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While the augmentation of head-mounted displays (HMDs) with eve-tracking (ET) capabilities adds
challenges to designing compact and portable diaplaye, a systematic approach to integration offers
oppertunities to improve overall performance and robustneas. To investigate the design and optimization
of Humination sechemes in an ET-HMD aystem, we present a simulated eye (llumination and imaging
ayetem, which allewa us to explore the eritical parameters that affect the quality of the eye lumination.
We present details on the modeling process and simulation results. & 2007 Optical Society of America
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1. Intreduction

Both head-mounted displays (HMDs) and eye-tracking
(ET) technologieas have spawned a wide range of appli-
cations in many fields of science and technology [1-4].
Integrating these two stand-alone technologies is
highly desirable to create advanced display solutions
and instruments to support human factors research
[5]. For instance, an eve-tracked HMD (ET-HMD) sys-
tem can provide a more accurate representation of
eyepoint location, which is required by the graphics
generation process. An improved evepoint specification
will minimize the perceived angular and depth errors
in high-precision displays [6]. Furthermore, such inte-
gration can facilitate the creation of more advanced
display solutions such as fovea-contingent displays [7].

While some stand-alone HMD and eye-tracker
technologies are commercially available, per our ex-
perience designing and building HMDs over the last
decade we established that their integration from
stand-alone technologies, referred to as functionality
integration, typically lacks compactness, accuracy,
and robustness [8]. We have developed an.approach
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to an integrated ET-HMD inastrument where the lat-
ter 1s conceived and optimized as one single instru-
ment from a fundamental design perspective [9-11].

Among the many eye-tracking methods that have
been developed [12], a video-bazed pupil-corneal re-
flection approach is considered the most practical
method to eve tracking in an ET-HMD system [13].
Figure 1 illustrates the schematic of an ET-HMD
integration, in which the optical paths for the HMD
and eye tracker are combined to share optical ele-
ments for minimizing weight and volume. In the eye-
tracking path, multiple near infrared emitting diodes
(IRED} are mounted around the optics or at locations
near the eye to provide illumination. The off-axis TR
illumination creates a dark-pupil effect and forms
virtual images of the IREDs through the reflection off
the anterior cornea. The corneal reflectiom images are
known as the First Purkinje images or glints [14].
The dark pupil, the glints, and the closely surround-
ing eye-facial structures are then imaged by the
optics and eaptured by an infrared CCD for gaze-
direction tracking. Figure 2{a) shows an example of
an eve image captured from our testbed system
[15,16]. The pupil and glint features move proportion-
ally with eye rotation and differentially between each
other [15]. The differential vector between the two
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Fig. 1. {Color online) Schematic of an ET-HMD integrated
syatem.,

features is used to determine the point of regard of
the eve.

Some irls recognition systems aim for security-
related applications and require the user to lock at a
specific target under well-controlled illumination and
reduced processing speed requirements. In HMDs,
real-time, natural eye movement tracking is required
and a critical aspect of the process is thus the quality
of the eye illumination under various gaze divectinns
and associated potential spurious reflections. Eye il-
lumination quality plays a eritical role in achieving
real-time, accurate, and automatic segmentation of
the eye pupil and glints from other eye structures and
skin surrounding the eyeball. In a well-illuminated
eye image, the gray levels of the pupil and glints are
well separated from those of other eve-facial struc-
tures. Figure 2(h) shows the intensity profile along a
horizontal line crossing two of the glints in Fig. 2(a),
where the pupil and the glints have the darkest and
brightest gray levels. Sufficient contrast was main-
tained between the darkest pupil and the relatively
dark iris and the pupildris boundary was well de-
fined. The skin swrounding the eyeball and the
sclera were roughly illuminated uniformly with mod-
erate gray levels, thus the high contrast between
glints and these relatively bright features was
achieved. On the other hand, Fig. 3 shows an ill-
illuminated eye image along with its intensity profile
along a horizontal scan where diseriminahbility be-
tween glints and other structures based on gray level
value is more challenging and the gray level of the
dark pupil is raised significantly.

Most existing eye-tracking schemes utilize only a
single IRED source, and optical illumination software
is just starting to provide optimization capabilities.
Because of this, to our knowledge, to this date no
efforts have been made to develop illumination
schemes with a quantitative quality of eye images as
a function of one or multiple IRED illumination pa-
rameters. The most common practice in controlling
the illumination in eye-tracking systems is to manu-
ally adjust the illumination sources for a discrete set
of test users in a close loop with the testing of the
algorithm applied to the images,

The rigid display-tracker platform in an ET-HMD
design ensures fixed relationships among the illumi-
nation sources, imaging system, display unit, and the
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eve, and thus offers & unique opportunity to include
ar optimization of the illumination scheme to yield
high-quality eve images that ease the process of fea-
ture segmentation. Moreover, we recently demon-
strated that geometrical arrangements of multiple
sources can be utilized to improve tracking accuracy
and extend tracking range [15,16]. The focus of this
paper iz to explove a simulation-optimization ap-
proach to obtaining eye illumination schemes for
accurate and robust eyve tracking in an integrated
ET-HMD.

2. Overview of the Simulation and Optimization
Framawork

Factors and constraints that affect the eve illuming-
tion include the IR source selection and placements
as well a3 human factors such as iris color differences
and skin reflectance variationz. To systematically an-
alyze these factors for optimal illumination methods
in an eye-tracker or ET-HMD system, we propose a
simulation-optimization framework based on nonse-
quential raytracing in which we simulate the ele-
ments inveolved in an eye illumination-imaging
system and model several of the necessary human
factors by statistical data available from the litera-
ture. This approach enables us to inelude the human
factors in the evaluation loop and search for solutions
applicable to a population rather than the few indi-
viduals who are tested in a laboratory setting. Im-
portantly, the simulated eye images can be analyzed
and evaluated through a set of quality criteria driven
by the requirements of the image analysis algo-
rithms. The approach can potentially identify illumi-
nation schemes that provide optimal tracking accuracy
and robustness,

The proposed framework for optimizing eye illumi-
nation in an ET-HMD is shown in Fig. 4, It consists
of three components: a system modeling module
(SMM), an image gquality evaluation module (IQEM),
and an iterative optimization process (I0P) [17,18].
This section briefly summarizes the funetions of the
va.ri}{;_us modules and their relationships in the frame-
wor

A,  System Modeling Modula

The SMM simulates an eye illumination and imaging
system and creates eve images for further quality
evaluation. The SMM can be decomposed into three
submodules: (1) the illumination scheme character-
izer, (2) the illumination generator, and (3) the eve
imaging system simulator.

The illumination scheme chargeterizer defines an
illumination method with a radiance distribution
generated by a certain IRED configuration on a plane
hefore its incidence on the eye-facial structures. This
plane is hereafter referred to as the incidence plane,
The radiance distribution on the incidence plane is
referred to as the input radiance. Although the inci-
dence plane may be located between the IRED
sources and the eve, it was chosen to be a plane
tengent to the apex of the cornea for the eve looking
straight ahead. The advantage of characterizing eve
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Fig.2. (Color online] Example of a well-illuminated eye image: (a} original image: (b) intensity profile along & horizontal line erossing two
of the glinta.
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Imtensity profile along a horizontal line crossing two of the glints
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Fig. 3. {(Calor online} Example of an illilluminated eye image: {a) original image;: (b) intensity profile along a horizontal line crossing two
glints,
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Fig. 4. (Color online) Flaw chart of the framework for eye illumination-imaging simulation and optimization

illumination with the input radiance distribution as
opposed to specifying an IRED configuration enables
one to deeouple the characterization of an illumina-
tion scheme from the system-specific parameters and
hardware that create such an illumination. An input
radiance that is optimized to yield good-quality eye
images in one system is applicable to other systems
that are designed for the same population and same
category of tracking algorithms.

The illumination generator simulates the imple-
mentation of an input radiance distribution with real
source models and creates the engineering prescrip-
tion of a given illumination scheme. The generator
takes into account specific space and source con-
straints in an ET-HMD system.

The eye imaging system simulator models the rel-
evant eye and facial struetures involved in an eye-
tracking system, models the effects of relevant
human factors (e.g., iris and skin color variations),

‘and simulates the light interaction between the illu-

mination system and the eye-facial structures, Com-
bining a selected configuration of human factors and
a given eye rotation direction, the simulator further
simulates an eye image created by an input illumi-
nation scheme,

B. Image Quality Evaluation Maodule

The simulated eye images output by the SMM are
input to the image quality evaluation module (IGEM)
for feature analysis. While it is beyond the scope of
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this paper to discuss the apecific quality criteria for
the evaluation of image features, the IQEM is intro-
duced here to present a comprehensive description of
the overall optimization framework. The function of
the IQEM is to define a set of quality criteria driven
by the algorithms developed for eye image analysis
[15,16] and assesses the quality of a simulated eye
image. The IQEM is composed of three submodules:
(1} the image mask generator, (2) the quality evalu-
ator, and {3) the scheme evaluator,

The image mask generator creates a set of image
masks that represent key features of interest in an
eve image. The selection of masks can be customized
to the requirements of a particular eye-tracking al-
gorithm. A few mask examples will be given later in
Section 6.

The quality evaluator compares an input eve image
with its corresponding image masks and segments
out individually the key features of interest from the
entire image. It then estimates quality criteria that
may include the brightness, uniformity, and contrast
of these features and the quantitative measurements
that provide an indieation of the input image quality
for tracking,

The loop of eye image simulation and quality eval-
uation (illustrated as dotted lines in Fig. 4) is exe-
cuted iteratively by adjusting the variables in the eve
image simulator. Consequently, for a given illumina-
tion scheme, many sets of quality measurements are
ereated for a range of eye movements and human
factors.

The scheme evaluator combines the sets of mea-
swrements produced for a range of eye movements
and human factors under the same illumination con-
figuration into a single merit funetion value by com-
puting & weighted sum of sguares for the factors
being examined. The weights take into account the
importance of a given measurement in a particular
eye-tracking algorithm, the impeortance of a corre-
sponding feature for eye tracking, and the accuracy of
the feature in a simulated image. The merit function
value is used as an accuracy and robustness measure-
ment of the given illumination scheme under differ-
ent combinations of human factors and angles of eye
rotations.

C. Merative Qptimization Procass

An approach to optimization would be to first deter-
mine an input radiance distribution that yields an
illumination for accurate and robust eye tracking out
of a database of fictitious input radiance distributions
and then create the engineering parameters of source
selection and placements that can produce the de-
sired radiance distribution.

In this work, we will detail in Subsection 3.A how
we instead characterized an illumination scheme
with its irradiance distribution on the incidence
plane to simplify the complexity involved in specify-
ing an input radiance distribution starting point to
the optimization process. We then utilized the illu-
mination generator to produce the engineering pre-
scription of source configurations for each input
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distribution. The resulting source model and config-
urations are then fed into the eye imaging system
simulator to create eve images for quality evaluation.
The modified optimization loop is formed by the
scheme charaeterizer, illumination generator, system
simulator, and image quality evaluation.

The rest of the paper is organized as follows: In
Sections 35, we detail the implementation of the
illumination scheme characterizer, the illumination
generator, and the eye imaging syvstem simulator,
respectively. In Section 6, we present the results of
the simulation of eye illumination in an ET-HMD.
Finally, the trade-off of computational efficiency ver-
sus accuracy is discussed in Section 7. Detailing the
image quality evaluation module and the optimiza-
tion process is bevond the scope of the paper. Current
progress in these modules’ development may be
found in Pansing [18].

3. llumination Scheme Characterization

A. Characterzing Input lllumination Schames
Characterizing a general input radiance distribution
requires specifying the intensity magnitude and di-
rection of each ray to be traced, which involves a large
parameter space to explore. In the meantime, the
optimization framework described in Section 2 re-
quires progressively adjusting the ray magnitudes
and directions to produce and evaluate different illu-
mination schemes. The evaluation of each input ra-
diance distribution requires a number of iterations
through the eve imaging system and takes a consid-
erable amount of computation time. Therefore, a
large parameter space imposes a challenge to a prac-
tical implementation in order to yield good accuracy
in a reasonable amount of computational time.

To reduce computational complexity, we character-
ized illumination schemes by their irradiance distri-
bution patterns on the incidence plane when initially
determining a good starting point of the input radi-
ance distribution that can vield a good gquality of eve
illumination. We assumed that radiance distribu-
tions with approximately the same magnitude and
direction over the eyve area will produce similar irra-
dianece distribution patterns on the incidence plane
and yield similar quality of eye images. Defining an
irradiance distribution on a 2D plane permits a
smaller set of parameters than those necessary to
characterize complex radiance distributions.

We further approximated the overall irradiance
distribution on the incidence plane by the sum of
multiple partially overlapping Gaussian distribu-
tions., While the number of Gaussian distributions,
their spacings, and their fall-off factors may be varied
to produce a set of different distributions, different
eve-tracking algorithms may impose different con-
straints, The evaluation of a amall zet of illumination
schemes with considerably different irradiance dis-
tributions is required for establishing a good starting
point to the optimization.

The optimization process then starts with the es-
tablished starting point for radiance distribution.



The initial radianece distribution is then perturbed by
adjusting its distribution within a reduced range.
These perturbed radiance distributions are itera-
tively evaluated through the same loop of illumina-
tion generation, eye image simulation, and image
evaluation,

B. Ganseration of Varlous Input lrradiance Distributions

In an ET-HMD system, we are particularly inter-
ested in the irradiance distribution within an area of
40 mm * 30 mm centered on the cornea vertex to
accommeodate eve size variations amoeng different
user populations [19]. This area further corresponds
to the required field of view (FOV) of the eye imaging
optics.

By superposing multiple identical Gaussian pro-
files, a set of irradiance distributions in the incidence
plane are created by incrementally varying the peak-
offset distance r; and the fall-off facter 8; of the ith
Gaussian profile. Hereby the peak-offset distance is
defined as r, = (x] + {)'* where (x;, ¥;) is the peak
location of the profile on the incidence plane; the
fall-off factor is defined as &, = 1 — exp(—d"/8¢7)
where o, is the standard deviation of the Gaussian
profile and 4 is the diagonal distance of the eve area
of interest.

Ta create an initial set of testing distributions, we
considered four identical Gaussian profiles where the
choice for four distributions will be motivated in Sub-
section 4.A. The peak-offset distance was varied from
0 to 50 mm in 2.5 mm increments. The fall-off factor
of the Gaussian profile was varied from 0 (uniform
distribution) to 0.95 (zharp drop) in 0.05 increments.
This sampling of the parameter space yielded a total
of 380 input irradiance distributions, among which
19 distributions have zero peak offset for full over-
lapping of the Gaussian distributions, varying from
uniform illumination to the ones with sharp contrast
across the eye area. We compared these samples and
selected a subset of visually differing distributions for
further investigation. Figure 5 demonstrates a subset
of the selected irradiance distributions, It can be ob-
served that as the fall-off factor increases, regardless
of the peak-offset distance, the irradiance distribu-
tions are highly nonuniform. For a given fall-off fac-
tor, the peak-offset distance can be altered to create
distributions that demonstrate high uniformity on
the incidence plane except a relatively darker center:
for instance, the combinations of (0.6, 30) and
(0.3, 50). Based on our preliminary evaluation on the
eye image quality produced by a variety of distribu-
tions [18], we observe that distributions with high
fall-off factors produce eye images with high contrast
between the pupil and surrounding eyve structures,
which is in favor of pupil feature segmentation. On
the other hand, a uniform distribution produces an
image with uniformly illuminated skin area, which is
in favor of glint segmentation. Evaluating the simu-
lated images produced by these different distribu-
tions will guide the optimal trade-off.

4. lumination Generator

From all irradiance distributions simulated, a subset
of visually differing input rradiance distributions is
imported into the illumination generator, where ra-
diarice distributions will be simulated and those that
are retained produce irradiance patterns on the inei-
dence plane closely matching the inputs. To ensure
engineering feasibility, the illumination generator
utilizes models of physical illumination sources and
takes into account system-specific constraints such as
space and aource reguirements in an ET-HMD avs-
tem to set up the parametric constraints for the phys-
ical spurce configurations,

&, General Modsl of llumination Generator

As illustrated in Fig. 4, the illumination generator
consists of creating source models, setting up source
parameter space, and applying an optimizer. We as-
sume the usdpe of TREDs as the physical sources,
though other types of sources can be considered as
well. Creating source models mainly involves creat-
ing the source geometry, source emission profile, and
spectral properties. It is desirable to model a collec-
tion of sources with different emittance profiles for
optimization.

Onece source models are selected, the mumber of
sources and the geometrical arrangements (i.e., loca-
tion and orientation) are the key parameters that
affect the radiance distribution ereated on the inei-
dence plane. The selection of a source number is
mainly driven by the requirements of an eye-tracking
algorithm as well as the requirement for overall ra-
diant flux. For instance, in many pupil-glint tracking
metheds, only one glint feature is desired. A common
practice is to use one single IRED to create the glint.
This approach, however, is usually difficult to yield a
good contrast eve image with sufficient robustness,
Alternatively, a ring of IREDs may be arranged sym-
metrically so that their individual glint images are
smeared into a symmetrical glint blob for tracking
[20]. Another example is the tracking algorithm we
proposed recently in our ET-HMD system [15,18], in
which we track four individual glints for improved
accuracy and robustness. The placement of each
TRED is parameterized by its 3D location and its
pitch and yaw orientation relative to the XYZ refer-
ence,

E. |mplamentation of llumination Generator

All the parameters deseribed earlier, including the
source model parameters, the number of sources, and
source placement parameters, may be theoretically
varied to seek for the source configuration that yvields
the closest match to an input irradiance distribution.
However, each system would impose different sub-
sets of variables and constraints. At the early stage of
the optimization process, we aimed to vary the foot-
print of each source on the incidence plane to create
an irradiance distribution pattern that matches with
an input from the characterizer. Therefore, without
loas of generality, we fixed the source model but var-
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Fig. 5. (Color cnline) Subset of input frradiance distribution examples using four Gaussian distributions: The peak offset distance r was
varied from O to 50 mm, and the fall-off factor of the Gauszsian profile & was varied from 0 to 0,95,

ied the geometrical placements of the sources to cre-
ate the desired footprints. Once an optimal irradiance
distribution is established, one may vary both the
source model and the placement parameters with
constraints inherent to a particular system to create
the desired distribution,

The source model we selected is an American
Bright IRED source (model number BIR-BO07.J4Q-1).
This source is rated at a 45° spread angle and an
B850 nm wavelength. We modeled this source as a
sphere with a 5 mm diameter and the emittance pro-
file set up to approximately match the angular dis-

7754 APPLIED OPTICS / Vol. 48, Mo, 31 / 1 Novermnber 2007

tribution measured from its physical counterpart in
our laboratory.

As previously motivated, driven by the require-
mentz of our eye-tracking algorithms [15,18], we
fixed the number of IRED sources to be four. Further-
more, to satisfy the geometrical conditions required
by the algorithms, we set the four IRED= to be placed
on a plane parallel to the incidence plane, These
IREDz were placed symmetrically around the optical
axis of the imaging system, with one pair of the
TIREDs placed along the X axis and the other pair
along the ¥ axis. With these constraints, the place-
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Fig. 6. Paramesters characterizing IRED placements,

ment of each IRED was parameterized by two dis-
tances and two angles (Fig. 6). The transverse
distance, H, offsets laterally the TRED from the opti-
cal axis of the eye imaging system. The axial distance,
D, offsets the source position from the cornea vertex
along the optical axiz of the imaging system. This
distance affects the area coverage of the individual
source and consequently the radiance distribution of
each source on the incidence plane. Under the as-
sumption that the IRED axis is always tilted toward
the origin of the XYZ reference, the orientation of
each source is parameterized by the pitch angle, 8, of
its peak emission direction with respect to the optical
axis, This angle affects both the offset of the radiance
peak and the shape of the irradiance distribution.
The polar angle, P, characterizes the position of the
source relative to the Y axis in the incidence plane.
The variable parameters include the transverse and
axial distances and the pitch angle that affect the
placement of the source relative to the eye.

Diriven by the requirements of our eye-tracking al-
gorithms [15,16] in which the geometrical symmetry
of the IRED arrangement was utilized to improve
tracking accuracy and robustness, the multiple IREDs
were arranged symmetrically around a placement
cirele, for instance, around the aperture of the display
optics, Therefore, the transverse distances of the
TREDs were set to be identical, equal to the radius of
the circle around which the sources were placed. The
distance is constrained by the diameter of the optics
and the interpupillary distance of the user, thus a
range of 2040 mm was considered. The axial dis-
tance of the IREDs is constrained by the eye relief
required for an HMD system. We considered ranges
from 30 mm, the typical eve relief for immersive
HMD, to 70 mm, eye relief sometimes required for
see-through designs. The pitch angle varies from 07,
puointing parallel to the optical axis, to 30°, tipped
toward the optical axis.

The simulation tool we selected to use is the
LIGHTTOOLS by Optical Research Associates (www.
opticalres.com). Currently, the LIGHTTOOLS OPTIMIZER
requires the discretization of each parameter. The

Tabla 1. Summary of Variables for the llluminstion Geanerator

Parameter Minimum Meaximum Inerement
H (mm) 20 40 2.5

D {mm]} ao 70 2.4

A {dagrea) 0 30 &

increments for each parameter were selected based
on a4 compromise between the phyzical setup accu-
racy and computation time. A summary of the vari-
ables, their ranges, and increments are listed in
Takble 1.

For each possible combination of parameters
listed in Tahble 1, we traced rays from the sources to
simulate a unique radiance and corresponding irra-
dianee distribution created on the incidence plane. A
40 mm * 30 mm receiver was set up at the incidenece
plane facing the sources, which was discretized into
24 x 18 aquare bins to collect rays from the source
and shape the distribution. Each simulated irradi-
ance distribution, corresponding to a specific radi-
ance, was compared against the input irradiances
originally generated by the characterizer, and their
differences were measured by a root-mean-square
(rms) value, the mean and standard deviation of the
difference distribution. The optimizer determines the
source configuration, and thus the associated radi-
ance distribution, which yields the closest match of
the associated irradiance to each of the input irrgdi-
ances. When compared against the 81 input distribu-
tions considered, an analysiz shows that the best
match is within 2,9% for the normalized mean error.

For each source configuration, tracing a half mil-
lion ravs resulted in a computation time of approxi-
mately 10 min to complete the ray trace and
determine the merit value against the 81 input irra-
dianees, Thus, finding the source configurations for
the B1 input irradiance distributions from the 1071
IRED configurations required approximately 8 days
of eomputation time. Tt is worth noting that we did
not directly use the simulated radiance but the re-
sultant source parameters for simulating eve images,
which allows us to trace fewer rays during this step to
determine the source parameters rather than mil-
lions of rays. The overall computation time was re-
duced significantly.

5. Eye Imaging System Simulator

The parametric configurations for the TRED sources
output by the illumination generator are imported
into the eye imaging system simulator to create sim-
ulated eye images through an imaging system, Two
additional components—the model of eye-facial
structures with relevant human factors (e.g., skin
color) and an imaging system—are required to com-
plete the eve illumination and imape formation pro-
cess, The eye-facial structures include both the eve
optics required for the formation of pupil and glint
features and noncptical elements representing the
iris, sclera, and swrrounding facial features. Aceu-
rately modeling these human tissue structures and
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optical properties iz important for the evaluation of
an illumination scheme under different human factor
conditions.

A, Eye Modsl

The Arizona eye model was adopted for modeling the
optical component of the eye structure [21]. While the
shape of the eye lens varies when viewing objects at
different distances, neglecting it does not affect the
accuracy of our analysis, as we will use only the re-
flection by the anterior corneal surface for glint for-
mation and the refraction of the corneal surfaces for
pupil/iris imaging.

The eye optics were integrated into a spherical eye-
ball structure with a 28 mm diameter [22]. Consid-
ering the typically reduced illumination levels in
HMDs, we assumed a 4 mm pupil in the simulation.
The outer boundary of the iris with the sclera often
imposes the limit on which glints can be detected
robustly. Based on anthropometric measurements
[19], the diameter of the iris's outer boundary was set
to be 11.5 mm, To simulate the effects of eye rotation
on image quality, the entire eveball structure was set
to be rotationally symmetric and to pivot around a
center of rotation located 15 mm behind the cornea
vertex [23]. The angles of eye rotation were investi-
gated as variables in the optimization process.

Although secondary reflection images, besides the
first Purkinje image, could be formed through the
surfaces of the posterior cornea and the eve lens, they
are sufficiently dim and do not interfere with the
detection of the glints in our eye-tracking system due
to the low Fresnel reflectance of these surfaces and
the usage of low power IRED sources [15,16]. There-
fore, all the refractive elements in the eye optics were
set to 100% transmittance, except the anterior cor-
nea, which was assigned a 97.6% transmittance and
a 24% specular reflectance approximated with the
Freanel reflectance equation at normal incidence.
The 2.4% reflectance of the anterior cornea contrib-
utes to the formation of glints. Little information on
spectral data for the sclera was identified in the lit-
erature. Therefore, to estimate the diffuse reflec-
tance, the average irradiance value of the sclera
feature was estimated from real eve images taken
under relative uniform illumination. The average
values were further normalized to the accepted Cau-
casian skin reflectance, which will be discussed in
Subsection 5.B, As a result, the sclera has been mod-
eled with 45% diffuse reflectance. The specular re-
flectance of the sclera has been set to 2% using the
Fresnel reflectance for a tear layer with a refractive
index of 1.34 [24]. The refractive index of the iris was
not identified in the literature and thus was assumed
to be close enough to the aqueous humor index. Con-
sequently, the specular reflectance of the iris was
assumed to be neglipible based on Fresnel reflec-
tance. The diffuse reflectance of the iris, however, is
expected to vary with iris color, and thus is one of the
human factors to be investigated in the optimization
process. Due to the lack of literature evidence, the
diffuse reflectance of the iris was estimated using the
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same approach that we used to estimate the diffuse
reflectance for the scleva. Based on estimates from
real images and normalization to the skin reflee-
tanee, a blue iris was estimated to have a 25% diffuse
reflectance,

Finally, other factors such as contact lenses,
glasses, and even eyes that had LASTK surgery can
be modeled and investigated similarly to other hu-
man factors for their effects on eve image quality and
tracking robustness. The investigation of these fac-
tors i3 beyond the scope of the current study.

B. Facial Featurs and Skin Modsling

Although facial features swrrounding the eyeball,
such as the cheek, eyebrow, and nose, are not the key
features of intervest in an eye-tracking system in gen-
eral, some of thease features are often present in an
eyve image, since an FOV alightly larger than the
eyeball iz required to accommodate eye size varia-
tions and possible helmet slippage. Improper illumi-
nation of these features can impose difficulty in pupil
and glint sepmentation (Fig, 3), The illumination lev-
els of these features should be simulated for image
quality assessment,

The geometries of these features usually vary from
person to person and should be considered as one of
the human factors. It is, however, unrealistic to eval-
uate each illumination scheme on millions of faces.
Furthermore, the subtle variations of facial geometry
will mainly affect the local uniformity in simulated
eye images, rather than the average skin irradiance.
For threshold-based feature segmentation algo-
rithms, local nonuniformity of the facial features can
be tolerated if high contrast between the facial and
eyve features are warranted. Therefore, we used a
laser scan data set obtained from a real patient to
model the geometry of the facial structures. The data
set was provided by a 3D human model available
from Zygote and e-Frontier (www.open3dproject.org).

While many unique models of varyving complexity
have been developed to characterize the optical prop-
erties of human tissue, most notably for human skin
simulation in medical and computer graphics appli-
cationa [25], our interest is in the ecumulative super-
ficial properties. Therefore, the spectral data of these

Fig. 7.
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facial features was modeled by a computationally
simple method that combines the diffuse and specu-
lar properties of many skin layers—the stratum cor-
neum, epidermis, and dermis—into one layer, The
primary contributor to the skin diffuse component is
the dermis, and medical literature has reported the
akin diffuse reflectance to be 0% in the near infrared
(NIE) for Caucasian skin and 45% for black skin
[26,27]. The primary specular component, however, is
at the boundary between the air and the stratum
corneum, which has a refractive index of 1.55 [28]. A
specular reflectance of 5% was estimated with a
Freanel reflectance equation at normal ineidence, To
simulate the effects of skin color on eve image quality,
the skin diffuse reflectance is considered as one of the
human factors to be investigated in the optimization
process. The integration of the facial structure and
the eye model is shown in Fig. 7 with an eye area of
40 mm X 30 mm as the primary region of interest.

Input Irradiance

Caucasian Skin Color

C. Combined Numination and Eyes Imaging Simulation

The eombined model of the eye illumination and im-
aging simulation is shown in Fig. 8. Rays originating
from the IREDs seatter off the eye structure. As our
goal is to simulate the eye illumination-imaging pro-
cess, without loss of generality, an imaging optics
with a large aperture was chosen to effidently collect
the scattered rays off the eye model and focus them
onto a receiver located at the image plane [29]. In
the simulation, the image receiver was divided into
87 X 65 bins to form a simulated eye image of rea-
sonable quality and computation time. Simulating an
eye image through the system by tracing 3.5 » 10°
rays takes ~2h on a Pentium 4 3.2 GHz machine
with 1 GByte of memory.

6. Simulation Results

To illustrate the overall modeling framework, we se-
lected two examples from the 81 irradiance distribu-
tions generated in Subsection 3.B. In both examples,
each Gausaian profile had a fall-off factor of 0.8, How-
ever, the peak-offset distance of each fictitious source
from the center was zero in the first scheme with a
20 mm offset in the second scheme. Consequently,
the first scheme physically corresponds to an irradi-
ance distribution in a Gaussian pattern over the in-
cidence plan, while the second one represents a
relatively uniform distribution in the center area
with a slow drop close to the edge. The simulated
irradiances for these two schemes are shown in Figs.
9a) and 9(d}, respectively. A series of simulated eye
images under these two schemes are also shown in

Black Skin Color

{d)

Fig. 8. Example of simulated results: (a} Simulated input irradiance with & equal ta 0.8 and r equal to 0 mm; (b}, (¢} simulated eye images
from input irradiance in {a), for (b} 2ero eve rotation along with Cavcasian slin, and (¢} 10° horisontal eve rotation combined with black
skdn; {d) simulated input irradiance with & equel to 0.8 and r equal to 20 mm; (), (f} simulated eve images from input irradiance in (d),
for (e} 10F vertical eye rotation along with Caucasian skin, and (f) 10° diagonal eye rotation combined with black akin

e}

i
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Fig. 9 under different combinations of eye rotation
angles and skin eolor. Figure 9(b) shows a simulated
image when no eve rotation is applied to the system,
while Figs. 9(c), 9(e), and 9(f) are computed with a 10"
eye rotation in the horizontal, vertical, and diagonal
divections, respectively, The center and right col-
umns demonstrate the boundary range of skin colors
applied in the system: the center column [Figs. 9(h)
and 9{e}] is the upper reflectance boundary asscciated
with Caucasian skin (reflectance equsal 1o B0%); and
the right column [Figs. 9(c) and 9(f]] is the lower
reflectance boundary that represents black skin (re-
flectance equal to 45%). Important features in the
simulated images correlate well with the necessary
features present in actual eye images. The glint po-
sitions and pupil boundary are accurately recreated,
as are the other features of the eye structure.
Under identieal illumination schemes, a numerical
comparison of skin irradiance values was performed
pixel by pixel between the middle and right columns
of the simulated eve images, Results showed that the
ratio of the skin irradiance values of the images sim-
ulated with the black skin and the Caucasian skin is
T7% on average, which matches the ratio of the skin
reflectance coefficients. Under the Caucasian skin
condition, further analysis was performed on the im-
ages created by the two different illumination
schemes (top and bottom rows) to estimate the aver-
age irradiance and nonuniformity of the skin and its
contrast to the pupil. The first input illumination (top
row} resulted in an average contrast of 35% between
the skin and pupil, while the second input illumina-
tion (bottom row) had an average contrast of 49%,
The nonuniformity of the average skin area was 21%
for the Gaussian input, and 19% for the second input
irradiance. The second illumination scheme is better
than the first one as it potentially allows an easier
and more accurate segmentation of the pupil feature
from the skin. While it is beyond the scope of this
paper to further detail the metrics for image quality
assessment, rigorous metrics are being developed to
quantify the quality of these images for tracking [18].
By turning on and off the reflectance of relevant
features in the eye-facial model, the simulated model
can be conveniently controlled to generate a set of
mask images that are used to facilitate the segmen-
tation of the features of interest. Figures 10(b}~10{d)
show the segmentation of the skin area, the entire
eyeball, and the sclera region, respectively, for the
image provided in Fig. 10{a). These mask images are
applied to a simulated eve image in order to segment
the key features eritical to an eye-tracking algorithm.
The module of image quality evaluation will then
compute the brightness, uniformity, and contrast of
these features and these measurements are used to
form a quality metric for an individual image by the
quality evaluator (Fig. 4). Under a given illumination
scheme, the quality evaluator is iteratively executed
on a set of simulated images generated under a range
of eye rotation angles and human factors in the eye
model. The resultant quality measurements for these
images are imported to the scheme evaluator, which
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() (d)
Fig, 10. Example of mask generation: (a) Simulsted eye image;
(b) masked image revealing the skin area! (¢} masked image re-
vealing the sclera; {d) maslked imape rovealing the iris-pupil area
with glinte removed.

generates a single merit value of the given illumina-
tion. The single merit value i3 a weighted measure-
ment that takes into account factors such as eye
rotation range, the importance of an eye feature in a
given tracking algorithm, and the accuracy of each
eve feature. For instanee, the quality measurements
of the images corresponding to a central range of éye
movements are weighted more in the merit value
than those of large eve movements. Preliminary re-
sults on the development of quality evaluation pro-
cedures may be found in [18].

7. Ray-Tracing Speed versus Accuracy

The model described earlier provides us with the ca-
pability of simulating resultant eye images with a
combination of illumination schemes and human fac-
tors. A key concern in any illumination model is the
minimal number of rays to be traced, which offers the
ability to create images with adequate accuracy for
quality evaluation, Applying the Rose model summa-
rized in Subsection 7.A [30], we examine the trade off
between ray-wwacing speed and accuracy in Subsec-
tion 7.B.

A, Ross Modal

A statistical model was developed for cameras oper-
ating at low-light levels where the random distribu-
tion of arriving photons sets a limit on the achievable
image quality [30]. The model elegantly relates image
resclution, contrast, and signal-to-noise ratio (SNR)
to the number of photons inecident upon a detector.
The low-light level imaging situation is analogous to
the simulation of an illumination system where a
limited number of rays in a random distribution are
traced. Recently the Rose model has been applied to
the analysis of illumination systems [31,32].
Derived from the Rose maodel, in order to resolve a
minimal feature of area A in a background of area A,



the minimum number of rays required to be incident
on the feature is given by

Ak

Man=7 &

{1}

where C is the minimal contrast between a resolvable
feature and backpround and % is the desired SNE.
The minimal feature contrast is the relative irradi-
ance difference between the feature of interest and
the background and is defined as

_AE )
C= T (2

where E is the background irradiance and AR is the
irradiance difference between the local background
and a feature. As expected, the Rose model points to
the need to trace more rays in order to resolve small-
size, low-contrast features but also provides quanti-
tative guidelines.

The random nature of ray-trace distributions
causes fluctuations in the simulated irradiance at the
image plane and these fluctuations may be mistak-
enly recognized as a feature of interest, or conversely
a real feature may become irresolvable from the back-
ground. Consider a bright feature. To discern the
feature unambiguously, the feature’s irradiance must
be larger than the statistical fluctuations of the back-
ground irradiance that are usually modeled with a
normal distribution. Let « be the standard deviation
of the background fluctuations within areas of size A
set by the feature size and let Pylko) denote the prob-
ability in which an illumination fluctuation is larger
than ko within areas A. Hereby the desired SNR, k,
measures the allowable fluctuations in a simulated
illumination distribution. If the irradiance difference
of the feature satisfies AE = ko, then the probability
of ohtaining a false feature with areas of size A within
the background area A, Py, is given by

A,
PM“.:E ;'!.- Rﬁ;[hﬂ':}r (El

where a factor of 2 accounts for the possibility of
having a fluctuation either larger or smaller than the
average E. Once a user sets the desired probability of
false features, the desired SNR, %, can be found by
interpolating from the P {ko) for a normal distribu-
tion. The minimal number of rays received by the
image plane can then be calculated using Eq. (1).

B. Application of the Ross Modal

The Roze model can be utilized to determine the min-
imal number of rays to be collected by the image
plane in a simulated imaging system in order to re-
solve a certain feature of interest. In our application,
the image plane is divided into S by T pixels (e.g.,
currently 87 x 65 pixels) and we apply the Rose
maodel to determine the number of rays needed to be

Table 2. Minimally Traced Rays and Computation Time Vary with
Deskred Phwml Accuracy and Feature Contrast®

Total Traced Estimated

Py, Contrast  Hays/Pixel Rays (10%) Time (hr)
1% 006 2,704 46 26
0.1 B76 11 7
0.2 168 258 2
5% [.05 1,444 24 14
0.1 a6l 6.1 3
0.2 1] 1.5 1
10% 0.05 Ta4d 13 B
0.1 196 3.3 2
0.2 48 0.83 <1

“Azsumption: 87 < 65 pixels and 33% transfer efficiency.

collected by each pixel to obtain a given level of pixel
accuracy. Therefore, both the minimal resolvable fea-
ture area and the background area ave zet to be 1
pixel, which leads to A,/A = 1in Egs. (1) and (3). To
achieve a piven level of pixel accuracy, the minimum
number of rays to be traced through the system for
the entire image plane is

_ST#

ol {4)

¥ min

where e is the transfer efficiency of an illumination
system from its source to the image plane.

Using different combinations of pixel accuracy and
minimal feature accuracy, Table 2 summarizes the
minimal number of rays collected by each pixel and
traced through the system as well as the estimates of
computation time, under the assumptions of an im-
age resolution of 87 X 65 pixels and an optical trans-
fer efficiency of 33%, which iz the approximate
efficiency of the simulated illumination-imaging sys-
tem described in Section 5. The computation time
estimation was based on a Pentium IV desktop with
g 3.2 GHz CPU and 1 GByte of memory.,

In the examples previously shown in Fig 2, 3.5
% 10° rays were traced for each eve image. Analysis
has shown that an aversge ray density typically
ranges from 1560 to 200 rays/pixel, which falls in the
range estimated by the Rose model. The results indi-
cate that the pixels of the simulated images have
~-80% accuracy for features with a contrast of at least
10%, and ~89% of accuracy for features with a con-
trast greater than 20%. Therefore, it 15 expected that
in these simulated images brighter eyve-facial fea-
turez have a higher mccuracy than the rvelatively
darker features such as irises.

8. Conclusion

In this paper, we detail a framework to optimize il-
lumination schemes within an ET-HMD. The overall
goal is to identify illumination schemes that are op-
timized for pupil-corneal based eye-tracking applica-
tions, which are tolerant of various human factors
and eye rotations, and therefore more capable of ef-

1 November 2007 / Vol 46, No. 31 / APPLIED OPTICS 7reg



ficient and robusat eye tracking, In this specific paper,
we detailed the system modeling module employed to
generate user-defined illumination schemes and to
simulate the light interaction between a prescribed
illumination scheme and the eye structure. We fur-
ther analyzed the relationship between ray-tracing
speed and accuracy by applying the Rose model. The
simulation described in this paper provides the capa-
bility of simulating resultant eye images for a variety
of llumination schemes, Future research will report
on the development of a set of measurements for
selected eve-tracking algorithms to quantify the qual-
ity of eye images created under different combina-
tions of illumination achemes, angles of eye rotation,
and human factor variations.
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ence Foundation grants IIS-03-07227/04-11578
and 03-07189. We acknowledge Kevin Tompson
from Optical Research Associates and John Koshel
from Lambda Research Corporation for stimulating
discussions.

Refarences

1. W. Barfield and T. Caudell, eds., Fundamentals of Wearable
Computers and Augmented Reality (Lawrence Erlbaum Asso-
ciates, 2001},

2. 0. Bimber and R. Raskar, Spatial Augmented Reality: Merging
Real and Virtual Worlds (A K. Peters, 2008,

3. 0, Cakmakei and J. P. Rolland, “Head-worn displays: a
review,” J, Display Technol, 2, 198218 (2006,

4. R J. K. Jacch and K. 8. Kam, “Eye tracking in human-
computer interaction and usability research: ready to deliver
the promises (Section Commentary),” in The Mind's Eve; Cog-
nitive ond Applied Aspects of Eve Movement Rerearch, .
Hyona, K. Radach, and H. Deubel, eds. (Elsavier Science,
2003), pp. 573-605.

5. M. Hayhoe, D, Ballard, J. Trieach, and H. Shinodn, “Vigion in
natural and virtue! environments," in Procecdings of ACM
2002 Sympostum of Eye Tracking Research and Applications
CACM, 2002), pp. 713

6. J. Holland, ¥. Ha, and C. Fidopiastis “Albertian errors in
head-mounted digplaye: I. Choice of eve-point location for a
near- or far-field task visualization” J. Opt. Soe. Am. A 21,
Q01912 (2004},

7. K. Iwamoto, K, Komoriye, and K, Tanie, “Eye movement track-
ing type mmage display system for wide view image presenta-
tion with high-resolution: evaluation of high-resolution image
presentation,” in Jnternational Conference on Intelligent
Robots and Systems (IEEE, 2002), pp, 1180-1195.

8, A, T. Duchowsld, “Incorporating the viewer's point-of-regard
(POR) in gaze-contingent virtual environments," Proc. SPIE
32085, 332-343 (19985,

8. L. Vaissie and J, Rolland, *Head moumted display with eve
tracking capability,” U.S. patent 6,433,760 (13 August 2002).

10, H, Hug, “Integration of eve tracking capability into optical
see-through head mounted displays,” Proe. SPIE 4207, 496 —
503 (2001).

7770 APPLIED OPTICS | Vol 48, Mo. 31 /1 Movember 2007

11, €. Curaty, H. Hua, and J. Holland, “Projection-based head
mounted displey with eye tracking capabilities,” Proc. SPIE
BRTE, 128-140 (2005,

12, A. T. Duchowski, Eve Trocking Methodology: Theory and
Practice (Springer-Verlag, 2003).

13, M. Eizenman, R. C. Frecker, and P. E, Hallett, “Preciso non-
contacting measurement of eye movements using the corneal
reflox,” Vision Hea, 24, 167-174 (1984),

14, T. N. Cornsweet and H. D), Crane, “Accurate two-dimensicnal
eyve tracker using firet and fourth Purkinje images," J. Opt.
Soc, Am. 83, 921538 (1973),

15. H, Hua, P, Krighnogwamy, and J. P. Rolland, “Video-based
avetracking methods and algorithms in head-mounted dis-
plays,” Opt. Express 14, 43254350 (2006}

16. P. Hrishnaswamy, “Design and assessment of {mproved
feature-based eve tracking methods for head-mounted dis-
plays,” M.5, thesis (Department of Electrical and Computer
Engineering, University of Arizona, 20051,

17. C. W, Pansing, H. Hua, and J. P. Rolland, “Optimization of
illumination schemes in & head-mountad display integrated
with eye tracking capahilities,” Proc, SPIE 5875, 687501 (2004).

18. C. Panaing, "Optimization of llumination schemes for an eve-
tracked head mounted display,” M.S. thesis (College of Optical
Srienees, University of Arizona, 2008).

18, L. . Farkas, Anthropometry of the Head and Face, 2nd ed.
(Raven, 1984},

20, C, H, Marimota, D, oons, A Amir, and M, Flickner, “Pupil
detection and tracldng using multiple light sources,” [mage
Vision Comput. 18, 331-335 (2000).

21, J. Bchwiegerling, Field Guide to Visuel and Opthalmic Optics
(SPIE, 2004).

22, T.W, Olsen, 5. ¥, Asberg, D, H, Gerosld, and H. F, Edelheuser,
“Human sclera; thickness and surface ares,” Am. J, Opthamol.
125, 237-241 (1808),

23. D. A, Atchison and G. Smith, Optics of the Human Eve (Reed
Educational and Professional, 20000,

24, J. P, Craig, P. A. Simmonz, 5. Patel, and A, Tomlinson,
“Refractive index and camolality of human tears,” Optom, Vi-
gion Sol. 72, TIE_724 (1995

25, 3.V, G. Baranpsld and A Erishnagwamy, “An introduction to
light interaction with human slin " RITA 9, 3362 (2004).

28, . R. Anderson, J. By, and J. A Parrigh, "Optical radistion
transfer in the human skin and applications in vivo remittance
spectroscopy,” in Bisengineering and the Skin, R, Marks and
P. A Payne, eds. (MTP Press Ltd,, 1851),

27, G, Wyszecld end W, 5, Btiles, Color Science: Concepés and
Methods, Quantitative Dato and Formulae (Wiley, 19820,

2B, V. Tuchin, Tissue Optics (SPIE, 2000).

28, J. G. Baker, “Highly corrected ohiective having two inner di-
vergent meniacus components between collective components,”
L5, patent 2,532,761 (6 December 1850),

30. A. Rose, Vieton: Human ond Electronie (Kluwer Academic,
1873).

al. R. J. Koshel, “Aspecta of illumination svetem optimization,”
Proc. SP1E 6528, 206217 (2004).

32. G L. Pertersor, “How many rays do [ need to trace? Applying
the Rose model to computer snalysis of illumination
aystems,” Breault Research Organization White Paper (3
January 2005].



