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Abstract: Nanoparticles are known to sinter at much lower temperatures than the corresponding
bulk or micro size particles. A laser-assisted sintering process is considered in this study to
sinter Ag nanoparticles by dispensing Ag paste onto an indium tin oxide-coated Si substrate.
The Gaussian beam of a CO2 laser source is propagated through axicon and biconvex lenses,
and the resulting hollow beam is focused on the Ag paste with a hollow parabolic mirror. A
Bessel-Gaussian irradiance distribution is obtained at the focal plane of the parabolic mirror due
to the interference of the hollow laser cone. The Fresnel diffraction approximation is considered
to determine the phasor of the laser and an analytical approach is implemented to calculate the
irradiance distribution of the Bessel-Gaussian beam. This irradiance distribution is utilized as a
heat source in a heat conduction model and the temperature distribution is analyzed for thin Ag
films formed during the laser sintering of Ag nanoparticles. An analytical expression is obtained
for the temperature distribution by solving the heat conduction equation using Fourier transform
for finite media. The widths of the deposited Ag lines are predicted from the temperature profiles
and the model predictions compare well with the experimental results. The isotherms are found to
be geometrically noncongruent with convex and concave tips depending on the locally maximum
and minimum irradiances of the Bessel-Gaussian beam, respectively. The convex and concave
tips, however, appear in the same isotherm for sufficiently high substrate speed relative to the
laser beam.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Gaussian beams are widely used for laser-assisted manufacturing and materials processing
[1]. This type of beams exhibits diffractive spreading, resulting in rapid decrease of the peak
irradiance as a function of the longitudinal, that is the beam propagation, distance [2]. Also, the
irradiance decreases monotonically in the transverse, that is the radial, direction and, therefore,
heats the substrates with monotonically decreasing temperature distribution. Special beam
shaping optics are needed to modify the Gaussian beam profile for creating localized peak
temperatures. The Bessel beams, on the other hand, provide a natural means of heating the
substrates with undulating temperature distribution. The zeroth order Bessel function of the
first kind, J0, represents the electric field amplitude of a nondiffracting zeroth order Bessel
beam. Since the irradiance is proportional to the square of the electric field amplitude and the
Jo function is not square integrable, an integration of the irradiance over the entire transverse
plane would yield infinite laser power in the beam [3,4]. Physically an ideal zeroth order Bessel
beam consists of an infinite number of circular rings around a central maximum irradiance and
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the energy in each ring is approximately equal to the energy contained in the central ring. The
energy of such a beam would be infinite which is unrealistic and this ideal beam is, therefore,
difficult to achieve in practice. Indebetouw [5] showed that approximately nondiffracting beam
can be synthesized using an axicon lens. The irradiance of such approximate Bessel beams varies
along the propagation direction [6] and the Rayleigh range is longer than that of a Gaussian
beam [7]. Typical laser sources generally produce Gaussian beams which can be passed through
axicon and biconvex lenses to form a hollow beam with half-Gaussian irradiance profile. When
the hollow beam is focused with a lens, a new pattern is obtained at the focal place for the
electric field amplitude which is square integrable and the corresponding beam is known as the
Bessel-Gaussian (BG) beam. The formation of BG beams with different irradiance profiles and
their heating effects on solid materials have been studied by Zeng et al. [8,9], showing an efficient
utilization of laser heating with BG beams of certain irradiance profiles. Recently Castillo-Orozco
et al. [10,11] used BG beams to evaporate microdroplets of nanoparticle suspensions and sinter
the nanoparticles for depositing thin films on both rigid and flexible substrates.

Lasers offer precise control for spatial and temporal heating of materials with little damage to
the substrates. In addition, nanoparticles have better mechanical, electrical, and optical properties
as well as lower sintering temperature than to the corresponding bulk materials [12]. Depositing
nanomaterials to produce thin lines or films is of interest for fabricating optoelectronic, energy
and electronic components [13] such as light-emitting diodes [14], ultra-flexible electrodes [15]
and solar cells [16]. Fabrication of nanostructures on flexible and stretchable substrates is also
of interest in the development of wearable electronic and photonic devices [17]. Numerous
deposition techniques have been studied by others without using lasers. An et al. [18] used
layer-by-layer deposition to produce nanosheets of two-dimensional metal carbides in between
polymer sheets. Thomas et al. [19] fabricated densely packed micro and nanoscale polymer
features using a melt processing approach. Chemically synthesized semiconductor nanowires of
ZnO or carbon nanotubes on flexible conductive substrates have been investigated for electronic
and photonic device applications [20,21]. Conventional inkjet printing method has been employed
to pattern microelectrodes of semiconductor materials on flexible substrates [22]. Shin et al. [23]
developed an electrostatic force-assisted Ag paste dispensing technique to print Ag fingers on
solar cells. An oven was used in their process to cure the paste and, consequently, the fabrication
time was relatively long. Castillo-Orozco [10] employed a Nd:YAG laser BG beam and deposited
thin films of metal (Ag) and semiconductor (Si) nanoparticles on flexible substrates. Metallization
of the precursor Ag paste to form continuous Ag lines is a crucial step for fabricating efficient Si
solar cells [24]. Good electrical contact between Si and Ag lines with low line resistance and
high aspect ratio enhances the efficiency of solar cells by reducing resistive and optical losses
[25]. The pastes of Ag nanoparticles are used for manufacturing the contact lines for its low
sintering temperature compared to the bulk Ag material [26,27].

In the current study, an experimental setup is presented to show certain optical elements that
produce a BG beam on the substrate surface. This setup was utilized to deposit Ag lines on
indium tin oxide (ITO)-coated silicon substrates using an Ag nanoparticle paste as a precursor.
The primary focus of this paper is to study the thermal effect of the BG beam on the temperature
distribution in the substrate. For this purpose, an expression is obtained for the irradiance of
the BG beam by applying the Fresnel diffraction model, and this irradiance is used as a heat
source in a heat conduction model to analytically solve for the temperature distribution. Since
the nanoparticles sinter above a certain temperature, this constraint is applied to the temperature
distribution to predict the width of the deposited Ag line as an illustration for the practical
application of the thermal model. Most of the results have previously been published in a
dissertation [28]. Those results are presented in this paper more succinctly by highlighting the
similarity between the beam pattern and temperature profiles, and the evolution of different
heating regimes under various processing conditions.



Research Article Vol. 30, No. 11 / 23 May 2022 / Optics Express 19248

2. Experimental setup for BG beam formation and Ag line deposition

Figure 1 illustrates an experimental setup, showing a continuous wave CO2 laser of wavelength
λ = 10.6µm and Gaussian irradiance distribution. This beam is passed through an axicon lens
and a biconvex lens to form a hollow beam with outer-half-Gaussian irradiance distribution
[8], and then focused with a hollow parabolic mirror on Ag lines, resulting in an irradiance
profile that is referred to as the BG beam in this study. One of the advantages of BG beams
is that its maximum intensity is much higher than that of Gaussian beams of the same power.
Thus, much higher intensity can be applied to materials using BG beams. In addition, the BG
beam is useful for deposition processes since it has longer Rayleigh range within which the
irradiance distribution does not vary significantly. A stable thermal process, therefore, can be
established even if the focal spot is not exactly on the substrate surface. This fault-tolerant feature
is beneficial since the height of the Ag line may vary due to mechanical vibration of the linear
stage or fluctuations in the flow rate of nanosuspension. The BG beams provide a large tolerance
in the height direction to enable sintering the Ag lines uniformly. The mirror is hollow because it
has a vertical hole starting from its top surface to the center of the reflective parabolic surface.
This mirror with focusing capability, particularly the hole in the parabolic mirror, provides a
convenient space to access the laser-material interaction region for measuring temperature using
an infrared camera coaxially with the laser beam. Alternatively, the hollow space can be utilized
to coaxially dispense nanosuspensions to the center of the beam. The laser spot diameter on the
substrate surface was adjusted to be 300µm, which was the smallest spot size in the experiment
setup of this study and this size was measured from the illuminated spot on a sensitive paper.
From the BG beam profile, the laser irradiance at the beam radius of 150µm is determined to be
one-fifth of the maximum irradiance. The power, P, was varied from 2.3W to 11.8W to deposit
Ag lines without causing any thermal damage to the silicon substrates used in this study. An Ag
nanoparticle suspension, which was 75wt% LIFT (Laser-Induced Forward Transfer) printable
silver ink from Sigma-Aldrich, was delivered to an ITO-coated Si substrate using a needle of
inner and outer diameters 51µm and 159µm, respectively. The ink was delivered behind the
BG beam and the substrate was moved at the speed V (Fig. 1). The flow rate of the ink, Q, was
controlled with a syringe pump in the range of 100-200 nL/min and the substrate speed, V, was
varied from 0.92 mm/s to 6 mm/s for depositing Ag lines under different conditions.

Fig. 1. Schematic of optical elements and laser track for Bessel-Gaussian beam formation
during silver line deposition on ITO-coated substrates.

The depositions were achieved in two steps, ink drying and nanoparticle sintering. For the
case of ink drying, the silver ink was supplied to the substrate with a capillary tube of a syringe
pump at the flow rate (Q) of 100nL/min while the substrate speed (V) was 6mm/s relative to the
laser beam. The height (Hct) of the tip of the capillary tube and the inclination angle (θin) of the
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tube were 50µm and 40°, respectively, from the substrate surface. As a liquid ink line is drawn
due to the motion of the substrate, the liquid was simultaneously evaporated to dry the line with
the laser power (Pd) 2.3W. The diameter (DL) of the laser focal spot was 300µm on the substrate
surface and the center of the laser beam was ahead of the tip of the capillary tube by a horizontal
distance (dct) 1.5mm. After this drying step, the Ag nanoparticles were sintered with the laser
power (P) 11.8W and V at 1mm/s. The width and height of the sintered Ag lines were measured
with an optical microscope at 500 magnification and an optical profilometer respectively.

3. Methodology

3.1. Diffraction modeling of Bessel- Gaussian irradiance distribution

Figure 2 shows that a Gaussian beam is incident on an Axicon lens that transforms the incident
beam into an annular beam, and a biconvex lens transforms the annular beam into a collimated
outer half-Gaussian hollow beam [8] as shown at the plane AB. The outer radius and thickness
of this hollow beam, Rout and R0 respectively, can be expressed as Rout = L · tan(β − α) and
R0 = RG[1 − tanα · tan(β − α)].,
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Fig. 2. Laser propagation path for determining geometrical features of the beam.

where L is the distance between the axicon and biconvex lenses, α and β are the angles
of incidence and refraction at conical surface of the axicon lens as depicted in Fig. 2, and
sin β = n · sinα th n being the refractive index of the lens material which is ZnSe in this study.
The inner radius of the hollow beam, Rin, is now obtained as Rin = Rout − R0.

The irradiance of the outer half-Gaussian beam is given by the following expression:

I(ρv) = I0e
−

2(ρv−Rout )2

R2
0 . (1)

where ρv is the radial distance in polar coordinates for any points on the vertical cross section of
the hollow beam with ρv varying from Rin to Rout. ρv is given by ρv(ϵ

′′, η′′) =
√︁
ϵ ′′2 + η′′2 th ϵ ′′

as the horizontal axis pointing outward from the plane of paper and η′′ as the vertical axis in
Cartesian coordinates as shown in Fig. 2. I0 is the maximum irradiance that can be related to the
laser power by the following expression:
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Considering the phase delay due to the axicon lens, the phasor of the outer half-Gaussian beam
at the plane AB can be written as follows:

UAB(ϵ
′′, η′′) =

√︁
I0e

−
(ρv(ϵ ′′,η′′)−Rout )2

R2
0

+ikd(ρv(ϵ
′′,η′′))

(3)

where i is the imaginary unit. k = 2π/λ is the wave number with λ as the wavelength of the
laser, and d(ρv) =

cos β
sinα (Rout − ρv) represents the distance (or path length difference) along the

direction of the laser beam propagation between the inclined surface of the axicon lens and the
vertical plane at the tip of the axicon lens [29].

The hollow parabolic mirror of focal length f reflects and focuses the incident outer-half-
Gaussian hollow beam. The phasor of this reflected beam is given by the following Rayleigh-
Sommerfeld diffraction formula [30]:

UOP(P0) =
1
iλ

∫∫
UPM(P1) ·

eikR

R
cos ⟨n̂, r̂R⟩ dS (4)

UOP(P0) and UPM(P1) are the phasors at an arbitrary point P0 of coordinates (x,y,z) and another
arbitrary point P1 on the observation plane and the parabolic mirror, respectively, as shown in
Fig. 3(a). R is the distance between P1 and P0, n̂ and r̂R are the unit vectors normal to the mirror
surface at point P1 and along the straight line P1P0 respectively, and dS is the infinitesimal area
on the mirror surface. The domain of the double integration in Eq. (4) is the curved surface
of the mirror and the evaluation of the integrals in this domain is complicated. To simplify
the procedure, the domain of integration is transformed to a horizontal plane by expressing all
variables in terms of the coordinates of the horizontal plane (Fig. 3(a)). The unit normal vector
is, therefore, expressed as n̂ = êz cos θp + êη sin θp, where θp is the projection angle between
the tangential plane of the parabolic mirror at P1 and the horizontal plane, and êz and êη are
the unit vectors in the z and η directions in Cartesian coordinates. dS is, similarly, expressed as
dS = dA

cos θp
where dA is an infinitesimal area on the horizontal plane.

Fig. 3. Coordinate systems used in the Rayleigh-Sommerfeld diffraction formula for
calculating the distance from the points on the parabolic mirror to the points on the plane of
observation.

Setting the origin of the Cartesian coordinates (ϵ , η, z) at the center of the hole on the parabolic
mirror, the coordinates of P1 can be expressed in terms of (ϵ , η, +̄ξ) with ξ =

√︁
ϵ2 + η2 · tan θp and,
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therefore, UPM(P1) ≡ UPM(ϵ , η, +̄ξ). Here the negative and positive signs are for the points P1
located above and below the horizontal plane (Fig. 3(a)), respectively, since the z axis is negative
above the horizontal plane. Therefore, the distance vector between the light source point P1 and
the observation point P0 is R⃗ =

−−−→
P1P0 = (x − ϵ)êx + (y − η)êy + (z ± ξ)êz, the unit vector along

R⃗ is r̂R =
(x−ϵ )êx+(y−η)êy+(z±ξ)êz√

(x−ϵ )2+(y−η)2+(z±ξ)2
, and the magnitude of R⃗ is R =

√︂
(x − ϵ)2 + (y − η)2 + (z ± ξ)2.

So the inclination factor in Eq. (4) can be written as cos ⟨n̂, r̂R⟩ = n̂ · r̂R =
(y−η) sin a+(z±ξ) cos θp

(z±ξ)
[︃
1+

(︂
x−ϵ
z±ξ

)︂2
+
(︂

y−η
z±ξ

)︂2
]︃ .

The distance between the source plane (ϵη) and the observation plane (xy) is generally large
compared to the distances in the x and y directions, especially, when the laser is focused onto the
neighborhood of the origin of the x and y axes. Under this condition, the Fresnel approximation
[30] can be applied and the inclination factor becomes cos ⟨n̂, r̂R⟩ ≈ cos θp in this study.

The phasor UPM(P1) in Eq. (4), i.e., UPM(ϵ , η, +̄ξ), can be determined by introducing a phase
factor to Eq. (3) and applying coordinate transformation to ρv(ϵ

′′, η′′). This additional phase
corresponds to the optical path length traveled by the light from the plane AB to the surface of
the parabolic mirror (Figs. 2 and 3(b)). The plane AB of Fig. 2 is included in Fig. 3(b) for clarity
and two typical paths of the light are shown to highlight the phase delay distance, e.g., F1F2 = d2,
from the plane AB to the point of incidence on the mirror. Also shown in Fig. 3(b), the paths
of the light reflected off the mirror toward a horizontal focal plane at the point F. The annular
laser spot is oriented vertically at the plane AB with coordinates (ϵ ′′, η′′) for various points on
the spot. When the light from this spot is incident on the mirror at an angle of incidence θim, a
slanted annular laser spot is formed with a certain curvature conforming to the shape of the mirror
surface. The points on this slanted and curved annular spot can be described by the coordinates
(ϵ ′, η′, ζ ′) with the origin at the center of the hole of the mirror. The plane ϵ ′η′ is tangential to
the curved mirror surface at the center of the hole and ζ ′ represents the variation of the curved
surface relative to this tangential plane. To simplify the integration in Eq. (3) as discussed earlier,
the slanted and curved annular spot is projected further onto a horizontal ϵη plane.

The projection angle θp depends on the position of point P1 due to the curvature of the parabolic
mirror. The effect of curvature is neglected in this study for large focal lengths of the parabolic
mirror, resulting in a slanted planar annular spot on the mirror surface, and therefore the projection
angle θp can be considered constant. Under this approximation, the projection of the slanted
annular beam onto the horizontal (ϵη) plane will have the same shape as the vertically oriented
annular spot with the same inner and outer radii Rin and Rout, respectively, when θim =π/4. For
an arbitrary value of θim, the coordinate transformation from the vertical plane AB to the slanted
planar plane and then to the horizontal ϵη plane can be represented by (ϵ ′′, η′′) → (ϵ ′,′) → (ϵ , η),
which yields ρv(ϵ

′′, η′′) =
√︁
ϵ ′′2 + η′′2 =

√︁
ϵ ′2 + η′2cos2θim =

√︁
ϵ2 + η2cot2θim = ρh(ϵ , η)

with ρh transforming the radial distance ρv from the vertical plane to the horizontal plane. Now
the phasor UPM can be written as follows by modifying Eq. (3) with a phase factor due to the
phase delay distance d2:

UPM(ϵ , η, +̄ξ) =
√︁

I0e
−

[ρh(ϵ ,η)−Rout ] 2

R2
0

+ik(d(ρh(ϵ ,η))+d2(ϵ ,η,+̄ξ))
(5)

d2 can be determined by noting that the perpendicular distance from a point on a parabola to its
directrix (F2F3 in Fig. 3(b)) is equal to the distance from that point on the parabola to its focus (F2F),
i.e., F2F3 = F2F. Since the plane AB is parallel to the directrix plane, the distance between these two
planes would be the same for any point on the plane AB, i.e., F1F3 =C where C is a constant. So the
phase delay distance d2 = F1F2 = F1F3−F2F3 = C−F2F3 = C−F2F. The coordinates of F2 and
F are (ϵ , η, +̄ξ) and (0,0,f ), respectively, where f is the focal length of the parabolic mirror, which

yields F2F =
√︂
ϵ2 + η2 + (f ± ξ)2 =

√︃
ϵ2 + η2 +

(︂
f ±

√︁
ϵ2 + η2 tan θp

)︂2
=

√︂
ρ2 + (f ± ρ tan θp)2,
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where ρ =
√︁
ϵ2 + η2. Since the constant C introduces the same phase change for all the

light paths, the effect of C can be neglected and, therefore, the expression for d2 = −F2F =

−

√︂
ρ2 + (f ± ρ tan θp)2 is applied to Eq. (5).

Now the phasor at the point P0(x, y, z) can be calculated by applying Eq. (5) to the Rayleigh-
Sommerfeld formula as given in Eq. (4):

UOP(P0) = U(x, y, z) =
1
iλ

∫∫
UPM(ϵ , η, +̄ξ) ·

eikR

R
cos

⟨︁
n⃗,−→rR

⟩︁ dA
cos θp

=
1
iλ

∫∫
UPM ·

eikR

R
dA

(6)
The following expression is obtained from Eq. (6) after applying the Fresnel approximation:

U(x, y, z) =
√

I0eik(z±ξ)

iλ(z ± ξ)

∫∫
e
−

(ρh−Rout )2

R2
0 e

ik
[︃
d+d2+

(x−ϵ )2
2(z±ξ )+

(y−η)2
2(z±ξ )

]︃
dA (7)

Changing the variables of integration from the Cartesian coordinates to polar coordinates, i.e.,
ϵ = ρ cos ϕ, η = ρ sin ϕ; x = r cos θ, y = r sin θ, Eq. (7) can be written as follows for the case of
θim =π/4:

U(r, θ, z) =
√

I0
iλ

∫ Rout

ρ=Rin

eik(z+ξ)

z + ξ

∫ π

φ=0
e
−

(ρ−Rout )2

R2
0 eik(d+d2)e

ik(r2+ρ2)
2(z+ξ ) e−

ikrρ
z+ξ cos(φ−θ) ρdϕdρ+

√
I0

iλ
∫

Rout
ρ=Rin

eik(z−ξ)

z − ξ
∫

2π
φ=π e

−
(ρ−Rout )2

R2
0 eik(d+d2)e

ik(r2+ρ2)
2(z−ξ ) e−

ikrρ
z−ξ cos(φ−θ) ρdϕdρ

(8)

The integral with respect to ϕ can be evaluated using the integral representation of the
zeroth-order Bessel function of the first kind, i.e., J0(x) = 1

π ∫π0 e−ix cos(φ−θ)dϕ, and applying the
Fresnel aroximation to ξ, i.e., ξ = ρ tan θp ≪ z, to simplify Eq. (8) as:

U(r, z) = −
i2π

√
I0

λz
eik

(︂
r2
2z +z−f

)︂
∫

Rout
ρ=Rin

e
−

(ρ−Rout )2

R2
0 e

ik
[︃
(Rout−ρ)

cos β
sin α +

ρ2
2z

]︃
J0

(︃
krρ
z

)︃
ρdρ (9)

Rewriting the integral in the following form,

F(r, z) = ∫
Rout
ρ=Rin

exp

[︄(︄
−

1
R2

0
+ i

k
2z

)︄
ρ2 +

(︄
2Rout

R2
0

− ik
cos β
sinα

)︄
ρ +

(︄
−

R2
out

R2
0
+ ik

cos β
sinα

Rout

)︄]︄
J0

(︃
krρ
z

)︃
ρdρ

(10)
and integrating Eq. (10) by parts 3 times, an approximate expression is obtained for F(r, z):

F(r, z) ≈ eaR2
out+bRout+c ·

zRout

kr
J1

(︃
kr
z

Rout

)︃
− eaR2

in+bRin+c ·
zRin

kr
J1

(︃
kr
z

Rin

)︃
(11)

where a = − 1
R2

0
+ i k

2z , b = 2Rout
R2

0
− ik cos β

sinα , and c = −
R2

out
R2

0
+ ik cos β

sinα Rout. Applying Eq. (11) to Eq. (9),
the phasor on the xy plane is found to be:

U(r, z) = −

√
I0
r

ei π2 eik
(︂

r2
2z +z−f

)︂ [︄
eik

R2
out
2z Rout J1

(︃
kRout

z
r
)︃
− e

−2+ik
(︃

R0 cos β
sin α +

R2
in

2z

)︃
Rin J1

(︃
kRin

z
r
)︃]︄

(12)

and the corresponding irradiance distribution is:

I(r, z) =
I0

r2

[︃
R2

out J2
1

(︃
kRoutr

z

)︃
+ R2

in J2
1

(︃
kRinr

z

)︃
e−4

−2RinRoutJ1

(︃
kRinr

z

)︃
J1

(︃
kRoutr

z

)︃
cos

(︄
R2

out − R2
in

2z
−

R0 cos β
sinα

)︄
e−2

]︄ (13)
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Equation (13) influences the heat flux on the substrate surface and thus affect the temperature
distribution in the material.

3.2. Bessel-Gaussian laser heating of moving substrates

A portion of the laser beam is reflected, and the rest of the energy is absorbed at the substrate
surface when the transmittance of the substrate is zero. The absorbed energy manifests as heat
flux on the surface of the substrate and provides the thermal energy for evaporating the liquid of
the nanoparticle suspension and sintering the nanoparticles to deposit a thin film on the substrate
surface. The irradiance of the BG beam is used to determine the heat flux as a boundary condition
in the following heat conduction model. This model is applied to the case of depositing Ag lines
on a moving ITO-coated Si substrate using an Ag ink. The temperature distribution of the model
is used for selecting the laser processing parameters to heat without any thermal damage to the Si
substrate and also predict the width of the deposited Ag lines.

Shown in Fig. 4 is the schematic of the conduction model in the Cartesian coordinates with the
heat flux due to laser irradiation at the top surface of the substrate. The Ag ink is delivered to the
right side of the laser spot and this unsintered ink passes through the spot as the substrate moves
in the negative x direction with velocity V, resulting in the sintered Ag line on the left side of the
spot. The effects of heating the Ag ink and the substrate motion are considered in the boundary
condition for the heat flux at the top (z=H) surface of the substrate as discussed later in this
section. The effect of ITO, however, is neglected since it is very thin (1–3 µm). Therefore, the
governing equation for the temperature distribution, T(x,y,z,t), in the Si substrate can be written
as follows by considering temperature-dependent thermophysical properties:

∂

∂x

(︃
k(T)
∂T
∂x

)︃
+
∂

∂y

(︃
k(T)
∂T
∂y

)︃
+
∂

∂z

(︃
k(T)
∂T
∂z

)︃
=

k(T)
α

∂T
∂t

(14a)

where k(T) and α are the thermal conductivity and thermal diffusivity of silicon respectively.
The thermal diffusivity is generally a slowly varying function of T and, therefore, it is considered
constant in this study. The heat flux boundary conditions are applied to all the surfaces by
considering both convection and radiation heat losses to the ambient air. The boundary condition
at the top (z=H) surface, however, contains an additional term that represents the absorbed energy
flux due to the incident laser irradiance. The absorbance of silicon wafers at the wavelength
of a CO2 laser is nearly zero. The substrate surrounding the Ag line is heated up due to heat
conduction from the Ag lines during the sintering process. Therefore, the silicon substrate
is expected to lose heat to the ambient air due to both convection and radiation mechanisms.
These two mechanisms have been considered in the boundary conditions (14b-g). Also the total
convection heat transfer coefficient, ht, at the top surface is the sum of the convection heat transfer
coefficient to the ambient air, h4, and another heat transfer coefficient, hAg, pertaining to the loss
of energy for heating the Ag film, i.e., ht = h4 + hAg. The initial condition for solving Eq. (15a)
is taken as the ambient temperature, Ta, by considering that the substrate is initially at room
temperature. These boundary and initial conditions can be expressed as:

k(T)
∂T
∂x
= h1(T − Ta) + σϵ̃Si(T4 − T4

a ) at x = 0 (14b)

−k(T)
∂T
∂x
= h1(T − Ta) + σϵ̃Si(T4 − T4

a ) at x = L (14c)

k(T)
∂T
∂y
= h2(T − Ta) + σϵ̃Si(T4 − T4

a ) at y = 0 (14d)

−k(T)
∂T
∂y
= h2(T − Ta) + σϵ̃Si(T4 − T4

a ) at y = W (14e)
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k(T)
∂T
∂z
= h3(T − Ta) + σϵ̃Si(T4 − T4

a ) at z = 0 (14f)

k(T)
∂T
∂z
=

AAg

ALS
Ih(x, y, t)(1 − RAg) − ht(T − Ta) − σϵ̄(T4 − T4

a ) at z = H (14g)

T(x, y, z) = Ta at t = 0 (14h)

where L, W and H are the length, width and height respectively (Fig. 4). hi represents the
convection heat transfer coefficient at the substrate surfaces for i= 1,2,3,4. σ and ϵ̃Si are the
Stefan-Boltzmann constant and thermal emissivity of the substrate respectively. ϵ̄ is an average
thermal emissivity based on the properties of silicon and silver. Ih(x, y, t) represents the moving
heat flux due to the motion of the laser beam relative to the substrate and RAg is the reflectance
of silver at the CO2 laser wavelength of 10.6µm. Noting that the velocity of the laser beam
with respect to the substrate is V in the x direction since the substrate moves in the negative x
direction, the moving heat flux is related to the laser irradiance of Eq. (13) by the expression

Ih(x, y, t) = I
(︃
r =

√︂
(x − Vt)2 + y2, z = f

)︃
.

Fig. 4. Heat flux due to laser irradiation and the Cartesian coordinate system used in heat
conduction model.

The energy of a quantum of the CO2 laser is much lower than the bandgap energy of the
Si substrate and, therefore, the substrate does not absorb the laser energy. The laser beam is
absorbed by the Ag ink and the Ag nanoparticles during the sintering process and this mechanism
is incorporated in the model by considering the reflectance of silver in the boundary condition
(14g). In this study, however, the width of the Ag line is much smaller than the diameter of the
laser spot as illustrated in Fig. 4 and, therefore, only a small area of the incident laser spot is
utilized for heating the Ag line and substrate. Denoting the area of the Ag line by AAg which is
illuminated by the laser beam and the area of the entire laser spot by ALS, the power contained in
AAg would be P·AAg/ALS. Since P is included in the term Ih(x,y,t), the line illumination factor,
AAg/ALS, is introduced in the boundary condition (14g). The area of the Ag line is estimated by
considering the volumetric flow rate at which the Ag ink is delivered to the substrate and the
speed of the substrate, resulting in AAg ≈ 0.0153mm2, where the spreading of the ink on the
substrate surface due to surface tension and the viscous resistance to the spreading are neglected.
The heat conducts from the Ag line into the Si substrate, resulting in a hot Si surface adjacent to
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the line and, therefore, an area average emissivity, ϵ̄ = 0.216ϵ̃Ag + 0.784ϵ̃Si, is considered in this
study, where ϵ̃Ag and ϵ̃Si are the emissivities of Ag and Si respectively.

The thermal conductivity data [31] of Si are expressed as a function of temperature, k(T) = p·Tq

with p= 105.75 and q= -1.41 in the temperature range 300K to 1000K, and an average value of the
thermal diffusivity is taken as α= 0.8cm2/s. The emissivities of Ag and Si are [32,33] ϵ̃Ag = 0.793
and ϵ̃Si = 0.67, and the reflectance of Ag is RAg = 0.98. In our experimental set up, the convection
heat transfer to the ambient air is due to natural convection. The heat transfer coefficient varies
from 2 to 25W/(m2·K) for natural convection [34]. An intermediate value of 10W/(m2·K) has
been chosen for hi, i= 1,2,3,4, in this study. hAg is estimated by considering the effect of the
coated silver ink as an additional heat convection coefficient, i.e., hAg =

ρAgCp,Ag HAgV
L , where ρAg,

Cp,Ag and HAg are the density, specific heat capacity and height of the Ag film deposited on the
substrate surface. The derivation of hAg is presented in Appendix A.

Equation (14a) is a nonlinear heat conduction problem which Kar et al. [35] solved by
linearizing the problem using the Kirchhoff transform and then applying the finite-medium
Fourier transform in the x, y and z directions. They determined the temperature distribution in
stainless steel substrates for the case of laser heating with a Gaussian beam. In their study, the
irradiance profile was a Gaussian function that exhibits a monotonically decreasing profile with a
maximum irradiance at the center of the beam and very low irradiance at the edge of the beam.
In the present study, however, the irradiance profile involves the Gaussian and Bessel functions,
exhibiting an oscillatory profile with a principal maximum irradiance at the center of the beam
and rings of subsidiary maximum irradiances surrounding the principal maximum. The effect of
this Bessel-Gaussian beam on the temperature distribution is analyzed in this paper by following
Kar et al.’s method [35]. The solution of the above thermal model, Eq. (14a) and boundary and
initial conditions (14b-h), is summarized by the following temperature distribution:

T = T0 · [1 + (q + 1)T ′∗]−(q+1) (15)

where T0 is a reference temperature which is taken as 373K in this study, and
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Here the dimensionless spatial and temporal variables are defined as x∗ = x
L , y∗ = y

W , z∗ = z
H and

t∗ = Vt
L . The eigenvectors X(x∗), Y(y∗) and Z(z∗), eigenvalues λlx, λmy and λnz, and normalization

constants Nlx, Nmy and Nnz in the x, y and z directions, respectively, are presented in Appendices
B and C. These two appendices also provide the expressions for the other variables that appear
in Eq. (16) and various integrals involving the BG irradiance profiles. Equation (16) is used to
obtain the isotherms for determining the width of the sintered Ag films and to examine the effect
of various laser processing parameters on the temperature of the substrate.

4. Results and discussion

4.1. Model validation

Isotherms are plotted in Fig. 5 to show the temperature contours both on the top surface and
along the thickness of the substrate for the case of incident laser power 11.8W, substrate speed
1mm/s, and Ag ink feed rate of 100nL/min with a capillary tube of inner diameter (ID) 51µm.
The isotherms on the top surface are utilized to predict the width of the sintered Ag line by
considering that the sintering occurs only above a certain threshold temperature. The threshold is
set to be 180 ◦ C in this study since this temperature is within the range of the silver ink curing
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temperatures [26,27]. Applying this criterion to Fig. 5, the predicted Ag line width is found to be
64µm for nanoparticle dispensing capillary tube of ID 51µm. The thermal model was applied to
another case with the same sintering condition as above except for a different capillary tube of ID
108µm, and the predicted Ag line width was found to be 122µm.

Fig. 5. Temperature distribution in silicon substrate during Ag line deposition. Zoomed in
view of the isotherms, showing the sintering threshold isotherm of 180 ◦C for predicting the
Ag line width. Process parameters for temperature calculation: Q= 100nL/min, ID= 51µm,
Hct = 50µm, θin = 40◦, P= 11.8W, V = 1mm/s, dct = 1.5mm and DL = 300µm.

To validate the model predictions, experiments were conducted using the apparatus shown
in Fig. 1 for sintering Ag nanoparticles to deposit Ag films as a narrow line on a Si substrate.
For the above-mentioned two cases of tube ID 51 µm and 108 µm, the experimental line widths
(Fig. 6) range from 59 to 62µm and 117 to 122µm, respectively, which agree with the predicted
line widths fairly well. The widths were measured at different locations along the length of the
line due to the nonuniformity in the width. The average line width and thickness are 60µm and
1.11µm, respectively, for the case of 51µm ID tube and 120µm and 1µm, respectively, for the
larger tube of 108µm ID under the same drying and sintering conditions as for the smaller tube.
Figure 6 shows optical microscopic and Secondary Electron Microscopic (SEM) images, and
Electron Dispersive X-ray (EDX) data for the composition of various elements in the sintered
Ag film. The optical micrographs of the Ag lines show that the widths vary slightly along the
length of the lines and the SEM images exhibit nanosize clusters formed by the sintered Ag
nanoparticles. The EDX spectrographs, on the other hand, demonstrate the purity of the process
for depositing contaminant-free Ag lines, even though the process was carried out in an open
space with ambient air. Dominant Ag peaks can be seen in both Figs. 6(a) and 6(b) with extremely
small peaks of C atoms, indicating that the organic liquid of the Ag nanosuspension is almost
completely evaporated. While no peaks of O2 and Si atoms exist in Fig. 6(a), there presence in
Fig. 6(b) may be due to the native oxide of Si in the original Si substrate. The presence of S peak
is ascribed to contamination during cleaning and handling of the samples after the deposition
process.

The model was also used to examine the effect of laser power on the sintered Ag line width
as shown in Fig. 7. It includes the experimental line widths as well for comparison between
the experimental data and theoretical predictions. When the experiments were run at the laser
power 8.9 W, no deposition of Ag film occurred which is also predicted by the model. Although
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Fig. 6. Deposited silver lines on ITO-coated substrate. Optical microscopic and SEM
images, and EDX data for a silver line deposited with a capillary tube of inner diameter
(a) 51µm and (b) 108µm. Process parameters for deposition: Q= 100nL/min, ID= 51µm,
Hct = 50µm, θin = 40◦, P= 11.8W, V = 1mm/s, dct = 1.5mm and DL = 300µm.

the Ag lines were deposited at 11.8 W in this study, Fig. 7 shows that lines of smaller width
can be deposited below 11.8W but above certain threshold powers. Also Fig. 7 indicates that
extremely narrow, e.g., a few micrometers or nanometers wide, Ag lines can be deposited with
laser powers slightly above the threshold value. The threshold powers for sintering are 10.45
W and 11.3 W for capillary tubes of ID 108 µm and 51 µm, respectively. This change in the
threshold power with tube ID is attributed to the variation in the width and thickness of the initial
liquid (Ag ink) line produced on the substrate surface by different capillary tubes. A larger ID
tube would produce wider and thinner liquid lines than a smaller ID tube under the same mass
flow rate of the nanosuspension and the same substrate speed. and, correspondingly, fewer Ag
nanoparticles would be present per unit volume of the liquid line in the case of nanosuspension
dispensation with a larger tube. The laser is, therefore, required to heat less materials in thinner
films to achieve the threshold sintering temperature which is taken as 180°C for Ag nanoparticles
in this study. These two phenomena, the nanosuspension dispensation and the laser heating of
fewer nanoparticles, influence the width and thickness of the final product which is formed after
the initial liquid Ag line is sintered. The combined effect of these two phenomena may be the
reason for lower threshold power in the case of larger ID tube. For the same laser power, e.g.,
11.8 W, the larger ID tube yields wider and thinner sintered Ag line than in the case of the smaller
ID tube as evident from the experimental data discussed earlier in this section.

For the same width of sintered Ag line, Fig. 7 shows that the larger ID tube requires lower
laser power that the smaller tube. To produce the same width by both the tubes, the laser must
heat the same width with a boundary of 180°C isotherm. Since a larger ID tube yields fewer
nanoparticles per unit volume of the liquid line, lower power would be needed to create the
required isotherm than in the case of a smaller ID tube. Figure 7 also shows that the larger ID
tube produces wider Ag lines than the smaller ID tube for the same laser power. This result is
due to the above-mentioned two phenomena as well. A larger ID tube produces wider Ag liquid
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Fig. 7. Validation of thermal model for silver line deposition and prediction of threshold
laser power for sintering. Process parameters for deposition: Q= 100nL/min, Capillary
tube inner diameter= 51µm and 108µm, Hct = 50µm, θin = 40◦, P= 11.8W, V = 1mm/s,
dct = 1.5mm and DL = 300µm.

lines than a smaller ID tube and, consequently, the concentration of nanoparticles is lower in
the former case. A given laser power, therefore, will be able to heat the nanoparticles above the
threshold sintering temperature 180°C in a wider region in the case of a larger ID tube.

4.2. Irradiance profile from the diffraction model

The laser beam patterns change significantly as the beam passes through different lenses and
the parabolic mirror. Shown in Fig. 8 are the laser irradiance distributions as a function of the
beam radius at the exit of the CO2 laser device, after the biconvex lens and at the focal plane of
the parabolic mirror. The laser comes out of the laser device as a Gaussian beam of diameter
4.06mm. The Gaussian beam is transformed to a hollow beam after passing through the axicon
and biconvex lenses and the irradiance profile in the ring of this beam is outer half-Gaussian
as discussed in section 3.1. The hollow beam is then reflected and focused by the parabolic
mirror, resulting in a Bessel-Gaussian irradiance pattern due to interference of the light arriving
from various points of the ring to the substrate surface. This BG beam consists of a principal
maximum irradiance at the center of the beam and subsidiary maxima at different points in the
beam. The effect of the subsidiary irradiances on the temperature distribution is discussed in the
next section.

4.3. Parametric studies on laser heating and temperature distribution

The temperature distribution in the silicon substrate is examined for different process parameters by
considering the length (L), width (W) and height (H) of the substrate as 60mm, 30mm and 0.2mm,
respectively. Two cases of laser heating are analyzed when the laser beam scans the top surface
of the substrate, i.e., the laser beam moves relative to the substrate, in two different trajectories.
In one case, the laser follows a symmetric track along the center line on the top surface and
the trajectory is the locus of the coordinates (x, D, 0) for D= 15 mm and 0 ≤ x ≤ L. In the
second case, the laser follows an asymmetric track along an off-center line on the top surface
and the trajectory is the locus of the coordinates (x, D, 0) for D= 10 mm and 0 ≤ x ≤ L. The
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Fig. 8. Laser beam patterns at different locations of the laser path. (a) optical setup, (b)
Incident Gaussian irradiance profile, (c) Outer half-Gaussian beam of inner and outer radii
Rin = 6.8mm and Rout = 8.8mm, respectively, and (d) Bessel-Gaussian beam with a principal
maximum of radius RB = 0.15mm.

dimensionless distances of the track from the front (y= 0) surface of the substrate are D∗ = 0.5
and D∗ = 0.33, where D*=D/W, for the symmetric and asymmetric tracks respectively. The
laser power is set at 11.8W and the scanning speed at V = 1 mm/s for both cases.

Figures 9(a,b) and 9(c,d) show the isotherms on the top surface of the substrate for the
asymmetric and symmetric cases, respectively. Two different times, t= 3 s and 36 s, are
considered for each case, and these two times yield the locations of the laser beam center on
the substrate surface at two different points (Vt, D) where the temperature is maximum. The
temperature distribution is asymmetric for the case of D∗ = 0.33, showing higher temperatures in
the region between the laser track and the front (y= 0) surface of the substrate. This asymmetry
is due to the slow convection and radiation heat losses, resulting in accumulated internal energy
that raises the temperature. For the case of D∗ = 0.5, on the other hand, the laser heating is a
perfectly symmetric problem and, therefore, the temperature distribution is symmetric as shown
in Figs. 9(c,d).

However, the temperature distribution in a small region of radius approximately 1.5 mm around
the laser beam center is found to be symmetric regardless of the distance, D, of the scanning
track from the y= 0 surface, since the effect of laser heating dominates over the convection and
radiation heat losses in the neighborhood of the beam center. Figure 10(a) shows the temperature
distribution along the laser scanning line on the top surface of the substrate when the beam center
is at x= 30 mm and D= 10 mm, i.e., D*= 0.33, and Fig. 10(b) is the corresponding isotherm
which exhibits symmetric temperature contour in the neighborhood of the beam center. Away
from this neighborhood, however, the isotherms have convex or concave tips corresponding to the
peaks or valleys of the temperature profile in Fig. 10(a). The BG irradiance profile of Fig. 8(d) is
sketched on top of the temperature profile in Fig. 10(a) to illustrate that the peaks and valleys in
the temperature profile correspond to the peaks and valleys in the BG beam profile. The wavy
temperature profile is thus ascribed to the oscillatory irradiance profile.

It is also noticeable in Fig. 10 that the temperature contour is symmetric about the x= 30
mm and y= 10 mm lines over a small distance in these two directions. This symmetric feature
generally occurs at low scanning speeds, such as 1 mm/s, since the conduction heat transfer is
much faster than the advection mechanism at low speeds. The latter heat transfer mechanism
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Fig. 9. Isotherms on the top surface of the substrate at selected positions of the moving
laser beam center. (a, b) Asymmetric temperature contours at the points (3mm, 10mm) and
(36mm, 10mm), and (c, d) Symmetric temperature contours at the points (3mm, 15mm)
and (36mm, 10mm). Process parameters for temperature calculation: Q= 100nL/min,
ID= 51µm, Hct = 50µm, θin = 40◦, P= 11.8W, V = 1mm/s, dct = 1.5mm and DL = 300µm.

arises from the relative motion between the laser and the substrate. When the scanning speed
is increased to V = 40mm/s, the effect of advection increases, resulting in lower temperatures
in the leading edge than in the trailing edge of the beam as shown in Fig. 11(a). Similarly, the
isotherms become densely spaced in the leading side than in the trailing side of the beam as in
Fig. 11(b). Thus, the influence of advection compared to the conduction heat transfer induces an
asymmetric temperature field along the laser scanning line. Considering the isotherm of 86°C
in Fig. 11(b), the distance (Ll) of the leading edge of this isotherm is much shorter than the
trailing edge (Lt) from the laser beam center. It can also be seen from the isotherms that the
asymmetry occurs about the x= 30 mm line. It can also be seen that the temperature contours
are still symmetric about the y= 10 mm line whereas they are asymmetric about the x= 30 mm
line. This direction-dependent temperature field is caused by the direction of the laser beam
scanning relative to the substrate. The laser scanning occurs only in the x direction relative to
the substrate since the substrate is moved in the -x direction (Fig. 4) in this study, resulting in
advection only in the -x direction. Therefore, both conduction and advection cause heat transfer
in the x direction, whereas only conduction occurs in the y direction, and this difference in the
heat transfer mechanism produces the asymmetric and symmetric temperature fields about the
above-mentioned x and y lines, respectively.

The effect of speed is analyzed further in Fig. 12 to determine the dominant role of conduction
or advection heat transfer mechanism in different ranges of the scanning speed, V. The maximum
temperature in terms of V, Tmax(V) = T

(︁ L
2 , D, H, L

2V
)︁
, which occurs at the laser beam center,

is plotted as a function of the scanning speed for different laser powers. Tmax(V) decreases as
the scanning speed increases. Three ranges of the scanning speed are identified corresponding
to three dominant modes of heat transfer mechanism, such as the conduction, advection and
weakly heating regimes, using a temperature ratio to delineate these regimes. The temperature
ratio is defined as Tr(V) = Tmax(V)−Ta

Tmax(Vmin)−Ta
, where Vmin = 0.1mm/s is the lowest velocity used in the

experiments of this study. The dominant conduction, dominant advection and weakly heating
regimes are classified by considering Tr ≥ 0.99, 0.1 ≤ Tr<0.99 and Tr<0.1.
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Fig. 10. Temperature distribution at the top surface of the substrate in the neighborhood of
the laser beam center for a low scanning speed V = 1 mm/s: (a) Wavy temperature profile
along the laser scanning line, and (b) Temperature contour with deformed leading and
trailing edges. Process parameters for temperature calculation: Q= 100nL/min, ID= 51µm,
Hct = 50µm, θin = 40◦, P= 11.8W, dct = 1.5mm and DL = 300µm, D= 10mm (D*= 0.33)
and t= 30s (t*= 0.5).
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Fig. 11. Temperature distribution at the top surface of the substrate in the neighborhood
of the laser beam center for a high scanning speed V = 40 mm/s: (a) Wavy temperature
profile along the laser scanning line, and (b) Temperature contour with deformed leading and
trailing edges. Process parameters for temperature calculation: Q= 100nL/min, ID= 51µm,
Hct = 50µm, θin = 40◦, P= 11.8W, dct = 1.5mm and DL = 300µm, D= 10mm (D*= 0.33)
and t= 0.75s (t*= 0.5).



Research Article Vol. 30, No. 11 / 23 May 2022 / Optics Express 19263

Tmax(V) is nearly constant with Tr ≥ 0.99 for all powers and 0.1mm/s ≤ V ≤ 6mm/s. This
regime is characterized as the dominant conduction regime since the slow motion of the substrate
allows sufficient time to reach a balance between the laser heating and the heat conduction. Thus a
steady state is achieved, which also explains the reason for the maximum temperature to be nearly
constant. Tmax(V), however, decreases significantly in the range 6mm/s <V ≤ 50m/s . This
regime is characterized as the dominant advection regime since the fast motion of the substrate
decreases the laser heating time in the laser-irradiated region. Consequently, the spreading of
heat by conduction is less than the heat carried away from the irradiated region by the moving
substrate, and a steady state is reached in this case due to a balance between the laser heating
and the heat advection. Finally, Tmax(V) tends to the room temperature asymptotically when
V>50m/s since high scanning speeds decrease the laser-substrate interaction time and thus reduce
the laser energy input to the substrate as the substrate passes through the laser-irradiated region.
This high-speed scanning range is classified as the weakly heating regime. The substrate attains
different temperatures in these three regimes of heating and the temperature, in turn, affects the
sintering of the nanoparticles and the width of the deposited thin film.

Dominant 
conduction

Dominant 
advection

Weakly 
heating

Laser power 
increasing

(V
)

Fig. 12. Maximum temperature of the substrate in the dominant conduction, dominant
advection and weakly heating regimes for different scanning speeds and laser powers. Process
parameters for temperature calculation: Q= 100nL/min, ID= 51µm, Hct = 50µm, θin = 40◦,
dct = 1.5mm and DL = 300µm.

5. Conclusion

A Gaussian CO2 laser is transformed to a Bessel-Gaussian beam using an axicon lens, a biconvex
lens and a hollow parabolic mirror. A hollow collimated beam is incident on the mirror which
reflects the beam as a hollow cone and the Bessel-Gaussian beam is formed at the focal plane
of the mirror. The diffraction of light is analyzed using the Fresnel approximation to obtain an
analytical expression for the irradiance distribution of the Bessel-Gaussian beam. This beam
consists of a principal maximum irradiance at the laser beam center and subsidiary maxima that
surround the principal maximum as rings. The irradiance distribution is applied as a heat flux
boundary condition to a conduction model to analytically solve for the temperature distribution
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in a moving silicon substrate on which Ag nanoparticles are sintered for depositing Ag lines. The
temperature profile exhibits a wavy pattern like the wavy pattern of the irradiance distribution,
resulting in noncongruent isotherms consisting of convex and concave tips. The Ag line width
obtained from the thermal model is found to compare well with experimental data.

Symmetric and asymmetric isotherms are formed on the substrate surface depending on the
distance of the laser beam from one of the edges of the substrate. The isotherms are perfectly
symmetric when the laser scanning path coincides with the line of symmetry on the substrate
surface, and asymmetric isotherms occur when the laser scanning path deviates from the line of
symmetry. Another aspect of the thermal model is that the moving substrate introduces advection
which influences the substrate temperature in addition to the conduction heat transfer mechanism.
When the laser scanning speed relative to the substrate is low, the conduction effect is stronger than
advection and the isotherms are symmetric in both the scanning (x) and transverse (y) directions
running through the laser beam center. At higher scanning speeds, however, the advection effect
is stronger than conduction and asymmetric and symmetric isotherms appear in the scanning
(x) and transverse (y) directions, respectively. This direction-dependent characteristics appear
out of the advection versus conduction effects. Since the substrate moves in the -x direction, the
advection occurs only in this direction causing the asymmetric isotherms. Due to the absence of
advection in the transverse direction, only conduction occurs in this direction resulting in the
symmetric isotherms. When the scanning speed is increased further, the laser-matter interaction
time decreases which lowers the energy input to the substrate and, consequently, the substrate
temperature does not increase significantly. The heating regimes in these three ranges of the
scanning speed can be classified as the dominant conduction, dominant advection, and weakly
heating effects.

Appendix A: derivation of hAg

In the heat transfer model, the thin Ag line is lumped as an additional heat transfer coefficient
on top of the silicon substrate. Since the height of the Ag line in z direction, HAg is about 1 µm
which is much less than the dimensions in x and y directions, the governing equation of the Ag
line can be simplified as a 1-D heat conduction problem:

ρCp, Ag
∂T
∂t
= kAg

∂2T
∂z2 (17)

Integration of Eq. (17) with respect to z yields

ρCp, AgHAg
∂T
∂t
= Ih(x, y, H + HAg) − h4(T(x, y, H + HAg) − Ta) − k(T)

∂T
∂z

|z=H (18)

The heat flux on the top surface of the substrate due to laser illumination with the effect of the Ag
line can be expressed as:

k(T)
∂T
∂z
= Ih(x, y, H + HAg) − ρCp, AgHAg

∂T
∂t

− h4(T(x, y, H + HAg) − Ta) (19)

Estimating ∂T
∂t as T(x,y,H+HAg)−Ta

δt =
(T(x,y,H+HAg)−Ta)V

L , Eq. (19) can be rewritten as:

k(T)
∂T
∂z
= Ih(x, y, H + HAg) −

(︃
ρCp, AgHAgV

L
+ h4

)︃
(T(x, y, H + HAg) − Ta)

= Ih(x, y, H + HAg) − ht(T(x, y, H + HAg) − Ta) (20)

where the effect of Ag line on the heat convection as a heat convection coefficient is lumped in ht

as ht = hAg + h4 with hAg =
ρCp, AgHAgV

L .
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Appendix B: solution of the heat transfer equation

To solve the governing equation with the given boundary conditions and initial condition, Eqs.
(14a-h) are nondimensionalized by assuming x∗ = x/L, y∗ = y/W, z∗ = z/H, t∗ = tV/L,
T∗ = T/T0 and k∗ = k(T)/k(T0), where V is the scanning speed and T0 is the approximated
average temperature and will be used as the reference point for Taylor series expansion for
linearizing the boundary conditions. Since k(T) is a function of temperature, we further assume
that k(T) = p · Tq to yield:

k∗ =
k(T)
k(T0)

=

(︃
T
T0

)︃q
= T∗q (21)

To linearize the governing equation, define that ∂T′∗

∂x∗i
= k∗ ∂T∗

∂x∗i
and T∗q+1 = 1+ (q + 1)T ′∗. Expand

T∗q+1 at reference dimensionless temperature T∗
r :

T∗q + 1 = T∗
rq + 1 + (q + 1)T∗

rq(T
∗ − T∗

r ) = 1 + (q + 1)T ′∗ (22)

And yield that:
T∗ =

1
(q + 1)T∗

r
q [1 − T∗

r
q+1
+ (q + 1)T ′∗] + T∗

r (23)

where in our case, T∗
r is defined to be 1. Since T∗ − T∗

a will be an important item in all boundary
conditions, it is good to evaluate it first and express it in terms of T ′∗

T∗ − T∗
a=

1
(q + 1)T∗

r
q −

T∗
r

q + 1
+

T ′∗

T∗q
r
+ T∗

r −T∗
a=

1
T∗

r
q (T

′∗ + T∗
c ) (24)

with
T∗

c=T∗
rq

(︃
T∗

r −T∗
a+

1 − T∗
rq + 1

(q + 1)T∗
rq

)︃
(25)

To linearize the convection boundary condition, we define

hi(T − Ta) + σϵ(T4 − T4
a ) = [hi + σϵ(T2 + T2

a )(T + Ta)](T − Ta) = Hi(T − Ta) (26)

where the subscript i represent either the convection coefficient on the top surface or other surface.
To further simplify the expression of Hi (i = 1, 2, 3, t), T is assumed to be the estimated average
temperature T0 to yield:

Hi = hi + σϵ(T2
0 + T2

a )(T0 + Ta) (27)

Defining Θ = T ′∗ + T∗
c , the dimensionless governing equation, boundary conditions and initial

condition can be expressed in terms of Θ:

∂2Θ
∂x∗2 + a∗2 ∂

2Θ
∂y∗2 + s∗2 ∂

2Θ
∂z∗2 =

1
Fo
∂Θ
∂t∗

(28a)

∂Θ
∂x∗
= H∗

1Θ at x∗ = 0 (28b)

∂Θ
∂x∗
= −H∗

1Θ at x∗ = 1 (28c)

∂Θ
∂y∗
= H∗

2Θ at y∗ = 0 (28d)

∂Θ
∂y∗
= −H∗

2Θ at y∗ = 1 (28e)
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∂Θ
∂z∗
= H∗

3Θ at z∗ = 0 (28f)

∂Θ
∂z∗
= I∗(1 − Ref ) − H∗

t Θ at z∗ = H (28g)

Θ(t∗ = 0) =
T∗

a
q+1 − 1
q + 1

+ T∗
c (28h)

where,
H∗

1=
H1L

k(T0)T∗
r
q (29a)

H∗
2=

H2W
k(T0)T∗

r
q (29b)

H∗
3=

H3H
k(T0)T∗

r
q (29c)

H∗
t =

HtH
k(T0)T∗

r
q (29d)

I∗ =
I · H

k(T0)T∗
r
q (29e)

The dimensionless governing equation can be solved by integration transformation [35]. The
integration kernels, X, Y, Z, the eigen values, λ and the norms, N in all directions can be
determined from the homogeneous boundary conditions in x and y directions or the corresponding
homogeneous boundary conditions in z direction.

X(x∗) = H∗
1 sin(λlxx∗) + λlx cos(λlxx∗) (30a)

tan λlx =
2λlxH∗

1

λ2
lx − H∗

1
2 (30b)

Nlx =
1
2

[︄
H∗

1+(λ
2
lx + H∗

1
2
)

(︄
1 +

H∗
1

λ2
lx + H∗

1
2

)︄]︄
(30c)

Y(y∗) = H∗
2 sin(λmyy∗) + λmy cos(λmyy∗) (31a)

tan λmy =
2λmyH∗

2

λ2
my − H∗

2
2 (31b)

Nmy =
1
2

[︄
H∗

2+(λ
2
my + H∗

2
2
)

(︄
1 +

H∗
2

λ2
my + H∗

2
2

)︄]︄
(31c)

Z(z∗) = H∗
3 sin(λnzz∗) + λnz cos(λnzz∗) (32a)

tan λnz =
λnz(H∗

2+H∗
t )

λ2
nz − H∗

2H∗
t

(32b)

Nnz =
1
2

[︄
H∗

3+(λ
2
nz + H∗

3
2
)

(︄
1 +

H∗
t

λ2
nz + H∗

t
2

)︄]︄
(32c)

The transformation pairs are:⎧⎪⎪⎨⎪⎪⎩
Θ̄(λlx, λmy, z∗, t∗) = ∫1

0 ∫1
0 Θ(x∗, y∗, z∗, t∗)X(x∗)Y(y∗) dx∗dy∗

Θ(x∗, y∗, z∗, t∗) =
∑︁∞

l=0
∑︁∞

m=0 Θ̄(λlx, λmy, z∗, t∗)X(x∗)
Nlx

Y(y∗)
Nmy

(33)
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Take the integration in Eq. (33) and apply it to Eqs. (28a, f-h) to yield:

−(λ2
lx + a∗2λ2

my)Θ̄ + s∗2 ∂
2Θ̄
∂z∗2 =

1
Fo
∂Θ̄
∂t∗

(34a)

∂Θ̄
∂z∗

|︁|︁|︁|︁
z∗=0
= H∗

3Θ̄(z∗ = 0) (34b)

∂Θ̄
∂z∗

|︁|︁|︁|︁
z∗=1
= −H∗

t Θ̄(z∗ = 1) + flm(t∗) (34c)

Θ̄(t∗ = 0) = Θ̄i (34d)

where,

Θ̄i =

(︄
T∗

a
q+1 − 1
q + 1

+ T∗
c

)︄ [︃
sin λlx +

H∗
1
λlx

(1 − cos λlx)

]︃ [︃
sin λmy +

H∗
2
λmy

(1 − cos λmy)

]︃
(35)

flm(t∗) = (1 − Ref ) ∫
1
0 ∫

1
0 I∗(x∗, y∗, t∗)X(x∗)Y(y∗) dx∗dy∗ (36)

Equation (34c) is the only nonhomogeneous boundary condition in z direction, which can be
homogenized by the following substitution:

Θ̄(λlx, λmy, z∗, t∗) = Θ̄1(λlx, λmy, z∗, t∗) + Θ̄2(λlx, λmy, z∗, t∗) (37)

where,

Θ̄2(λlx, λmy, z∗, t∗) = flm(t∗)
H∗

3z∗ + 1
H∗

3(1 + H∗
t ) + H∗

t
(38)

Substitute Eq. (37) into Eqs. (34a-d) to yield:

−(λ2
lx + a∗2λ2

my)(Θ̄1 + Θ̄2) + s∗2 ∂
2Θ̄1

∂z∗2 =
1
Fo

(︃
∂Θ̄1
∂t∗
+
∂Θ̄2
∂t∗

)︃
(39a)

∂Θ̄1
∂z∗

|︁|︁|︁|︁
z∗=0
= H∗

3Θ̄1(z∗ = 0) (39b)

∂Θ̄1
∂z∗

|︁|︁|︁|︁
z∗=1
= −H∗

t Θ̄1(z∗ = 1) (39c)

Θ̄1(t∗ = 0) = Θ̄i − Θ̄2(t∗ = 0) (39d)

Since all the boundary conditions for Θ̄1 are homogeneous boundary conditions. The integration
transformation in z direction is applied to Θ̄1 using the following integral transformation pairs:⎧⎪⎪⎨⎪⎪⎩

Θ̃1(λlx, λmy, λnz, t∗) = ∫1
0 Θ̄1(λlx, λmy, z∗, t∗)Z(z∗) dz∗

Θ̄1(λlx, λmy, z∗, t∗) =
∑︁∞

n=0 Θ̃1(λlx, λmy, λnz, t∗)Z(z∗)
Nnz

(40)

The governing equation and the initial condition can then be expressed as:

λ2
lmnΘ̃ +

dΘ̃
dt∗
= Fo · s∗2

· Θ̃2 (41a)

Θ̃(t∗ = 0) = Θ̃i (41b)
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where,

Θ̃2 = ∫
1
0 Θ̄2Z(z∗) dz∗

=
flm(t∗)

H∗
3(1 + H∗

t ) + H∗
t

[︃ H∗
3
λnz

(1 − cos λnz) + sin λnz

]︃
+

H∗
3flm(t∗)

H∗
3(1 + H∗

t ) + H∗
t

[︃
H∗

3

(︃
sin λnz

λ2
nz

−
cos λnz

λnz

)︃
+ λnz

(︃
cos λnz − 1
λ2

nz
+

sin λnz

λnz

)︃]︃ (42a)

Θ̃i = ∫
1
0 Θ̄iZ(z∗) dz∗ = Θ̄i

[︃
sin λnz +

H∗
3(1 − cos λnz)

λnz

]︃
(42b)

Θ̃ = Θ̃1 + Θ̃2 (42c)

The ODE Eq. (41a) can be solve with Eq. (41b) to yield:

Θ̃(t∗) = Θ̃ie−λ
2
lmnt∗ + e−λ

2
lmnt∗

∫
t∗
0 Fo · s∗2

· λ2
nzΘ̃2(τ)eλ

2
lmnτ dτ (43)

Thus, by applying Eq. (40) and Eq. (33) to Θ̃1 = Θ̃ − Θ̃2, T ′∗ can be solved as:

T ′∗ = −T∗
c+

∑︂∞

l=0

X(x∗)
Nlx

∑︂∞

m=0

Y(y∗)
Nmy

×[︃
Θ̄2 +

∑︂∞

n=0

Z(z∗)
Nnz

(︂
Θ̃ie−λ

2
lmnt∗ − Θ̃2 + e−λ

2
lmnt∗

∫
t∗
0 Fo · λ2

nz · s∗2Θ̃2(τ)eλ
2
lmnτ dτ

)︂]︃ (44)

And the dimensionless temperature T∗ can then be solved from T∗q+1 = 1 + (q + 1)T ′∗ as:

T∗ = [1 + (q + 1)T ′∗]−(q+1) (45)

Finally, the dimensional temperature in the silicon substrate is

T = T0 · [1 + (q + 1)T ′∗]−(q+1) (46)

Appendix C: evaluation of the integrations

In Eq. (36), flm(t∗) integrate the dimensionless laser intensity multiplied by the eigen functions in
x and y direction. Since the laser intensity is nonzero only within the laser spot, the integration
can be evaluated by considering it within the laser spot and under a polar coordinate. The
transformation between the Cartesian coordinate and the polar coordinate can be shown as:⎧⎪⎪⎨⎪⎪⎩

x = Vt + r0r∗ cos θ

y = D + r0r∗ sin θ
→

⎧⎪⎪⎨⎪⎪⎩
x∗ = x

L = t∗ + r∗ r0
L cos θ

y∗ = y
W = D∗ + r∗ r0

W sin θ
(47)

where r0 represents the radius of the laser spot. flm(t∗) can then be evaluated in terms of r∗ and θ

flm(t∗) = (1 − Ref ) ∫
2π
0 ∫

1
0 I∗(r∗, θ, t∗)X(x∗)Y(y∗)

r2
0

L · W
r∗ dr∗dθ

=
I0 · H · (1 − Ref )
k(T0)T∗

r
qL · W

∫
2π
0 ∫

1
0

1
r∗2

[︃
R2

out J2
1

(︃
kRoutr

z

)︃
+ R2

in J2
1

(︃
kRinr

z

)︃
e−4

−2RinRoutJ1

(︃
kRinr

z

)︃
J1

(︃
kRoutr

z

)︃
cos

(︄
R2

out − R2
in

2z
−

R0 cos β
sinα

)︄
e−2

]︄
×
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{︂
H∗

1 sin
[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂
+ λlx cos

[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂}︂

×{︂
H∗

2 sin
[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂
+ λmy cos

[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂}︂

r∗dr∗dθ

=
I0 · H · (1 − Ref )
k(T0)T∗

r
qL · W

∫
1
0

1
r∗

[︃
R2

out J2
1

(︃
kRoutr

z

)︃
+ R2

in J2
1

(︃
kRinr

z

)︃
e−4

−2RinRoutJ1

(︃
kRinr

z

)︃
J1

(︃
kRoutr

z

)︃
cos

(︄
R2

out − R2
in

2z
−

R0 cos β
sinα

)︄
e−2

]︄
×

∫
2π
0

{︂
H∗

1 sin
[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂
+ λlx cos

[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂}︂

×{︂
H∗

2 sin
[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂
+ λmy cos

[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂}︂

dθdr∗ (48)

Define

f (1)lm (r∗, t∗) = ∫
2π
0

{︂
H∗

1 sin
[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂
+ λlx cos

[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂]︂}︂

×{︂
H∗

2 sin
[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂
+ λmy cos

[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂]︂}︂

dθ

= ∫
2π
0

√︂
H∗

1
2 + λ2

lx sin
[︂
λlx

(︂
t∗ +

r0
L

r∗ cos θ
)︂
+ β1

]︂
×

√︂
H∗

2
2 + λ2

my sin
[︂
λmy

(︂
D∗ +

r0
W

r∗ sin θ
)︂
+ β2

]︂
dθ (49)

with
tan β1 =

λlx

H∗
1

and tan β2 =
λmy

H∗
2

(50)

Thus, f (1)lm can be simplified as:

f (1)lm (r∗, t∗) =
1
2

√︂
H∗

1
2 + λ2

lx

√︂
H∗

2
2 + λ2

my ∫
2π
0 cos(A − B) − cos(A + B) dθ (51)

where,

A = λlx

(︃
t∗ +

r0r∗

L
cos θ

)︃
+ β1 and B = λmy

(︃
D∗ +

r0r∗

W
sin θ

)︃
+ β2 (52)

Take ∫2π
0 cos(A + B)dθ as an example [36],

∫
2π
0 cos(A + B)dθ = ∫

2π
0 cos

[︃
(λlx + λmy)t∗ + (β1 + β2) +

λlxr0r∗

L
cos θ +

λmyr0r∗

W
sin θ

]︃
= Re

{︃
ei[(λlx+λmy)t∗+(β1+β2)] ∫

2π
0 ei

(︂
λlxr0r∗

L cos θ+ λmyr0r∗
W sin θ

)︂
dθ

}︃
= 2πJ0

⎛⎜⎝
√︄
λ2

lx
L2 +

λ2
my

W2 r0r∗⎞⎟⎠ cos[(λlx + λmy)t∗ + (β1 + β2)] (53)

With the same principle

∫
2π
0 cos(A − B)dθ = 2πJ0

⎛⎜⎝
√︄
λ2

lx
L2 +

λ2
my

W2 r0r∗⎞⎟⎠ cos[(λlx − λmy)t∗ + (β1 − β2)] (54)
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Thus,

f (1)lm (r∗, t∗) = π
√︂

H∗
1

2 + λ2
lx

√︂
H∗

2
2 + λ2

my J0
⎛⎜⎝
√︄
λ2

lx
L2 +

λ2
my

W2 r0r∗⎞⎟⎠×
{cos[(λlx − λmy)t∗ + (β1 − β2)] − cos[(λlx + λmy)t∗ + (β1 + β2)]} (55)

flm(t∗) =
I0 · H · (1 − Ref )
k(T0)T∗

r
qL · W

∫
1
0

1
r∗

[︃
R2

out J2
1

(︃
kRoutr

z

)︃
+ R2

in J2
1

(︃
kRinr

z

)︃
e−4

−2RinRoutJ1

(︃
kRinr

z

)︃
J1

(︃
kRoutr

z

)︃
cos

(︄
R2

out − R2
in

2z
−

R0 cos β
sinα

)︄
e−2

]︄
× f (1)lm (r∗, t∗) dr∗

(56)
Substitute Eq. (56) to Eq. (43) to yield:

Θ̃(t∗) = Θ̃ie−λ
2
lmnt∗ +Fo · s∗2λ2

nz
(1 − Ref )I0H∗

3

k(T0)Tq
r

π

L · W

√︂
(H∗

1
2 + λ2

lx)(H
∗
2

2 + λ2
my) ·K1 ·K2 ·K3 (57)

where,

K1 =
H∗

3
H∗

3(1 + H∗
t ) + H∗

t

[︃
(1 − cos λnz)

λnz
+

sin λnz

H∗
3

+H∗
3

(︃
sin λnz

λ2
nz

−
cos λnz

λnz

)︃
+ λnz

(︃
cos λnz − 1
λ2

nz
+

sin λnz

λnz

)︃]︃ (58)

K2 = ∫
1
0

1
r∗

[︃
R2

out J2
1

(︃
kRoutr

z

)︃
+ R2

in J2
1

(︃
kRinr

z

)︃
e−4 − 2RinRoutJ1

(︃
kRinr

z

)︃
× J1

(︃
kRoutr

z

)︃
cos

(︄
R2

out − R2
in

2z
−

R0 cos β
sinα

)︄
e−2

]︄
× J0

⎛⎜⎝
√︄
λ2

lx
L2 +

λ2
my

W2 r0r∗⎞⎟⎠ dr∗
(59)

K3 = e−λ
2
lmnt∗

∫
t∗
0 eλ

2
lmnτ{cos[(λlx − λmy)τ + (β1 − β2)] − cos[(λlx + λmy)τ + (β1 + β2)]} dτ

= −e−λ
2
lmnt∗ λ

2
lmn cos(−λmyD∗ + β1 − β2) + λlx sin(−λmyD∗ + β1 − β2)

λ4
lmn + λ

2
lx

+
λ2

lmn cos(λlxt∗ − λmyD∗ + β1 − β2) + λlx sin(λlxt∗ − λmyD∗ + β1 − β2)

λ4
lmn + λ

2
lx

+ e−λ
2
lmnt∗ λ

2
lmn cos(λ2

lmnD∗ + β1 + β2) + λlx sin(λmyD∗ + β1 + β2)

λ4
lmn + λ

2
lx

−
λ2

lmn cos(λlxt∗ + λmyD∗ + β1 + β2) + λlx sin(λlxt∗ + λmyD∗ + β1 + β2)

λ4
lmn + λ

2
lx

(60)
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