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Optical neural networks (ONNs) enable high speed parallel and energy efficient processing compared to conventional

digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various

integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light

modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed

by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel

surface-normal photodetector (SNPD) with an optical-in electrical-out (O-E) nonlinear response to replace the camera

sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than

10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with

no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the

SNPD a promising O-E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed

neural nonlinearity, successful classification simulation of MNIST and Fashion MNIST datasets using the measured

response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.

I. INTRODUCTION

As artificial neural networks are more widely being uti-

lized in a variety of applications from pattern recognition1,2

to medical diagnosis3,4, there is an increasing need for faster

and more energy efficient hardware platforms. Optical neu-

ral networks (ONNs) benefit from massive parallelism and

different multiplexing schemes, such as wavelength, mode,

time, and polarization, to enable processing with high energy

efficiency at the speed of light5. Hence, various ONN im-

plementations have been demonstrated both using bench-top

setups6–8 as well as integrated platforms that enable smaller

size and higher energy efficiency9–11.

Despite the significant progress, scaling ONNs to thou-

sands or millions of neurons and multiple layers to perform

more complex tasks, is one of the main issues that integrated

ONNs face6. Complex and area-consuming photonic routing

in commercially available platforms, larger on-chip propaga-

tion loss, and intricate electronic control circuitry to compen-

sate for fabrication-induced errors, result in lower energy effi-

ciency, packaging complexities, and impractically large inte-

grated systems.

Free-space diffractive ONNs, on the other hand, enable or-

ders of magnitude larger number of neurons compared to in-

tegrated ONNs, as well as more flexibility to implement dif-

ferent network configurations6,7. Such systems are especially

useful for image and video processing and classification as

they directly process the input pictures or video frames with

large number of pixels. Figure 1(a) shows the conceptual

schematic of a feed-forward neural network with multiple lay-

a)Authors contributed equally.

ers of neurons, where each neuron performs linear (weight and

sum) and nonlinear (activation function) computations on its

inputs. Correspondingly, a diffractive ONN architecture that

performs the linear and nonlinear computations is shown in

Fig. 1(b). A laser source illuminates a digitally controlled

micro-mirror device (DMD) that modulates the intensity of

the incoming light with the input data to the network. A spatial

light modulator (SLM) is used to implement linear weights.

Large number of pixels of commercially available SLMs en-

able ONNs with millions of neurons per layer. The diffracted

signals from the SLM are then directed towards the camera

to apply the nonlinear activation function on the weighted-

sum of the inputs. So far, the nonlinear activation function

has been implemented either digitally after forming the im-

age on a camera7, or using the inherent nonlinear photoelec-

tric response of the complementary metal-oxide semiconduc-

tor (CMOS) sensor6. In either case, the total computation

time is mainly limited by the sensor exposure time which for

commercial cameras is several milliseconds. For instance, in

Ref6, despite achieving an impressive performance of more

than 200 tera operations per second (TOPS) and more than

1 TOPS/W, about 64% of the total processing time (about 4

ms) and 15% of total power consumption (about 6 µW per

pixel) are consumed by the sensor. Therefore, a faster and

more energy efficient implementation of the nonlinear activa-

tion function can significantly improve the computation speed

and energy efficiency of such systems. This paper introduces

a new device that significantly improves the performance of

the nonlinear activation function such that it is no longer a

performance bottleneck of the system.

Note that in most diffractive ONN demonstrations de-

scribed above, only one neural layer is implemented and the

full neural network is realized by re-using the same architec-

ture but with different parameters. The output of the layer
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(i.e., the camera output) is always in the electrical domain that

drives the DMD after some processing as the input to the next

layer. Therefore, an optical-in electrical-out (O-E) nonlinear-

ity is required in such systems, without the need for converting

the nonlinearity output to optical domain.

Here we propose a novel implementation of O-E nonlinear

activation function using a surface-normal nonlinear photode-

tector (SNPD) to significantly improve the speed and energy

efficiency of a diffractive ONN with O-E nonlinearity. The

SNPD is formed by a vertical p-i-n structure contained in a

Fabry-Perot cavity. These devices have been used previously

as high-speed electro-optic modulators operating according to

the quantum confined Stark effect12–17. However, light cou-

pled to these devices generates a photocurrent14, and hence

they can be used as photodetectors as well. Also, under cer-

tain light intensities, nonlinearity induced by thermal effects

arises. In this work, we use the nonlinear behavior of the

SNPD photocurrent as a function of the incident optical power

to realize a nonlinear activation function as an improved al-

ternative to the camera sensor. The SNPD is a polarization-

independent device and light can be vertically coupled to it

with a high efficiency and without any additional coupling de-

vices that ease its deployment within a free space ONN setup.

In this work, we show that a reverse-biased SNPD (i.e.,

each pixel) has a response time of about 5.7 µs (3-dB band-

width of 61 kHz) while consuming less than 10 nW of static

power. These make the SNPD about three orders of magnitude

faster and more energy efficient than commercially available

camera sensors. As a result, the activation function will not

limit the performance of the system. As a proof of concept

and to show the applicability of SNPD nonlinear response in

an ONN, the measured characteristics of the device is used in

a neural network simulation platform to classify MNIST and

Fashion MNIST datasets. In these tests, accuracies of 97%

and 89% are achieved, respectively, showing a performance

comparable with that of a standard rectified linear unit (ReLU)

activation function.

Note that the SNPD is primarily proposed to be utilized in

a diffractive ONN setup where an O-E nonlinearity is needed.

Other solutions such as all-optical18–20 and O-E-O21, not only

generate an optical output which is not suitable in the case of a

diffractive ONN, but they also require additional coupling de-

vices (e.g., grating couplers), polarization control, additional

photodetectors to generate an electrical output, larger size per

pixel, and control electronic circuitry to realize nonlinearity

(especially in the case of O-E-O) that result in more complex-

ity and less energy efficiency and make scaling more chal-

lenging. Although they enable faster response time than the

SNPD, due the millisecond-scale response time of the SLM,

the performance of the overall system will not improve and

this only results in more energy consumption. Therefore,

SNPD best fits a diffractive ONN setup.

II. SNPD STRUCTURE AND CHARACTERIZATION

Figure 2(a) shows a sketch of the cross-section of the SNPD

used in this work. It is composed of a multi-quantum-well

(MQW) stack placed in the intrinsic region of a vertical p-

doped-intrinsic-n-doped PIN structure. The MQW is formed

by 36 periods of In0.53Ga0.47As wells with 9 nm thickness

and In0.52Al0.48As barriers with 4 nm thickness. The total

thickness of the MQW is 468 nm, which is equivalent to one

wavelength at about 1540 nm. The PIN stack is then in-

serted in an asymmetric Fabry-Perot resonant cavity with a

high-reflectivity (HR) mirror on the bottom of the structure

and a partial reflectivity top mirror formed by the semicon-

ductor/air interface. Other MQWs with different composition

(such as Si/SiGe)14 and thickness15 may be used as well in

such a structure. The SNPD used in this work has active area

diameter of 20 µm. The top-view microphotograph of the de-

vice is shown in Fig. 2(b). The chip is bonded to a submount

with single-ended ground-signal-ground metal pads that allow

application of an electric field orthogonal to the layers of the

MQW region. Note that devices with smaller active area can

be designed in order to reduce the form factor when placed

within an array12. The details of the fabrication process are

described in Ref15.

Typically, when used as a modulator, such a device operates

according to the quantum confined Stark effect: upon applica-

tion of a reverse bias voltage, the MQW absorption edge, and

hence the resonance, shifts in wavelength and produces am-

plitude modulation of the optical output signal. In this work,

while we still apply a reverse bias voltage, we use it as a pho-

todetector and work at wavelengths much longer than those

typically used for modulation. It is worth mentioning that the

shelf-life and material stability of our fabricated devices are

similar to that of any conventional III-V compound devices

like VCSELs, electro-optic modulator, or photodetectors.

The mechanism behind the nonlinear behavior of the de-

vice has been discussed in detail in some prior work13,17. As

will be shown later, generally, increasing the reverse bias volt-

age red-shifts the peak absorption wavelength. To observe the

nonlinear behavior at a given reverse bias voltage the MQW

is excited with a laser source with a wavelength higher than

the initial peak absorption wavelength of the device. As the

input optical power increases, more photo-carriers are gener-

ated, increasing the photocurrent of the device. This increase

in current heats up the device and as the temperature increases

so does the absorption17. This will further lead to an increase

in photocurrent and, under the right conditions17, turns into a

regenerative process. This regenerative process, that is ther-

mally induced, is the main mechanism behind the nonlinear

behavior and abrupt change in photocurrent as a function of

input power. We have leveraged this behavior to approximate

the widely used ReLU activation function. Note that the re-

generative process does not necessarily require the MQW to

be placed inside a cavity. However, the Fabry-Perot cavity

formed by the two mirrors helps with enhancing the nonlinear

regenerative behavior of the MQW and observing the nonlin-

earity at lower input optical power levels. It is worth men-

tioning that the observed nonlinearity in the proposed SNPD

is much stronger than a normal InGaAs PIN photodiode22.

Figure 3(a) shows the experimental setup to characterize the

SNPD in the linear and nonlinear regions. The output light of

a tunable continuous wave (CW) laser is coupled orthogonally
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to the surface of the SNPD chip using a standard single mode

fiber and a GRIN lens. The GRIN lens is used to reimage the

optical mode of the standard fiber on the SNPD top surface

with about 80% coupling efficiency while allowing to move

the fiber farther away from the chip, but does not change the

mode size. A fiber-optic based circulator allows to separate

light at the input and output of the SNPD. Note that the re-

flected optical signal (Pout in Fig. 3(a)) is used when the de-

vice operates in the modulator mode. As mentioned before,

there is no need for any optical polarization control as the de-

vice is fully polarization independent12. Moreover, the SNPD

is placed on a thermo-electric cooler (TEC) to stabilize the

working temperature of the device. Due to a broad wavelength

range of operation of the SNPD12, no complex and power hun-

gry closed-loop wavelength locking mechanism is necessary,

resulting in a reliable and stable performance during the mea-

surements. To later characterize the nonlinear response time

of the SNPD, an acousto-optic modulator (AOM) is driven

with a 27 MHz CW signal by an arbitrary signal generator.

In this mode of operation, the AOM only frequency shifts the

laser with an insertion loss of about 3.5 dB.

In the first experiment, the responsivity of the SNPD in the

linear region (i.e., low optical power) as a function of wave-

length and for different reverse bias conditions is measured. In

this case, the AOM is bypassed and no amplitude modulation

is performed. Figure 3(b) shows the responsivity of the SNPD

as a function of optical wavelength for three different reverse

bias voltages and a fixed on-chip optical power of -4.9 dBm

(estimated after de-embedding the loss of other components).

As the reverse bias value increases, the absorption edge red-

shifts, resulting in higher a peak responsivity. To achieve a

high photocurrent, a reverse bias voltage of 5 V is used in all

of the following experiments.

In the second experiment and to study the nonlinear behav-

ior of the SNPD as the input optical power changes, the re-

sponsivity of the device for a reverse bias voltage of 5 V and

different input optical power values is measured. As shown

in Fig. 3(c), for optical wavelengths shorter than 1580 nm,

the responsivity graphs for different input optical powers are

similar and no significant nonlinearity is observed. However,

for longer wavelengths, as the input optical power increases,

the difference between the responsivity graphs becomes more

significant, showing the nonlinear behavior of the SNPD. As

previously explained, this behavior is dominated by thermal

effects and once the optical power exceeds a certain threshold

for a given wavelength, the generated photocurrent increases

at a higher rate, resulting in a larger responsivity. Note that al-

though the nonlinearity is mostly thermally induced, the per-

formance of the device was stable during all of our measure-

ments by using a simple TEC.

The exact form of nonlinear behavior is a function of sev-

eral factors including wavelength offset from the peak ab-

sorption wavelength, reverse bias voltage, and MQW design.

In other words, in order to optimize the shape of nonlinear-

ity, one should properly set those parameters. The longer the

wavelength (i.e., further from the peak absorption), the larger

the input optical power required to start the regenerative pro-

cess and enter the nonlinear region. In addition, for longer

wavelengths the sudden increase in photocurrent is more sig-

nificant which is not suitable for realizing a ReLU function.

On the other hand, for shorter wavelengths (i.e., less than 1580

nm as shown in Fig. 3(c)), the photocurrent becomes almost

a linear function of the optical power and no significant non-

linear response can be observed. This can also be observed

in Fig. 3(c) where the change in responsivity as a function of

input optical power is negligible for wavelengths shorter than

1580 nm (linear regime), which is consistent with the prior

work17. Hence, the optical wavelength of 1598 nm is cho-

sen as it results in a close approximation of the ReLU nonlin-

ear response. However, other wavelengths can be considered

when designing the device depending on the application and

the desired form of nonlinear function.

The third experiment is performed to characterize the non-

linear response of the SNPD. The laser wavelength is fixed

to 1598 nm while the optical power is swept. As shown in

Fig. 3(d), the photocurrent is a nonlinear function of the in-

put optical power which resembles a ReLU function at 1598

nm. For optical power of larger than 1.25 mW, the change in

the photocurrent significantly increases. The measured char-

acteristic is later used in a neural network to confirm its ap-

plicability as a nonlinear activation function. Also, since one

neural layer is typically implemented using diffractive ONNs,

the laser power can be set properly to maintain a sufficient

optical power level at the SNPD to trigger the nonlinearity.

To measure the bandwidth of the SNPD in the proposed

mode of operation, a train of square wave pulses is applied

to the AOM to amplitude modulate the CW laser with an ex-

tinction ratio of greater than 35 dB. Note that the amplitude

of the modulation signal is large enough to switch the input

optical power between less than 1 µW and a value larger than

the threshold power which is about 1.25 mW. This way, we

emulate a large change in the weighted-sum signal to find the

upper limit for the response time. In this experiment, the mod-

ulation frequency is varied and the amplitude of the AC volt-

age is measured across a 50 Ω load on an oscilloscope. Figure

3(e) shows the normalized AC response of the SNPD (yellow

squares) where fitting a single pole transfer function suggests

a 3-dB bandwidth of 61 kHz, that is equivalent to a rise time

(response time) of about 5.7 µs. This is about three orders of

magnitude faster than the typical millisecond response time of

camera sensors in typical diffractive ONN setups.

III. NEURAL NETWORK SIMULATION RESULTS

As mentioned before, the main focus of this paper is on ex-

perimental demonstration of a new nonlinear activation func-

tion generation using the SNPD for diffractive ONN systems.

Nevertheless, in order to show that the measured SNPD non-

linearity is applicable in a neural network, the transfer func-

tion of Fig. 3(d) is used in a neural network simulation plat-

form to classify MNIST and Fashion MNIST datasets. Figure

4(a) shows the architecture of a simple neural network used in

this work. The 28× 28-pixel images are input to the convo-

lution layer with 32 parallel 3× 3 kernels with a stride (step

size) of one and SNPD response as its custom activation func-
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tion that replaces the ideal ReLU function. A maxpooling

layer down-samples the output of the convolution layer and

is followed by a fully-connected layer with 100 neurons and

SNPD response as the nonlinearity. Note that when defining

different layers of the network using Tensorflow platform, the

type of activation function, which is normally an ideal func-

tion such as ReLU or Sigmoid, should be specified. In this

work, instead of using an ideal function, we have incorpo-

rated a custom-defined activation function that is based on the

experimental results shown in Fig. 3(d), both in the 2D con-

volution layer and the fully connected layer after it. Finally,

10 neurons with softmax activation generate the classification

results of the network. The neural network is implemented

using Tensorflow libraries. Stochastic gradient descent with a

learning rate of 0.01 and momentum of 0.9 is used as the op-

timizer and with a categorical cross-entropy as the loss func-

tion. The input images are fed to the network with a batch size

of 32. Moreover, random normal kernel initialization is used

throughout the network.

Figures 4(b) and 4(c) show the training and test cross-

entropy loss and classification accuracy, respectively, both as a

function of the number of epochs. Using the measured SNPD

nonlinear response, the network achieves a test classification

accuracy of about 97%. As a reference, the same network with

the standard ReLU function achieves the same accuracy.

In the second test, the same network is used to classify the

Fashion MNIST dataset consisting of 28×28-pixel images of

10 different types of clothing (Fig. 4(a)). While the network

architecture is the same, Adam optimizer is used instead of

stochastic gradient descent for faster convergence. Moreover,

He Uniform is used for kernel initialization. Figures 4(d) and

4(e) show the training and test loss and accuracy as a func-

tion of the number of epochs, respectively. An accuracy of

about 88.5% is achieved while the same network with ReLU

function achieves about 89%. Note that the lower accuracy

compared to the MNIST classification case is due to more

complex features in the Fashion MNIST dataset and can be

improved by using a network that is better optimized for this

application.

IV. DISCUSSION AND SUMMARY

It should be noted that the proposed SNPD as the nonlinear

activation function can be scaled to one-dimensional (1D) and

two-dimensional (2D) arrays with large number of devices

(pixels), similar to camera sensors. For instance, in Ref16, a

288×132 array of similar devices is demonstrated. Therefore,

high-resolution 2D array of nonlinear activation functions can

be used in a diffractive ONN. Since the SNPD is illuminated

from top and the electrical connections are at the bottom of

the chip (Fig. 2(a)), individual devices within a large scale

2D array can be accessed by designing an interposer chip that

is bonded to the device array chip. The photocurrent associ-

ated with each SNPD can be directly digitized using an ultra-

low power analog-to-digital converter with microsecond-scale

conversion time23. This approach enables reading all pixels

of a 2D array of SNPDs in a single shot, making the proposed

neural activation function significantly faster and more effi-

cient than a CMOS camera.

In summary, we demonstrated the applicability of a

surface-normal nonlinear photodetector in free-space diffrac-

tive ONNs to realize the O-E neural nonlinearity as an alterna-

tive to the commonly used camera sensors. Significantly faster

response time of 5.7 µs removes the nonlinear activation func-

tion as a computation time bottleneck. Hence, the total com-

putation time will be mainly limited by the SLM update rate.

The reverse biased SNPD consumes less than 10 nW of static

power per pixel which in turn improves the overall energy ef-

ficiency of an ONN. Moreover, polarization-independent op-

eration of the SNPD together with direct optical coupling and

the possibility of implementing large-scale 1D and 2D arrays

of the device, make it a promising candidate to be used in a

free space ONN setup. In that case, most of the diffractive

ONN setup (including the laser source, DMD, SLM, and opti-

cal lenses and alignment devices) can remain the same while

the CMOS sensor is replaced with an array of SNPD devices

which does not affect the overall complexity of the systems.
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V. FIGURE CAPTIONS

FIG. 1. (a) Typical feed-forward neural network architecture with

multiple layers of interconnected neurons. The neural output is gen-

erated by passing the weighted-sum of the inputs through a nonlin-

ear activation function. (b) Diffractive ONN architecture using a

DMD to generate the input signals and SLM to apply correspond-

ing weights to the inputs6. Conventionally, a CMOS sensor acts as a

detector and/or nonlinear activation function.

FIG. 2. (a) Sketch of the cross-section of a SNPD. (b) Top-view

photograph of a SNPD with 20 µm active area diameter.

FIG. 3. (a) Experimental setup used to characterize the device. (b)

SNPD responsivity as a function of optical wavelength for different

reverse bias voltages and an on-chip optical power of -4.9 dBm. In

this case, the AOM is bypassed. (c) SNPD responsivity for different

input optical powers showing a nonlinear behavior at wavelengths

longer than 1580 nm. Here too, the AOM is bypassed. (d) SNPD

photocurrent as a function of the input optical power (Pin) measured

at the wavelength 1598 nm. The modulation signal is turned off in

this measurement. (e) frequency response of the SNPD measured

at the wavelength of 1598 nm, while the AOM modulates the input

optical signal.

FIG. 4. MNIST and Fashion MNIST data classification. (a) Archi-

tecture of the neural network used in this work. (b) Cross entropy

loss and (c) classification accuracy as a function of number of epochs,

showing the results both for training and test for the MNIST dataset.

(d) Cross entropy loss and (e) classification accuracy as a function of

number of epochs, showing the results both for training and test for

Fashion MNIST dataset.
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