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A B S T R A C T

In conventional temporal optical solitons the effect of the nonlinearity is balanced by that of quadratic
dispersion. In recent work we have considered solitons that balance the nonlinearity with pure higher, even
orders of dispersion or with combinations of different even dispersion orders. Here we highlight the key
differences and similarities between these novel solitons and conventional solitons and give arguments for
the existence of this infinite set of solitons.
. Introduction

At an intuitive level, temporal solitons arise from the balance of
onlinear effects and the effects of dispersion, leading to a pulse that
ropagates without changing shape. In their simplest manifestation, the
ositive nonlinear effect is the Kerr effect, whereby the refractive index
ncreases linearly with intensity, whereas the dispersion is anomalous
nd quadratic, so that the inverse group velocity is a linearly decreasing
unction of frequency, at least over the relevant range of frequencies
i.e., over the bandwidth of the pulse). This combination leads to
‘Nonlinear Schrödinger’’ (NLS) solitons. That the combination of a
ositive Kerr effect and negative quadratic dispersion can lead to the
ormation of solitons when light pulses propagate through an optical
iber, was first pointed out theoretically 50 years ago in a seminal
aper by Hasegawa and Tappert [1]. This was followed in 1980 by its
xperimental confirmation by Mollenauer, Stolen and Gordon [2].

Hasegawa and Tappert showed that electric field envelope 𝜓 of a
hort light pulse propagating in an optical fiber satisfies the nonlinear
chrödinger equation [1,3]

𝜕𝜓
𝜕𝑧

−
𝛽2
2!

𝑑2𝜓
𝑑𝑇 2

+ 𝛾|𝜓|2𝜓 = 0, (1)

here 𝑧 is the spatial propagation parameter and 𝑇 = 𝑡 − 𝑧∕𝑣𝑔 is time
n a frame that moves at the group velocity 𝑣𝑔 of the pulse. Further,
2 is the quadratic dispersion and 𝛾 is the nonlinear parameter of the
aveguide. Provided that 𝛽2 and 𝛾 have opposite signs, the nonlinear
chrödinger equation has soliton solutions in the form of a hyperbolic
ecant [1,3]

There is a large literature on solitons with non-Kerr nonlinear
ffects, in which the relationship between the intensity and refrac-
ive index is more complicated than being merely linear [4–6]. Such
odels for the refractive index can, for example, represent the onset
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of saturation of the nonlinear contribution to the refractive index
or damage to the material [7–9] or the finite time response of the
nonlinear medium [10]. Historically, there have been far fewer in-
vestigations in which the limitation to quadratic dispersion has been
relaxed. These include work in which higher orders of dispersion are
included [11–16], but in most of these studies the quadratic dispersion
nonetheless dominates. In recent years we and our co-workers and
others have investigated theoretically and experimentally solitons with
a Kerr nonlinearity, but with dispersion in which the quadratic term
does not dominate or is even absent. This has lead to the discovery
of an infinite hierarchy of solitons arising from pure-even-orders of
dispersion and nonlinearity [17–20], as well as hybrid solutions [21–
23], multipeak solutions [24,25], dark solitons [26,27], as well as
solitons in cavities [27–30] and in fiber lasers [31–33].

Naturally, finding waveguides with dominant high-even orders of
dispersion requires thought and careful design. Nonetheless, several
realistic platforms are already available to experimentally study these
novel kind of solitons. Pure-quartic solitons were originally observed
in a planar photonic crystal waveguide [17]. Subsequently, pure high,
even-order dispersion solitons were experimentally demonstrated in a
fiber laser cavity with a reconfigurable dispersion lumped element [34,
35], up to dispersion of 10th order. Realistic designs with dominant
high, even-order dispersion have been proposed in photonic crystal
fibers [36], and microresonators [37,38].

The aim of this paper is to point out differences and similarities
between the soliton solutions of the nonlinear Schrödinger equation
and those of systems with more general dispersion relations, but still
the simple Kerr nonlinearity, and to provide educational physical ex-
planations to build a proper understanding of these recently discovered
solitons. We consider five different aspects: (i) the energy and power
scaling; (ii), the shape of the soliton; (iii) the presence/absence of
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Galilean invariance of the solitons; (iv) a phase compensation argu-
ment that physically illustrates the formation of solitons; and (v), the
effective lengths associated with high orders of dispersion.

2. Background

In this paper we consider a conventional, third order Kerr nonlin-
earity, according to which

𝑛(𝐼) = 𝑛𝑙 + 𝑛(2)𝐼, (2)

where 𝑛(𝐼) is the intensity dependent refractive index, 𝑛𝑙 is the low-
intensity refractive index and 𝑛(2) is the nonlinear refractive index,
which we will take to be positive. This means that, in the absence
of other effects, by Eq. (2) the intensity gradient of a pulse causes a
refractive index gradient, in turn leading to a phase gradient 𝜑(𝑡) upon
propagation. A phase gradient entails a frequency gradient through
𝛿𝜔 = −𝜕𝜑∕𝜕𝑡. For a positive nonlinearity this causes the leading edge
to shift to the red whereas the trailing edge shifts to the blue [3,39].

In the most general case, the dispersion relation, the relationship
between the frequency 𝜔 and the wavenumber 𝛽 in a neighborhood
around frequency 𝜔0 in the absence of nonlinear effects can be written
as

𝛽 = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +
𝛽2
2!

(𝜔 − 𝜔0)2 +
𝛽3
3!

(𝜔 − 𝜔0)3 +
𝛽4
4!

(𝜔 − 𝜔0)4 +⋯ (3)

where the 𝛽𝑚 = 𝜕𝑚𝛽∕𝜕𝜔𝑚. The fixed wavenumber 𝛽0 can be neglected as
it leads to a fixed phase 𝛽0𝐿 upon propagation over a distance 𝐿. In the
second term on the right-hand side the factor 𝛽1 represents the inverse
group velocity 𝜕𝛽∕𝜕𝜔 = 𝑣−1𝑔 at 𝜔0. The associated term represents a
pulse propagating at this group velocity without changing shape. This
term can be dropped if we choose a frame moving at this speed. The
lowest nontrivial term in Eq. (3) is thus the 𝛽2 term, which represents
quadratic dispersion. When higher order terms are neglected then the
dispersion relation is a parabola and the inverse group velocity is a
linear function of frequency. Since we take 𝛽2 < 0 the inverse group
velocity decreases linearly with frequency.

We now consider more general dispersion relations in which the
inverse group velocity decreases monotonically with frequency, but not
necessarily linearly. We further, for convenience, take the dispersion
relation to be symmetric, so that dispersion relation Eq. (3) only
has symmetric terms. In that case the nonlinear Schrödinger equation
Eq. (1) generalizes to the generalized nonlinear Schrödinger equation

𝑖
𝜕𝜓
𝜕𝑧

+
𝑀
∑

𝑚=2,4,6…
(−1)𝑚∕2

𝛽𝑚
(𝑚)!

𝜕𝑚𝜓
𝜕𝑇 𝑚

+ 𝛾|𝜓|2𝜓 = 0. (4)

where 𝑀 is the highest order of dispersion that is present.

3. Soliton formation

As discussed in Section 2, in the absence of other effects, the Kerr
nonlinearity causes the leading edge of a pulse to shift to the red and
the trailing edge to the blue. The formation of a stable pulse requires
these newly generated frequencies to propagate toward the center of
the pulse; in other words, the red frequencies need to slow down and
the blue frequencies need to speed up. This means that inverse group
velocity must decrease monotonically with frequency (so that the group
velocity itself increases with frequency). From Eq. (3) the inverse group
velocity 𝑣−1𝑔 = 𝜕𝛽∕𝜕𝜔 can be written as

1
𝑣𝑔

≡ 𝜕𝛽
𝜕𝜔

= 𝛽1 + 𝛽2(𝜔 − 𝜔0) +
𝛽3
2
(𝜔 − 𝜔0)2 +

𝛽4
6
(𝜔 − 𝜔0)3 +⋯ . (5)

In conventional nonlinear Schrödinger solitons 𝛽2 < 0 and higher order
dispersion coefficients are negligible [1,3,39]; in this case the electric
field envelope satisfies the nonlinear Schrödinger equation Eq. (1).
However, there are of course many dispersion relations leading to a
monotonically decreasing inverse group velocity with frequency. In
2

these more general cases the electric field envelope satisfies Eq. (4).
The purpose of this paper is to compare the soliton solutions to these
two equations.

To bring some structure to the discussion we distinguish two cases.
In the case of pure dispersion we take all but one of the dispersion
coefficients to be nonzero, i.e., 𝛽𝑚 = 0 for 𝑚 < 𝑀 and 𝑚 > 𝑀 ,
and 𝛽𝑀 < 0. For 𝑀 = 2 this reverts to the nonlinear Schrödinger
solitons, whereas 𝑀 = 4 results in Pure-Quartic Solitons [17]. For 𝑀 > 2,
we generically refer to the resulting solitons as pure-high, even-order
dispersion solitons (PHEODS) [19]. In contrast, in the presence of mixed
dispersion all 𝛽𝑚 for even 𝑚 ≤𝑀 can be non-zero, and are such that 𝑣−1𝑔
monotonically decreases.

Since solitons do not change their shape upon propagation, they
are solutions of Eq. (4) of the form 𝜓(𝑇 , 𝑧) = 𝑒𝑖𝜇𝑧𝑢(𝑇 ) where 𝜇 is the
nonlinear contribution to the propagation constant. The function 𝑢(𝑇 )
hen satisfies the ordinary differential equation

𝜇𝑢 +
𝑀
∑

𝑚=2,4,6…
(−1)𝑚∕2

𝛽𝑚
(𝑚)!

𝑑𝑚𝑢
𝑑𝑇 𝑚

+ 𝛾𝑢3 = 0. (6)

We have further used that 𝑢 is real—we discuss this further below.
Since 𝜇 corresponds to the nonlinear contribution to the propagation
constant, it is related to the peak power of the soliton. In general, there-
fore, 𝜇 ∝ 𝛾𝑃 , where the proportionality constant is 1∕2 for conventional
nonlinear Schrödinger solitons and typically is of order unity [19].

It is analytically known that the soliton solutions 𝑢(𝑇 ) for pure,
quadratic dispersion are real [3]. Based on numerical results, the same
is true for even-order soliton solutions, up to order 𝑀 = 16 [35].
This means that for such solitons the phase is constant (i.e., they are
unchirped). The reason is that in the presence of these even orders of dis-
persion, the flow of energy can be written as products of 𝑑(arg{𝑢})∕𝑑𝑇 ,
and its higher derivatives, with |𝑢| and its derivatives [40]. Now in
order for the solution to be stationary it is necessary for the intra-pulse
energy flow to vanish. This can be guaranteed if arg{𝑢} is constant,
i.e., if 𝑢(𝑇 ) has a constant phase and can thus be made real. We surmise
the same to be true for any higher, even-order dispersion. We also have
analytic and numerical results that this argument holds for solitons with
mixed, even order of dispersion [22,41].

In the presence of 𝛽3 this result no longer holds; the energy flow
contains contributions of the form 2𝑢(𝑑2𝑢∕𝑑𝑇 2) − (𝑑𝑢∕𝑑𝑇 )2, which
remains is nonzero, even in the absence of chirp. As shown in the
Appendix, the same is true in the presence of any, odd-order dispersion
𝑀 > 3. Thus solitons in the presence of any odd order of dispersion may
exist, but they must be chirped. In the presence of cubic dispersion
the solitons also have an asymmetric spectrum [40], which, based
on physical reasons, is also expected to extend to any odd order of
dispersion.

3.1. Energy and power scaling

It can be straightforwardly ascertained that if 𝑢(𝑇 )𝑒𝑖𝜇𝑧 is a solution
to Eq. (1), then so is 𝛼𝑢(𝑇 ∕𝛼)𝑒𝑖𝛼2𝜇𝑧, where 𝛼 is real and positive. This
scaling relation implies that, given a solution, then so is the scaled
version with a temporal width that is 𝛼 times smaller and an intensity
that is 𝛼2 times larger, and hence an energy that is 𝛼 times larger.
Indeed, for the soliton solution the energy is inversely proportional
to the width or 𝐸 ∝ 𝜏−10 . As the pulse narrows in time, it broadens
in frequency, strengthening the effect of dispersion, which needs to
be balanced by an increased nonlinear effect, i.e., by an increased
intensity.

A similar argument shows that for pure-quartic solitons 𝐸 ∝ 𝜏−30 ,
and that for a soliton with pure dispersion of order 𝑀 , 𝐸 ∝ 𝜏−(𝑀−1)

0 .
This implies that the larger the order of dispersion the faster the rate
at which the pulse energy grows; this may have application in soliton-
based lasers. With our colleagues we experimentally demonstrated
these energy-width scaling laws up to 𝑀 = 10 using a reconfigurable
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Fig. 1. Power versus time for a Pure Quartic Soliton with 𝛽4 = −2.2 ps4mm−1, 𝛾 = 4.072 W−1mm−1, and 𝜇 = 1.76 mm−1. (a) linear scale and, (b) logarithmic scale. Figure taken
rom Tam et al. [18].
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ltrafast cavity [19,34]. A direct interpretation of the energy-width
caling law 𝐸𝑀 ∝ 𝜏−(𝑀−1)

0 would imply that moving to high-order
HEODS would undoubtedly entail higher-energy pulses in the ultra-
hort pulse regime. However, a more nuanced look at the energy scaling
hows that

𝑀 = 𝐾𝑀
|𝛽𝑀 |

𝛾𝜏(𝑀−1)
, (7)

ith 𝐾𝑀 an energy coefficient that decreases rapidly with 𝑀 [19].1
herefore, the advantageous dependence with 𝜏 may be trumped by the
maller energy coefficient at large 𝑀 . This, combined with the practical
ifficulty of implementing propagation media or cavities with dominant
igh-orders of dispersion, may impose a practical limit on the highest-
rder PHEODS of interest for high-energy ultrafast applications. Thus,
he potential of PHEODS for generating high-power ultrashort pulses
emain to be fully understood.

In the presence of mixed orders of dispersion, solutions to the
eneralized nonlinear Schrödinger equation Eq. (4) are also subject to
caling relations. However, a change in width of a solution changes the
elative strengths of different orders of dispersion and in this case the
caling relation thus involves the scaling of dispersion coefficients as
ell.

.2. Soliton shape

The nonlinear Schrödinger equation Eq. (1) has soliton solutions
ith a hyperbolic secant form [3,39,42] The solutions for higher, even
rders of dispersion are not analytically known. The soliton solution
n the presence of pure 4th order dispersion was discussed by Tam
t al. [18] (see Fig. 1). While the detailed shape of the solution had
o be determined numerically, some of the key properties, such as the
hape of the low-intensity tails and energy and power scaling can be
etermined analytically.

At low intensities, such as occurs in the soliton tails, nonlinear
ffects can be neglected and Eq. (6) simplifies considerably. The electric
ield envelope can then be written as a linear superposition of terms of
he type 𝑒𝜂𝑇 , where, for pure dispersion of order 𝑀 , the 𝜂 are the 𝑀

roots of

𝜂 = (±1)1∕𝑀 (𝑀!𝜇∕|𝛽𝑀 |)1∕𝑀 . (8)

The + sign applies when 𝑀∕2 is odd, whereas - applies for 𝑀∕2 even.
alf of the roots, namely those with ℜ(𝜂) > 0, correspond to the leading
dge of the pulse, whereas the other half, with ℜ(𝜂) < 0, correspond to
ts trailing edge.

For 𝑀 = 2 the soliton tails vary as 𝑒±
√

2𝜇∕|𝛽2|𝑇 [3], whereas for 𝑀 =
4 they vary as 𝑒±|𝜂𝑇 |∕

√

2 cos(|𝜂𝑇 |∕
√

2+𝛼4) where |𝜂| = (24𝜇∕|𝛽4|)1∕4, and
where we used that 𝑢 is real. The oscillations in the tail are illustrated

1 The decrease in size of the 𝐾𝑀 with 𝑀 is related to the expressions for
the effective dispersion lengths discussed in Section 3.5
3

in Fig. 1(b). The phase 𝛼4 cannot be determined by this method and
requires solving the full nonlinear equation.

The argument for 𝑀 > 4 requires one additional step. In the
presence of pure 𝑀 th order dispersion there are 𝑀 distinct values
or 𝜂, all with magnitude |𝜂| = (𝑀!𝜇∕|𝛽𝑀 |)1∕𝑀 (see Eq. (8)). Their
rguments are shown in Fig. 2. Fig. 2(a) shows the result for 𝑀∕2
s odd (𝑀 = 10), whereas Fig. 2(b) shows the result for 𝑀∕2 even
𝑀 = 12). The roots are never imaginary, which would lead to solutions
hat are of infinite extent. The most relevant of these roots are the
nes with the smallest magnitude of their real part since they decay
ost slowly away from the central peak. These are the four roots with

he arguments 𝜗𝑀 = ±(1∕2 ± 1∕𝑀)𝜋 (indicated by squares in Fig. 2).
he leading and trailing edges of the solitons thus have the functional
orm 𝑒±|𝜂𝑇 cos(𝜗𝑀 )| cos(|𝜂𝑇 sin(𝜗𝑀 )| + 𝛼𝑀 ). Since 𝜗𝑀 increases with 𝑀 ,
he oscillations grow denser as 𝑀 increases.

As mentioned in Section 3.1 the intrinsic soliton shape for pure,
igher-order even dispersion is independent of 𝜇 and of 𝛽4. In the
resence of mixed dispersion, the soliton shape does depend on the
eak power though the parameter 𝜇. As a general rule for small 𝜇
he low orders in the Taylor expansion dominate (typically 𝑚 = 2),
nd the solution is similar to a hyperbolic secant. As 𝜇 increases, the
olitons start to depend on higher dispersion orders, and evolve to have
scillating tails, as mentioned in the paragraphs above. Eventually, for
he largest 𝜇, the highest order dispersion term (𝑚 = 𝑀) dominates.
hus, as 𝜇 increases, and the pulse becomes more nonlinear, the
scillations in the tails become increasingly dense.

.3. Galilean invariance

The soliton solutions to the nonlinear Schrödinger equation have
alilean invariance. This means that their shape is independent of their
elocity—in other words, the equation is independent of the frame in
hich it is written. The reason is that the linear dispersion relation

s taken to be parabolic, so that the local Taylor expansion Eq. (3),
runcated after the quadratic term, is the same in any co-moving frame.

For pure, higher-order dispersion relations this is no longer true. For
xample, a quartic dispersion relation has a unique frequency where
2 = 0 and 𝛽3 = 0 simultaneously. The dispersion relation in the
rame corresponding to the group velocity 𝛽−11 at this frequency is

pure quartic polynomial. However, in any other frame this is no
onger true—the quartic term, when expanded at some other frequency
enerates quadratic and cubic terms [40]. This means that pure quartic
olitons can propagate only at a unique speed. At other speeds, the
mergence of 𝛽3 (in addition to the emergency of 𝛽2), causes the solitons
o have an asymmetric spectrum, though they remain symmetric in
ime. The presence of the 𝛽3 term, or any odd order of dispersion (see
ppendix), also cause the solitons to have a non-trivial chirp, unlike
olitons with only even orders of dispersion [40].
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Fig. 2. Arguments of the roots for (a): 𝑀 = 10, and (b) 𝑀 = 12. The roots with the smallest magnitudes of their real parts are indicated by squares, whereas the other roots are
indicated by circles.
3.4. Nonlinear and dispersive phase compensation

In an instructive 2001 paper, Dudley, Peacock and Millot introduced
an intuitive physical explanation of how the nonlinear and dispersive
phase shifts compensate each other to form an NLS soliton [43]. They
aimed to debunk the common misconception that the dispersive phase
shift is necessarily parabolic and, therefore, the dispersive frequency
gradient (the chirp), is always linear. With this misconception in mind
it is hard to envision how the dispersive phase shift can compensate
the intensity dependent nonlinear phase shift. Dudley et al. showed
that while at long propagation distances the dispersive phase shift is
parabolic and the chirp is thus linear, at short propagation distances
this is not the case, and indeed it can perfectly compensate for the
nonlinear phase shift across the entire pulse. More recently, we applied
this chirp compensation argument to justify the approximate Gaussian
shape of pure-quartic solitons around the center of the pulse [17]. Here,
equipped with exact numerical solutions for PHEODS with various
orders of dispersion, we generalize this argument to the entire PHEODS
hierarchy with the purpose of highlighting the similar physical origin of
all the members of this soliton family but also some important practical
differences.

As input condition to our simulations we use the temporal ampli-
tudes of the pure-quartic soliton (𝑀 = 4), pure-sextic soliton (𝑀 =
6), and pure-octic soliton (𝑀 = 8) are shown in Figs. 3(a), (f), and
(k), respectively. These are numerically obtained assuming stationary
solutions to the NLSE with 𝛾 = 1 W−1m−1 and 𝛽4 = −0.7853 ps4∕m,
𝛽6 = −0.6167 ps6∕m, and 𝛽8 = −0.4842 ps8∕m, respectively, and solving
the resulting ODE with the Newton-conjugate gradient method [18,44].
The resulting pure-quartic, pure-sextic, and pure-octic solitons have
full width at half maximum pulse durations of 0.9 ps, 0.75 ps, and
0.63 ps, respectively. While interesting oscillatory dynamics occur in the
tails of these solitons (see Section 3.2), here we only show the center
part of the solitons to avoid distractions from the main argument. We
consider the propagation of these 𝑀 = 4, 6, 8 PHEODs in an optical
medium with the nonlinear and dispersive parameters described above
by solving Eq. (4) numerically using the split-step Fourier method [3].
The nonlinear (solid green) and dispersive chirps (dash-dot blue) at
increasingly small propagation distances are shown in Figs. 3 (b)–(e),
(g)–(j) and (l)–(o) for 𝑀 = 4, 6, 8 respectively. In order to present
a fair comparison between the propagation lengths, agnostic to the
dispersion order, we normalize the propagation length to the effective
dispersive lengths 𝐿𝑀 (see Section 3.5). For 𝑀 = 4 and 𝑀 = 6 we
use 𝐿𝑀 = 𝜏𝑀∕(𝑁𝑀 |𝛽𝑀 |), with 𝜏 the full width at half maximum pulse
duration and 𝑁𝑀 a numerically obtained prefactor derived in [19]. For
𝑀 = 8 we use an analytic expression derived in [35] and discussed in
Section 3.5.
4

The first observation is that, at relatively long propagation distances
𝐿 = 𝐿𝑀 , the chirp for all orders of dispersion is approximately linear
and does not fully balance the nonlinear chirp across the pulse duration
(see Figs. 3(b), (g) and (l)). As we decrease the propagation length
to 𝐿 = 𝐿𝑀∕10, we observe how the quartic dispersion chirp starts
to acquire a similar but opposite sign profile to the nonlinear chirp
(Fig. 3(c)). However the sextic and octic dispersion chirps are still very
much linear, as shown in Figs. 3(h) and (m). As the propagation length
becomes 𝐿 = 𝐿𝑀∕20 the quartic dispersion chirp fully negates the
nonlinear one (Fig. 3(d)), the sextic dispersion chirp starts to resemble
the opposite profile to the nonlinear one (Fig. 3(i)), but the octic-
dispersion chirp is still linear (Fig. 3(n)). At 𝐿 = 𝐿𝑀∕100, both the
sextic and the octic dispersion chirps compensate virtually perfectly for
the nonlinear chirp, as shown in Fig. 3(j) and (o) respectively.

These results provided evidence that the general statement that
for sufficiently short propagation lengths the nonlinear and dispersive
chirps compensate each other remains valid for all PHEODS. However,
for increasing orders of dispersion, such sufficiently short propagation
length becomes shorter and shorter. This can be understood by noting
that the dispersive phase shift for the pure orders of dispersion is given
by 𝜓(𝑧, 𝜔) = 𝑧𝛽(𝜔) = 𝑧 𝛽𝑚𝑀!𝜔

𝑀 . For sufficiently large bandwidths, the
phase evolution with 𝑧 occurs more rapidly for large 𝑀 values.

Understanding the physics of phase compensation in PHEODS is
interesting from a pedagogical perspective but it may also have prac-
tical implications in the context of soliton formation in ultrafast laser
cavities with dominant high-order dispersions [19,34].

3.5. Effective lengths

Thus far, our statement that solitons can be thought of as balancing
the effects of dispersion and nonlinearity was qualitative. To do this
in a more quantitative way, we adopt the approach of Agrawal [3].
He introduces characteristic length scales associated with each physical
effect occurring in a fiber or waveguide—the effect with the shortest
characteristic length are then taken to dominate. Solitons can be con-
sidered to form when the nonlinear length 𝐿NL equals the dispersion
length 𝐿𝑀 where 𝑀 is the order of the dispersion. The nonlinear length
takes the form [3]

𝐿NL = 1
𝛾𝑃

, (9)

where 𝑃 is the pulse’s peak power. The dispersion for second order
dispersion 𝐿2 is well known [3]

𝐿2 =
𝜏20 , (10)

|𝛽2|
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t

Fig. 3. Compensation of nonlinear and dispersive chirps for various high, even dispersion orders. (a)–(e) Amplitude of the pure-quartic soliton (𝑀 = 4) and the nonlinear (green)
and dispersive phase shifts (dash-dot blue) for increasingly small propagation lengths of (b) 𝐿4; (c) 𝐿4∕10; (d) 𝐿4∕20; (e) 𝐿4∕100. (f)–(j) Same for 𝑀 = 6, and (k)–(o) for 𝑀 = 8.
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where 𝜏0 is a measure of the pulse length. In fact, when 𝜏0 is defined
to be the time over which the pulse intensity decreases from the peak
value 𝑃 to 𝑃∕𝑒2, then the equality 𝐿2 = 𝐿NL is the condition for a
soliton.

The generalization of Eq. (10) to higher orders of dispersion is
not obvious. One generalization is 𝐿𝑀 = 𝜏𝑀0 ∕|𝛽𝑀 |, and indeed this
was adopted by some authors, including ourselves [3,17,36,45,46].
However, there is no a priori justification of this, and we will see
below that this leads to some unphysical consequences. Rather, one of
us (CMdS) and co-workers argued that when 𝑀 is sufficiently large
(𝑀 ⪆ 8) [35]

𝐿𝑀 =𝑀!𝓁𝑀𝑐
𝜏𝑀0
|𝛽𝑀 |

, (11)

where the dimensionless quantity 𝓁𝑐 = 0.332, was found by comparing
with numerical results, and 𝜏0 is the full-width at half-maximum of
he pulse. The condition 𝐿𝑀 = 𝐿𝑁𝐿 then gives the condition for

soliton formation. The prefactor grows faster than exponentially with
𝑀 , indicating that simply generalizing the result in Eq. (10) strongly
overestimates the effect of the dispersion for large 𝑀 .

Let us consider one of the consequences of Eq. (11). Since the phase
𝜑 upon propagation over a length 𝐿 is 𝜑 = 𝛽𝐿, we find with Eq. (3)
that

𝜑 (𝜔) =
𝛽𝑀 (𝜔 − 𝜔 )𝑀𝐿, (12)
𝑀 𝑀! 0 f
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f dispersion of order 𝑚 dominates. With Eq. (11) this can be rewritten
s

𝑀 (𝜔) = (𝓁𝑐𝜏0(𝜔 − 𝜔0))𝑀
𝐿
𝐿𝑀

. (13)

For large 𝑀 and for fixed 𝐿 this function is initially very small and
then increases rapidly once the right-hand side exceeds unity. Thus, for
frequencies such that |𝜔 − 𝜔0| is small enough that 𝜑𝑀 ⪅ 1, the effect
f the dispersion is negligible.

The right-hand side of Eq. (13) takes the value of unity when
𝜔−𝜔0)𝜏0𝓁𝑐 = (𝐿𝑀∕𝐿)1∕𝑀 . Now for most conventional pulses the time–
andwidth product in terms of angular frequency is approximately 2 or
(it is 1.98 for hyperbolic secant squared pulses and 2.76 for Gaussian
ulses). Therefore at 𝐿 = 𝐿𝑀 , and since 𝓁𝑐 = 0.332, the fraction of
he pulse that is still unaffected by the dispersion has a bandwidth
oughly corresponding to the full-width at half maximum of the pulse
pectrum. This fraction decreases slowly with propagation because of
he 1∕𝑀 power in (𝐿𝑀∕𝐿)1∕𝑀 . The remainder of the pulse has a group
elocity that differs strongly from that at 𝜔0, and forms a pedestal in
he time domain. We note that Eq. (11) is only valid for large 𝑀 , in
ractice 𝑀 ⪆ 8, and so it would not be expected to apply for 𝑀 = 2.
onetheless, the prefactor in this case is 0.664 which is close to unity.

The alternative definition in which 𝐿𝑀 equals 𝜏𝑀0 ∕|𝛽𝑀 |, i.e., with-
ut the prefactor in Eq. (11), would lead to the conclusion that the

requency range that is unaffected by the dispersion equals (𝜔−𝜔0)𝜏0 =
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(𝑀!)1∕𝑀 ≈𝑀∕𝑒, where we used the Stirling approximation [47] in the
ast step. This would lead to the misleading conclusion that for large 𝑀 ,
t 𝐿𝑀 a negligible fraction of the pulse is affected by the dispersion.

. Discussion & conclusions

We have provided pedagogical arguments for the formation of
HEODS based on the spectral variation of the inverse group velocity
nd phase compensation, which remain fundamentally the same as
hose for the formation of NLS. This is not surprising, as NLS and
HEODS are part of the same infinite hierarchy of solitons. We have
lso highlighted important differences in terms of energy scaling, effec-
ive lengths, and Galilean invariance. However, we have not discussed
he fact the nonlinear Schrödinger equation Eq. (1) is integrable [48],
hereas the generalized nonlinear Schrödinger equations Eq. (4) we
ave considered are not. We have therefore used the term ‘‘soliton" in
he sense that it refers to stationary, pulse-like solutions in media with
ispersion and a nonlinearity. We do not imply that these solutions are
naffected by collisions or any of the other characteristics of solutions
f integrable systems. What we do imply is that from a practical
erspective pure-quartic solitons and, more generally, PHEODS hold
irtually all of the practical properties that make solitons useful and
hat some aspects, such as energy-width scaling and spectral flatness,
hey can entail advantages for applications in ultrafast lasers [34] and
requency combs [28].
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ppendix

In this appendix we initially consider the expression for the energy
low 𝐽 in the presence of a pure order of dispersion. According to the
ethod developed by Widjaja et al. [40], the energy flow satisfies

𝜕𝐽
𝜕𝑇

∝

{

Im{𝜓⋆ 𝜕
𝑀𝜓
𝜕𝑇𝑀 } 𝑀 even,

Re{𝜓⋆ 𝜕
𝑀𝜓
𝜕𝑇𝑀 } 𝑀 odd.

(14)

or large 𝑀 the expression for 𝐽 can be very complicated. How-
ver, the expression for 𝜓⋆(𝜕𝑀𝜓∕𝜕𝑇𝑀 ) always has the real term
|𝜓|(𝜕𝑀 |𝜓|∕𝜕𝑇𝑀 ), where |𝜓| is the modulus of 𝜓 . According to Eq. (14),
for even 𝑀 this term does not contribute to the energy flow. However
for odd 𝑀 it does, in which case we can write

|𝜓|
𝜕𝑀 |𝜓|
𝜕𝑇𝑀

= 𝜕
𝜕𝑇

[

|𝜓|
𝜕𝑀−1

|𝜓|
𝜕𝑇𝑀−1

−
𝜕|𝜓|
𝜕𝑇

𝜕𝑀−2
|𝜓|

𝜕𝑇𝑀−2
+
𝜕2|𝜓|
𝜕𝑇 2

𝜕𝑀−3
|𝜓|

𝜕𝑇𝑀−3
−⋯

−
𝜕(𝑀+1)∕2

|𝜓|
𝜕𝑇 (𝑀+1)∕2

𝜕(𝑀−3)∕2
|𝜓|

𝜕𝑇 (𝑀−3)∕2
+ 1

2

(

𝜕(𝑀−1)∕2
|𝜓|

𝜕𝑇 (𝑀−1)∕2

)2]

. (15)

This implies that in the presence of at least one odd order of dispersion,
the expression for the energy flow contains at least one term that only
depends on the modulus of 𝜓 and not on its argument. Such terms thus
6

contribute to the energy flow even though the pulse may be unchirped.
Hence, in the presence of odd dispersion, it is not sufficient for a pulse
not to be chirped to be stationary.
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