

spreaders. Solid symbols indicate data points (circles, squares, and triangles for 10%, 20%,

and 40% fill factors respectively). Lines fit to the experimental data are used to determine

the thermal resistance.
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FIG. 15: Optimized fill factor (dashed line) and corresponding maximum output power

(solid line) as a function of laser temperature rise.

optimization based on minimal temperature rise for a given output power is shown

in Figure 16. Here again, the dashed line represents the optimal fill factor, and the

solid line indicates the minimal active region temperature rise for the given output

power.

To understand how critical the optimal fill factor is, we compare the analytically

calculated active region temperature rise versus output power for an optimal fill

factor array and for several fixed (10%, 20% and 40%) fill factor arrays. This

comparison is given in Figure 16. The 40% fill factor array plot is nearly coincident

with the optimal fill factor plot above about 25 W. For output powers below 17 W,

the difference in active region temperature between the optimal array and the 20%

fill factor array is negligible. The 10% fill factor array has the highest temperature
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FIG. 16: Optimized fill factor (dashed line) and corresponding minimal laser temperature

rise (solid line) as a function of output power. The dotted lines show the temperature rise

for several fixed fill factor arrays as a function of output power.

among the rest arrays above 5W. Clearly, the optimal fill factor depends on the bar

operating regime.

Earlier we suggested two methods of increasing array output power: increasing

the pumping current per emitter and increasing the number of emitters. By calcu-

lating the optimal fill factor for a particular operating regime, we have found the

most favorable balance between these two approaches. The optimal fill factor curve

shown in Figure 15 illustrates that for increasing output power in this system, it is

preferable to use a higher fill factor. Higher fill factors offer advantages for higher

power operation since the effect of mutual heating is weaker than the heating of

each one of them by the current.
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F. Conclusion

In this chapter

• We obtained analytical expressions for the steady state electrical and ther-

mal resistance of a laser bar. Both quantities depend on geometry, and in

particular, the fill factor.

• Theoretical results for the thermal resistance are in excellent agreement with

the measured thermal resistance of 1 and 2 mm cavity length laser arrays with

different fill factors.

• We use the analytical results to calculate the optimal laser bar fill factor. The

value of the optimal fill factor depends on the working regime of the bar;

higher output powers require higher fill factors for minimum active region

temperatures.
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IV. PERFORMANCE OF INFRARED HIGH-POWER LASER DIODE

ARRAYS

A. Introduction

Replacing flash-lamps with efficient, narrow-band diode laser pumping sources

significantly increased the maximum available power and extended the application

area of solid-state lasers. In recent years, there has been an increased interest in

the development of high-energy, Q-switched solid-state sources operating in eye-safe

wavelength range. Optically pumped erbium-doped crystalline hosts offer great po-

tential as efficient, pulsed, eye-safe laser sources. The further progress of Er:doped

solid state laser is determined by the development of high-power laser arrays reli-

ably delivering energy in Er absorption bands near 1.5-µm. High-power electrically

pumped semiconductor laser arrays operating near 2.3-µm can be used for optical

pumping of recently developed type-II semiconductor lasers [37].

This chapter describes the design and performance of infrared laser diode arrays.

It is organized as follow. In section IVB we consider the details of design and

performance of high-power laser arrays fabricated for optical pumping of Er:YAG

solid-state lasers. The operation of 2.3-µm laser arrays is discussed in section IVC.

The steady-state thermal analysis of high-power laser diode arrays is considered in

the section IVD.
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B. Design and performance of 1.5-µm laser arrays

The laser arrays operating at 1.5-µm were fabricated from InGaAsP/InP wafer

grown by organometallic chemical vapor deposition. The laser active region con-

sisted of three 6-nm-thick compressively strained quantum wells incorporated into a

two-step graded index waveguide with a total thickness of 710 nm. The laser facets

were high-reflection/anti-reflection coated with reflection coefficients of 95% and 3%,

respectively. Single 100-µm-wide, 1-mm-long lasers demonstrated a threshold cur-

rent density of 480 A/cm2 and a differential efficiency of 60%. Over the temperature

range from 18 to 60 oC, the threshold characteristic temperature T0 was 54 oK and

the slope-efficiency characteristic temperature T1 was 160 oK. The performance of

single emitters is described in details in section IIB.

Based on the characterization results of single emitter performance (chapter IIB)

and the solution for laser bar design optimization (chapter III), we chose the design

of laser diode bar. We used 1-cm-long laser bars containing twenty 100-µm-wide

emitters equally spaced over 10 mm laser bar with 500 µm center-to-center distance,

yielding a fill factor of 20%. The laser cavities were 1 mm long to fit the standard

heat sink assembly. One-dimensional (1D) and two-dimensional (2D) arrays were

fabricated by mounting one bar or multiple bars in metallized grooves in BeO blocks

(heatspreaders), which were bonded on water-cooled microchannel heat sinks. This

arrangement removes heat from both sides of the laser bar.

Figure 17 shows the current dependencies of the cw and q-cw (5-ms pulse dura-

tion, 20-Hz pulse repetition frequency) output power and the wall-plug efficiency for
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FIG. 17: Output power (circles) and wall-plug efficiency (squares) of a 1.5-µm 1-D array

operated in q-CW (open symbols) and CW (closed symbols) modes at a coolant tempera-

ture of 16 oC. Inset demonstrates integrated emission spectrum of the array measured at

40 A and 18 oC.

a 1D diode array at a coolant temperature of 16 oC. The output power was recorded

by a 50-mm-diameter thermopile detector. The slope efficiency of 0.5 W/A remained

constant in q-cw mode up to the measured output power of 27 W. The power ther-

mal rollover in cw mode was observed when the drive current exceeded 40 A. The

maximum wall-plug efficiency was 37% at 40 A, and was better than 34% up to the

maximum drive current of 60 A.

To estimate the heating of the laser active region caused by power dissipation,

we measured the emission spectrum red-shift with increasing drive current. The

temperature change was recalculated from wavelength shift using a calibration factor

of 0.55 nm/K determined in section IIB. At 60-A drive current, the active-region
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temperature rise was 18 oK in the cw mode and 13 oK in the q-cw mode. The

thermally induced rollover of cw output power appeared in LI-characteristics at

active region temperature of 28 oC.

The inset of Figure 17 shows the integrated emission spectrum of the 1D array

measured at an 18 oC coolant temperature. The full-width at half-maximum of the

emission spectrum of 1D laser array was about 8 nm.

A 2D laser array consisted of series connected four bars with a bar-to-bar pitch

of 3.2 mm. Each bar had twenty 100 µm wide emitters equally distributed over 1

cm laser bar. A q-cw output power of 110 W was achieved at a current of 60 A, as

shown in Figure 18. The 2D array integrated emission spectra were measured at a

current of 30 A in q-cw mode at 18 and at 25 oC as shown in the inset in Figure

18. The spectrum shifted with temperature, while the full width at half maximum

spectral width remained at about 10 nm.

C. Design and performance of 2.3-µm laser arrays

The laser heterostructure was grown by solid source molecular-beam epitaxy on

n-GaSb substrates. The device consisted of a 800-nm-thick Al0.25Ga0.75As0.02Sb0.98

broadened-waveguide layer consisting of two QWs sandwiched between 2-µm-thick

Al0.9Ga0.1As0.07Sb0.93 cladding layers. The details of single laser characterization

and design are discussed in the chapter IIC and [21, 22, 25]. Based on the charac-

terization of single emitter devices (chapter IIC), we determined an optimal(chapter

III) laser bar design for cw and qcw operations.

A 1-cm-wide 1-mm-long anti-reflection/high-reflection coated laser bar containing
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FIG. 18: Output power of a 2-D array operated in the q-cw mode at 18 oC. Inset demon-

strates integrated emission spectrum of a 2-D array recorded at 40 A and 18 oC.

19 100-µm-wide emitters separated by 500 µm was soldered into a microchannel-

cooled BeO heat sink. Figure 19 shows its light-current characteristics and wall-plug

efficiency, as well as its spectrum (insert) at 30 A cw, all measured at 18 C. The

maximum CW power of 10 W is reached at 70 A. The spectrum is centered near

2.36-µm with a FWHM of about 20 nm at 30-A cw. In the qCW mode (30 µs, 300

Hz, 0.9% duty cycle) the array output over 18.5-W peak power at a peak current

of 100 A. In the short-pulse, low-duty-cycle mode, the light-current characteristics

is linear up to nearly 20 W of peak power at 100 A of peak current without any

cooling.

Array heating causes saturation of the cw and qcw light-current characteristics.

The thermal resistance of the array with 20% fill factor is about 0.4 K/W and
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FIG. 19: Current characteristics of output-power and wall-plug efficiency of 2.3-µm laser

linear array. The light-current characteristics in cw and q-cw were measured at 18 oC

coolant temperature and at room temperature (uncooled) in short pulse operation. The

inset shows the laser array emission spectrum measured at 30-A drive current and 18 oC

coolant temperature in CW operation.

was determined from the emission spectrum red shift with power dissipation. This

result is in good agreement with analytically calculated one in the chapter IIID.

This thermal resistance leads to active region overheating of about 25 oK at an

output power of 5-W cw and about 75 oK at 10 W. The somewhat excessive heating

at high currents is related to the wall-plug efficiency (9% maximum). The array cw

output power could be increased substantially if the wall-plug efficiency is improved.

The relatively low laser power conversion efficiency is attributed to 1) 50% inter-

nal efficiency about 50% of the injection current after threshold is parasitic, and 2)

excess voltage drop across the laser heterostructurethe voltage at threshold is about
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1 V and it rises up to over 2 V at 3 A for a single laser, while laser energy quantum

is only 0.54 eV.

The internal efficiency is reduced by lateral current spreading and nonradiative

Shockley - Reed - Hall recombination in the waveguide layer [67, 68]. Lateral cur-

rent spreading is substantial in the current laser design since no steps were taken

to confine carriers laterally at the time of wafer processing [67]. Lateral current

spreading can be expected in the 2-µm p-cladding and 800-nm waveguide layers as

well as from lateral diffusion in the QWs [68].

The parasitic barriers for carrier transport from cladding to waveguide layer

makes a large contribution to the excessive voltage drop and series resistance [69].

Careful adjustment of the cladding/waveguide material composition and doping

profile can reduce the excessive voltage drop across the laser heterostructure.

Once the laser power conversion efficiency is improved, the optimum laser bar

fill-factor will be higher than the current 20%, thus increasing the maximum power

from a single bar.

D. Steady-state thermal analysis of high-power laser arrays

The limited wall-plug efficiency of high power laser arrays leads to a considerable

amount of heat generated under high power steady state operation. To reduce array

overheating, the common approach is to increase the area through which the heat is

dissipated (thermal foot print). The thermal foot print can be enlarged by extending

the cavity length, or increasing the number of emitters. For the array architecture

of Figure 13, a cavity length increase requires thicker heat spreader blocks. The
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thicker heat spreader leads to a longer heat propagation length towards the heat

sink and higher thermal gradient along the cavity length [43, 70]. The electrically

pumped active region area of the laser bar can be efficiently increased by reducing

the distance between adjacent stripes of constant width (i.e. by increasing the fill

factor). However, decreasing the separation between adjacent emitters can lead to

increased mutual heating. The effect of fill factor on overheating is considered in

this section.

The temperature of the active region is a critical factor in the operational lifetime

of the array. Previous results indicate that the lifetime is exponentially dependent

on the active region temperature [71, 72]. The main factors determining the tem-

perature of the active region are the power dissipation in the active area, the series

resistance of the cladding layers, and the mutual heating of adjacent emitters.

To study the influence of laser bar design on overheating, we fabricated InP-based

arrays with fill factors of 10%, 20% and 40% and measured the dependence of the

active region temperature change on dissipated power (Pdis), which is defined as the

difference between input electrical power and output optical power. The overheating

of the laser active region was obtained by measuring the emission spectrum red-shift.

As can be seen in the Figure 20, the active-region temperature depends linearly on

dissipated power with the thermal resistance as the coefficient of proportionality.

The thermal resistances of 0.56, 0.4, and 0.34 K/W were experimentally determined

for 10%, 20% and 40% fill factor arrays, respectively. The thermal resistance was

found to be significantly decreased by increasing fill factor from 10% to 20% and

changed much less with further fill factor increases. The inset shows this decreasing
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FIG. 20: The experimentally measured active-region temperature rise as a function of

dissipated power is shown for different fill factor arrays. The inset shows the dependence

of the thermal resistance on fill factor.

dependence of thermal resistance on fill factor, which saturates at high FF, in good

agreement with Ref. [73].

This dependence of the thermal resistance on the fill factor results from a nonuni-

form temperature distribution in the laser bar. To clarify the experimental results,

we developed an analytical model (chapter IIID) based on the solution of the heat

conduction equation with non-trivial boundary conditions defined by the geometry

of laser array. In this thermal model, we simulated the real geometry (Figure 13b)

with a structure in which the laser bar, the BeO layer, and the ideal heat sink are

coplanar (Figure 13a). The 830-mm thickness of the BeO layer was determined by
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FIG. 21: Active-region temperature distribution over 1 mm of a 1cm long laser bar with

different fill factors at the total dissipated power of 20 W. The inset demonstrates the

analytical (solid symbols) and experimental (open symbols) average temperature change

for different FFs at given total dissipated power of 20 W.

comparing the temperature distribution within the slotted-BeO geometry with the

corresponding data calculated for the planar model. The specific requirement for

both geometries was the equivalence of the maximum bar temperature with 100%

fill factor. Figure 21 shows the analytically calculated temperature distribution of

a 1-mm section of a 10-mm laser bar for fill factors of 10%, 20%, and 40%, at 20

W total dissipated power per bar. As the fill factor goes up the temperature goes

down in the regions close to the emitters, due to decreasing the dissipated power

per stripe, and goes up in the regions between emitters, due to increasing mutual

heating between adjacent emitters. The temperature distribution becomes more ho-
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mogenous along the bar with increasing FF, reducing the influence of fill factor on

the thermal resistance. In the inset of Figure 21 we compared the analytic results

for average active region temperature rise versus fill factor with the experimental

results, and found good agreement. In agreement with experimental results, our

calculations show that a further fill-factor increase (f > 40%) does not lead to

significant reduction of overheating.

E. Conclusion

In this chapter

• We report on the development of high-power diode arrays operating near 1.5

µm. A 25-W cw output power was obtained from a 1D array at 16 oC, and

110-W qcw power was obtained from a 2D array at 18 oC.

• Diode laser linear arrays emitting at 2.3-µm output 10-W cw and 18.5-W qcw

(30µs/300 Hz). The array peak wall-plug efficiency was near 9%.

• In steady-state operation the thermal resistance decreases with increased fill

factor; however, this dependency saturates at high FFs. The good agreement

between the theoretical and experimental results shows that the analytical

model developed in the chapter IIID is adequate to determine the temperature

distribution in the laser arrays.
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V. TRANSIENT THERMAL ANALYSIS OF HIGH-POWER DIODE

LASER ARRAYS WITH DIFFERENT FILL FACTORS

A. Introduction

The high heat dissipation in the laser arrays makes effective thermal management

a critical issue for reliable and efficient operation. In section IVB we considered

the InP-based laser arrays designed for resonant pumping of erbium doped solid

state lasers [43]. The optical pumping scheme requires high power sources that

can reliably provide a large fraction of their output energy in relatively narrow

erbium absorption bands. The erbium fluorescence lifetime of about 5-10 ms favors

relatively long pump-laser pulses [15–17]. The long current-injection pulses produce

a considerable temperature increase within the diode laser structure that induces

a red-shift of the output wavelength. The thermal drift of laser array emission

spectra can lead to misalignment with erbium absorption bands. Pump-laser power

falling outside these bands cannot be absorbed and is wasted, deteriorating the

pumping efficiency. The reliability of pumping arrays is one more important issue

for solid state laser systems. Laser array degradation mechanisms are enhanced

by high operational temperatures, and aging tests indicate that the laser array

lifetime decreases exponentially with active region temperature [72]. Another key

parameter for optically pumped solid state laser systems is the output power of the

pumping diodes, which is known to saturate with temperature. In recent years,

many groups optimized the design of laser arrays to decrease the thermal load and

maximize the output power in different operating regimes [6, 77, 83]. It was shown
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that arrays with high emitter density (large fill factor) are preferred for short-pulse

high peak power operation [5, 84], while arrays with low emitter density (small

fill factor) are better suited for long-pulse, high average power operation [11, 12].

For efficient near-resonant pumping of erbium solid-state lasers the design of the

laser bars and package architecture should minimize the active-region temperature

rise, and hence, minimize the pump-laser spectral red-shift throughout the long-

pulse duration. A comprehensive thermal analysis of the packaged laser arrays

provides a powerful tool for the design optimization. The steady-state temperature

distributions in semiconductor laser diodes were evaluated from numerical [13] and

analytical [49, 85, 86] solutions of the heat conductance equation with different

boundary conditions. In section IVD and [43, 70] the temperature distribution was

obtained for laser diode bars in cw mode operation. The transient thermal response

of high power LDAs was studied experimentally [62, 71] and theoretically [70, 73]

for laser bars with planar heat spreaders. In this chapter we consider the effect of

laser bar design on transient temperature change for laser bars mounted in bar-in-

groove heat spreaders. A good agreement between the theoretical modeling and the

experimental results was demonstrated.

In section VB, the laser bar design and the heating kinetics measurements are

discussed. The description of theoretical model is presented in section VC. Section

VD discusses the experimental results and their comparison with the analytical

model.
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B. Device structure and experimental technique

The InGaAsP/InP laser structure emitting at 1.5-µm was grown by metalloor-

ganic chemical vapor deposition. The active region contains three InGaAsP quan-

tum wells (QWs). The broadened waveguide (710 nm) was incorporated between

n- and p-clad layers, each 1.5-µm thick. The total thickness of the laser bar struc-

ture including the substrate was 140 µm. The 100-µm-wide, 1-mm-long laser stripes

were equally spaced along the 1-cm-wide laser bar and were separated by unpumped

regions. The laser bars with 10%, 20%, and 40% fill factors (FF) were fabricated.

These bars were mounted onto metallized grooves in 2-mm-thick BeO heat spreaders

bonded to water-cooled microchannel heat sinks; see the the Figure 13. Details of

the laser heterostructure and bar design were considered in chapters IVB and IIB

and in Ref.[43, 44]. The laser diode arrays with different FFs showed a threshold

current density of 480 A/cm2 and a slope efficiency of 0.5 W/A in the linear part of

the light-current characteristic at room temperature.

The temperature kinetics in the active region was determined by measuring the

temporal evolution of the laser spectra during a 400-ms current pulse. The pulse

duration was chosen to be long enough to reach a steady-state operation regime. The

spectrum evolution was measured using a 0.5-m grating monochromator equipped

with a linear 256-pixel InGaAs photodetector. The photodetector array captured the

laser array spectrum with a resolution of 0.16 nm without rotating the diffraction

grating. The total full-width at half-maximum (FWHM) spectral width for the

arrays was typically around 10 - 15 nm, while single emitters cleaved from the same
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wafer exhibit a typical FWHM spectral width of 5 nm. The coupling of the laser

emission into the monochromator was performed using an integrating sphere. The

emission spectra was recorded every 100 ms during the current pulse. Recording

all the spectra during a single current pulse ensured highly accurate measurements.

For a quantitative characterization of the spectrum red-shift with time during the

current pulse, we computed the weighted average [71] wavelength of each emission

spectrum and subtracted the weighted average wavelength of the emission spectrum

measured at the beginning of the pulse.

Figure 22 shows the weighted average wavelength shift and the average active-

region temperature change for the 20% FF array at drive currents of 30, 40, and

50 A. A conversion coefficient between the wavelength shift and the active-region

temperature was obtained by measuring the laser spectral shift under low-duty cycle

(0.02%), short-pulse (200 ns) operation at a variety of heat sink temperatures. The

heating kinetics was measured for arrays with 10%, 20%, and 40% FF over a wide

range of total dissipated power. Figure 23 shows the temperature change divided

by the bar dissipated power for arrays with different FFs. The total dissipated

power Pdis equals the difference between the input electrical power and the output

optical power. The data show that the active-region temperatures (for the same

dissipated power) in arrays with 10%, 20%, and 40% FF are significantly different

during the first few hundred microseconds. The temperature difference between the

20% and 40% FF arrays diminishes over time, while the 10% FF array demonstrates

higher temperatures for all times. This steady-state thermal behavior correlates the

thermal resistances of the arrays determined in Ref. [43].
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FIG. 22: Time dependence of average wavelength shift (left axis) and the corresponding

active region temperature change (right axis) for a laser diode array with a 20% fill factor.

C. Theory

1. Vertical geometric model

To describe the transient active-region thermal behavior of laser arrays, we de-

veloped an analytical model including the main features of the laser array assembly.

The schematic cross section of the array assembly considered in the model is shown

in Figure 24.

The BeO heat spreader occupies the region 0 < y < b and isothermally contacts

an ideal heat sink at y = b. The bottom edge (y = 0) of the heat spreader is

adiabatically isolated. The thickness of the heat spreader is at least one order of
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FIG. 23: Active region temperature rise divided by dissipated power (i.e. thermal resis-

tance) as a function of time for different FF arrays.

magnitude larger than the thickness of the laser bar. Because of this, we neglect the

thickness of the laser bar, which can be represented by a homogeneous heat source

located at x = 0, 0 < y < a and shown in Figure 24 by the line AB. The heat

conductance problem is reduced to the solution of the equation

∂T

∂t
= χ

(

∂2T

∂x2
+
∂2T

∂y2

)

, (5.1)

in the region x > 0, 0 < y < b with boundary conditions

κ
∂T

∂y

∣

∣

∣

∣

y=0

= 0 , (5.2a)

κ
∂T

∂x

∣

∣

∣

∣

x=0

= −Qθ(a − y) , a < b , (5.2b)

T |y=b = 0 , (5.2c)

64



FIG. 24: The cross section geometry of the laser array assembly used for the calculation

of the temperature distribution is shown. The BeO heat spreader occupies the region

0 < y < b. The laser bar is plotted by the line A-B. The interface between the BeO heat

spreader and the heat sink lies at y = b.

and the initial condition

T |t=0 = 0 . (5.3)

where T is the temperature change due to heating, χ and κ are the BeO thermal

diffusivity and conductivity, respectively, and Q is the heat flux density from the

laser structure. Due to the symmetry of the problem, we consider only the region

x > 0. The equation is solved using the Laplace transformation. The equation is

solved using the Laplace transformation (Appendix VF), and the result is after the

inverse Laplace transformation

T (x, y, t) =
4Q

√
χ

πκ

∞
∑

n=0

1

2n+ 1
sin

π(2n+ 1)a

2b
cos

π(2n+ 1)y

2b

× 1

2πi

∫ δ+i∞

δ−i∞

exp
[

pt− x
√

p+ (2n+ 1)2/τ/
√
χ
]

p
√

p+ (2n+ 1)2/τ
dp(5.4)
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where τ = 4b2/π2χ - is the relaxation time. The contour integral can be reduced to

a definite one with the help of the expansion in poles of the integrand,

T (x, y, t) = T0(x, y) −
16Qb

π3κ

∞
∑

n=0

1

2n+ 1
e−(2n+1)2t/τ sin

(2n+ 1)πa

2b
cos

(2n+ 1)πy

2b

×
∫

−∞

0

e−r2t/τ

[

cos (πr2x/2b)

r2 + (2n+ 1)2

]

dr , (5.5)

where

T0(x, y) =
8bQ

π2κ

∞
∑

n=0

1

(2n+ 1)2
e−π(2n+1)x/2b sin

(2n+ 1)πa

2b
cos

(2n+ 1)πy

2b
(5.6)

is the steady-state temperature.

For comparison with our experimental results, we computed the average temper-

ature change. The temperature averaged over the stripe was defined as

T (t) ≡ 1

a

∫ a

0

T (0, y, t)dy (5.7)

In the comparison of our theoretical calculation with the experimental results we

were interested mainly on the functional dependence of the temperature on time and

not on the absolute value of the temperature, which is dependent on physical pa-

rameters known with some uncertainty. As such, we treated the prefactor 16Qb/π3κ

in Eqs.(5.5) as an adjustable parameter chosen to fit the computed results at large

time to the experimentally determined steady-state temperature rise.

2. Three heating periods

The real geometry is more complicated than the geometry considered in the the-

oretical model due to the finite thickness of the laser bar, a nonuniform heat source
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distribution in the bar, and the nonideality of the water-cooled heat sink. The first

two factors are important in the short-time scale and the last one affects the es-

timation of the relaxation time τ , which describes longer-time-scale heating. The

heating of the laser bar structure controls the initial active-region temperature rise.

The heat is generated in the active regions under the metal stripe contacts and

produces heat fluxes. The propagation of heat fluxes from the InP-based laser bar

structure to the BeO heat spreader is hindered by the In-based solder layer serving

as interface between these materials and the smaller value of thermal diffusivity of

InP (χ1 = 0.37 cm2/s) in comparison with BeO (χ = 0.9cm2/s). During the initial

period of heating, lateral heat spreading and heating of the laser bar occurs. The

duration of this period τ1 can be estimated as l21/χ1, where l1 ∼ 100µm is a char-

acteristic length on the order of the thickness of the laser bars and the separation

between adjacent stripes in the laser bar. The initial heating of the laser bar struc-

ture was included in our model by assuming that the measurement starts with time

delay t0 ≈ τ1 after the beginning of the current pulse. The analytically calculated

heating kinetics is shown by the dashed lines in Figure 22 for the 30-, 40-, and 50-A

drive currents.

The analytical model describes the heating at t > τ1 after the entire laser bar has

been heated and the nonuniformity of the heat source distribution is diminished. In

this time range (t > τ1) it is possible to separate two periods when the temperature

kinetics given by Eqs.(5.5) can be greatly simplified. In the short-time kinetics

t << τ , i.e., the second period of heating, a simplified form of the solution can be

obtained directly from Eqs.(5.28) and (5.7), where the condition t << τ corresponds
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FIG. 25: The Active-region initial temperature rise during the first 200 mus for 10%,

20%, and 40% FF arrays at a constant total bar Pdis of 25 W.

to pt >> 1. This gives

T (t) =
2Q

√
χt

κ
√
π

(5.8)

The third period of heating is the long-time kinetics when t >> τ . In this period,

the rapid decay of the exponential terms make it possible to approximate the tem-

perature change using just one term (n = 0) from the sum obtained by substituting

Eq.(5.5) and (5.7).

T (t) = T0

(

1 −
√

τ

πt
s−t/τ

)

, (5.9)

where

T0 =
8bQ

π2κ

2b

πa
sin2

(πa

2b

)

(5.10)
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In summary, the heating process can be subdivided into three time periods, each

with different heat transport conditions. During the first period, the active-region

temperature increase of laser arrays is determined by heating the structure very close

to the laser stripes. As the first period progresses, the heat fluxes from individual

laser stripes overlap, producing a nearly uniform heat flux. In the second period

the unified heat flux propagates through the BeO heat spreader toward the cooler,

but the substantially heated region is still much smaller than the thickness of the

heat spreader. The heating kinetics is determined by Eq.(5.8) and the temperature

change of the active region is proportional to the square-root of time. In the third

period the heat flux has reached the heat sink, the entire BeO heat spreader is

heated, and the active-region temperature asymptotically approaches its steady-

state value, Eq.(5.9).

D. Results and discussion

To study the initial heating (t ≤ τ1) of laser arrays with different fill factors, the

active-region temperature rise sDT1d was measured for the first 200 µs. Figure 25

demonstrates the dependence of T1 on FF at 25-W total dissipated power per bar.

The experimental results show that the temperature rise during the first 200 µs is

highest for the array with a 10% FF and smallest for the array with 40% FF. In

the first heating period the active-region heating is mainly determined by the power

dissipation in each stripe. The dissipated power per stripe scales with the number

of stripes for a constant total dissipated power in the bars. At a given dissipated

power in the bar, the temperature rise decreases with the fill factor. This decrease
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FIG. 26: The temperature changes are plotted on double-log axes for the three fill factors.

The solid lines were fitted to the experimental data over the time interval of 200 µs to 10

ms. The computed slopes are shown in the inset as a function of the fill factor.

is not directly proportional to the number of stripes. During the first 200 µs, the

active-region temperature increases are 9 K for 10% FF, 6.5 K for 20% FF, and 4.5 K

for 40% FF at 25-W dissipated power per bar. This is an evidence of the lateral heat

transport in the laser bar structure that is responsible for the mutual heating of the

adjacent emitters. This lateral heat transport leads to an overlapping of heat fluxes

from the active-region areas under the metal contacts and to the homogenization of

the temperature distribution in the laser bar.

The second period lasts while τ1 < t ≪ τ ends before the heat flux reaches

the heat sink. Since in the first period the heat fluxes from under the stripe areas
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FIG. 27: The active-region temperature change of a 20% fill factor array is plotted vs the

square-root of time with 30-, 40-, and 50-A drive currents at a coolant temperature of 18
oC. The dependency of the slope coefficient α the total dissipated power is shown for 10%

(square symbol), 20% (circle symbol), and 40% (triangle symbol) fill factor arrays in the

inset.

have merged into a nearly uniform flux, the thermal kinetics is expected to be

independent of the distance between emitters (i.e., fill factor) in this second phase

of heating. To analyze the active-region temperature change during the second

period, the initial temperature rise (T1) was subtracted from the measured active-

region temperature. Figure 26 shows the temperature change on double-log axes for

arrays with the three different fill factors. The solid lines in Figure 26 were fitted to

the experimental data over the time interval from 200 µs to about 10 ms. The inset

shows the computed slopes as a function of the fill factor. The slope of these fit

lines is close to 0.5, indicating that the active-region temperature change increases
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as the square-root of time. Figure 27 shows the active-region temperature change

versus the square-root of time for a 20% fill factor array at 30-, 40-, and 50-A drive

currents, which corresponds to 21.5-, 29-, and 38.5-W total dissipated power. The

temperature dependencies are well approximated by straight lines with the slope

coefficient a. The measured slope coefficients have been plotted in the inset for

10%, 20%, and 40% FF arrays as functions of the total dissipated power. The slope

coefficient increases linearly with the total dissipated power at the same rate for

all three arrays. This shows that over the time scale τ1 < t ≪ τ the temperature

kinetics is determined by the free propagation of the nearly uniform heat flux in the

BeO heat spreader and does not depend on the fill factor. This thermal behavior is

well described by the asymptotic analytical solution of Eq.(5.8).

In the third period (t≫ τ), the active-region temperature change approaches the

steady-state value (T0) with a characteristic time constant τ and is characterized by

long-time asymptotic kinetics given by Eq.(5.9). Equation (5.9) can be rewritten as

[T0 − T (t)]

T0

=

√

τ

πt
exp(−t/τ). (5.11)

For t≫ τ , the exponential time dependence dominates the preceding term
√

τ/πt,

and Eq. (5.11) can be simplified as

[T0 − T (t)]

T0
∼ exp(−t/τ). (5.12)

In Figure 28 the normalized difference between the active-region temperature change

and the experimentally determined steady-state temperature rise (T0) is plotted

in semilogarithmic scale for all three arrays. Figure 5 shows that for long times,

t > 20ms, the data are well approximated by the exponential time dependence
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FIG. 28: Normalized deviation from steady-state temperature vs time is plotted for arrays

with 10%, 20%, and 40% FF. The slopes of the solid lines are used to calculate τc, which

is shown in the inset.

given by Eq.5.12). The slopes of the solid lines in Figure 28 were fitted to the

data to calculate the experimental time constant τc, which is shown in the inset

as a function of FF. The long-time heating kinetics of these arrays with different

FFs can be characterized with the same τc of about 60 ms. The experimental time

constant τc is larger than the theoretically calculated time constant, τ ≈ 20ms.

The reason for the discrepancy is that the theoretical model describes only the

heat propagation through the heat spreader, while in reality there are other factors

affecting the temperature kinetics, such as the nonideality of the water-cooled heat

sink and the interface between the BeO heat spreader and the heat sink.
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E. Conclusion

In this chapter

• We report on the experimental and theoretical study of heating kinetics for

InGaAsP/InP arrays with 10%, 20%, and 40% fill factors. The transient heat-

ing process can be divided into three time periods; each period is determined

by its own heat transport condition. During the first period, the bar structure

is heated and the heat fluxes from individual stripes of the laser bar overlap,

producing the nearly uniform heat flux. The duration of this period s (τ1) is

determined by the geometry of the laser bar and its thermal diffusivity. The

second period is characterized by the propagation of the nearly uniform heat

flux through the BeO heat spreader. The heat propagation length for the

second period is much smaller than the heat spreader thickness. By the third

period the heat flux has reached the heat sink, the entire heat spreader has

been heated, and the temperature distribution approaches the steady state.

• The theoretical model describes the heating in the second and the third heat-

ing periods. In the second period the active-region temperature change of

laser arrays is proportional to the square-root of time, and in the third period

the deviation of the temperature from its steady-state value decreases expo-

nentially with time. The initial temperature rise is included in the model by

assuming a time delay (t0 ≈ τ1) to heat the laser bar structure.

• The temperature rise measured for the first 200 µs is dependent on the power

dissipated per stripe and the distance between stripes. This initial tempera-
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ture change decreases with the fill factor for a given total bar power dissipation

and bar size. The second and third periods are well described by the asymp-

totic solutions of the theoretical model. The maximal difference between the

analytically predicted temperature and the experimental one is about two de-

grees for the largest current, 50 A. This small difference indicates that our

model adequately describes the array heating process. The discrepancy be-

tween the theoretical and experimental values of the time constant t in the

third heating period shows that the thermal properties of the interfaces and

the nonideality of the heat sink substantially affect the heat flow.
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F. Appendix (Vertical geometric model)

The problem is to solve the equation

∂T

∂t
= χ

(

∂2T

∂x2
+
∂2T

∂y2

)

, (5.13)

in the region x > 0, 0 < y < b with boundary conditions

κ
∂T

∂y

∣

∣

∣

∣

y=0

= 0 , (5.14a)

κ
∂T

∂x

∣

∣

∣

∣

x=0

= −Qθ(a − y) , a < b , (5.14b)

T |y=b = 0 , (5.14c)

and the initial condition

T |t=0 = 0 . (5.15)

After the Laplace transform,

Θ(x, y) =

∫

∞

0

e−ptT (x, y, t)dt , (5.16)

the problem is reduced to the equation

χ

(

∂2Θ

∂x2
+
∂2Θ

∂y2

)

= pΘ , (5.17)

with boundary conditions

κ
∂Θ

∂y

∣

∣

∣

∣

y=0

= 0 , (5.18a)

κ
∂Θ

∂x

∣

∣

∣

∣

x=0

= −Q
p
θ(a− y) , a < b , (5.18b)

Θ|y=b = 0 , (5.18c)

76



The problem Eqs.(5.17) and (5.18) is equivalent to

∂2Θ

∂x2
+
∂2Θ

∂y2
− p

χ
Θ = 0 , (5.19)

in the stripe −b < y < b with the boundary conditions

Θ(x,±b) = 0 , κ
∂Θ

∂x

∣

∣

∣

∣

x=0

= −Q
p
θ(a− |y|) (5.20)

The solution can be represented in the form

Θ(x, y) =

∞
∑

n=0

Θn(x) cos
π(2n+ 1)y

2b
. (5.21)

Then

Θn(x) =
1

b

∫ b

−b

Θ(x, y) cos
π(2n+ 1)y

2b
dy , (5.22)

that leads to the equation

d2Θn

dx2
−

[

p

χ
+
π2(2n+ 1)2

4b2

]

Θn = 0 (5.23)

with the boundary condition

dΘ

dx

∣

∣

∣

∣

x=0

= − Q

κp

4

π(2n+ 1)
sin

π(2n+ 1)a

2b
. (5.24)

The solution to this equation that goes to zero at x→ ∞ is

Θn(x) =
Q

κp

4

π(2n+ 1)
sin

π(2n+ 1)a

2b

[

p

χ
+
π2(2n+ 1)2

4b2

]−1/2

× exp

{

−
[

p

χ
+
π2(2n+ 1)2

4b2

]1/2

x

}

. (5.25)

The substitution in Eq.(5.21) gives

Θ(x, y) =
4Q

√
χ

πκp

∞
∑

n=0

exp
[

−x
√

p+ (2n+ 1)2/τ/
√
χ
]

(2n+ 1)
√

p+ (2n+ 1)2/τ
sin

π(2n+ 1)a

2b

× cos
π(2n+ 1)y

2b
, (5.26)

77



where

1

τ
=
π2χ

4b2
. (5.27)

After the inverse Laplace transformation

T (x, y, t) =
4Q

√
χ

πκ

∞
∑

n=0

1

2n + 1
sin

π(2n+ 1)a

2b
cos

π(2n+ 1)y

2b

× 1

2πi

∫

L

exp
[

pt− x
√

p+ (2n+ 1)2/τ/
√
χ
]

p
√

p + (2n+ 1)2/τ
dp

= T0(x, y) +
4Q

√
χ

πκ

∞
∑

n=0

1

2n + 1
e−(2n+1)2t/τ sin

π(2n+ 1)a

2b
cos

π(2n+ 1)y

2b

× 1

2πi

∫

−∞

(0+)

exp
(

pt− x
√

p/χ
)

p− (2n+ 1)2/τ

dp√
p
, (5.28)

where

T0(x, y) =
8bQ

π2κ

∞
∑

n=0

1

(2n+ 1)2
e−π(2n+1)x/2b sin

π(2n+ 1)a

2b
cos

π(2n+ 1)y

2b
(5.29)

The contour integral can be transformed to a definite one,

1

2πi

∫

−∞

(0+)

exp
(

pt− x
√

p/χ
)

p− (2n+ 1)2/τ

dp√
p

=

=
1

2πi





∫ 0

∞

exp
(

−rt+ ix
√

r/χ
)

−r − (2n+ 1)2/τ

−dr
−i√r +

∫

∞

0

exp
(

−rt− ix
√

r/χ
)

−r − (2n + 1)2/τ

−dr
i
√
r





= −1

π

∫

∞

0

e−rt cos(x
√

r/χ)

r + (2n+ 1)2/τ

dr√
r
. (5.30)

Finally,

T (x, y, t) = T0(x, y) −
16bQ

π3κ

∞
∑

n=0

1

2n+ 1
e−(2n+1)2t/τ sin

π(2n+ 1)a

2b
cos

π(2n+ 1)y

2b

×
∫

∞

0

e−r2t/τ cos(πr2x/2b)

r2 + (2n+ 1)2
dr (5.31)
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The asymptote of the integral is

∫

∞

0

e−r2t/τ dr

r2 + (2n+ 1)2
=















π

2(2n+ 1)
, t≪ τ ,

√

πτ/t

2(2n+ 1)2
, t≫ τ .

(5.32)

The temperature averaged over the stripe is defined as

T (t) ≡ 1

a

∫ a

0

T (0, y, t)dy (5.33)

One form of the average temperature is obtained from Eq.(5.28),

T (t) =
4Q

√
χ

πκ

2b

πa

∞
∑

n=0

1

(2n+ 1)2
sin2 π(2n+ 1)a

2b

× 1

2πi

∫

L

ept dp

p
√

p+ (2n+ 1)2/τ
. (5.34)

The other form is obtained from Eq.(5.31),

T (t) = T 0 −
16bQ

π3κ

2b

πa

∞
∑

n=0

1

(2n+ 1)2
e−(2n+1)2t/τ sin2 π(2n+ 1)a

2b

×
∫

∞

0

e−r2t/τ dr

r2 + (2n+ 1)2
, (5.35)

where

T 0 =
8bQ

π2κ

2b

πa

∞
∑

n=0

1

(2n+ 1)3
sin2 π(2n+ 1)a

2b
. (5.36)

The asymptotical behavior at large t follows from Eq.(5.35),

T (t) = T 0 −
8bQ

π3κ

2b

πa
sin2 πa

2b

√

πτ

t
e−t/τ , t≫ τ . (5.37)

The opposite limit, t≪ τ , follows from Eq.(5.34),

T (t) =
4Q

√
χ

πκ

2b

πa

∞
∑

n=0

1

(2n+ 1)2
sin2 π(2n+ 1)a

2b

1

2πi

∫

L

ept dp

p3/2

=
4Q

√
χ

πκ

2b

πa

2
√
t√
π

1

2

∞
∑

n=0

1

(2n+ 1)2

[

1 − cos
π(2n+ 1)a

b

]

=
4Q

√
χt

π3/2κ

2b

πa

π

4

πa

b
=

2Q
√
χt√

πκ
. (5.38)
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