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Non-Hermitian topology and criticality in photonic arrays with engineered losses
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Integrated photonic systems provide a flexible platform where artificial lattices can be engineered in a
reconfigurable fashion. Here, we show that one-dimensional photonic arrays with engineered losses allow the
realization of topological excitations stemming from non-Hermiticity and bulk mode criticality. We show that a
generalized modulation of the local photonic losses allows the creation of topological modes both in the presence
of periodicity and even in the quasiperiodic regime. We demonstrate that a localization transition of all the bulk
photonic modes can be engineered in the presence of a quasiperiodic loss modulation, and we further demonstrate
that such a transition can be created in the presence of both resonance frequency modulation and loss modulation.
We finally address the robustness of this phenomenology to the presence of next to the nearest neighbor couplings
and disorder in the emergence of criticality and topological modes. Our results put forward a strategy to engineer
topology and criticality solely from engineered losses in a photonic system, establishing a potential platform to
study the impact of nonlinearities in topological and critical photonic matter.
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I. INTRODUCTION

Topological insulators are one of the emerging platforms to
study novel phenomena in quantum matter [1–3]. Topological
modes have been realized in a variety of artificial systems
including mechanical [4], photonic [5,6], and cold-atom se-
tups [7]. Topological photonics [8,9] has risen as a powerful
platform to generate new states of light that harvest nontrivial
geometric properties in lasers [10,11] and quantum infor-
mation platforms [12–14]. Topological states can emerge in
systems lacking a periodic lattice, including disordered mod-
els [15–17] and quasicrystals [18–26], featuring criticality
stemming from localization transitions [27]. Photonic devices
allow the creation of a whole variety of new artificial lattices
[25,27,28] challenging to emulate in conventional materials,
opening up possibilities to realize new forms of topological
matter.

Beyond conventional photonic topological states in closed
quantum systems [6,29], photonic devices provide a flex-
ible platform to harvest non-Hermitian topology [30–35]
and, in particular, robust topological modes by exploiting
engineered gains and losses [22,36–38]. Integrated reconfig-
urable [39–46] photonic devices provide a flexible platform
to engineer tunable photonic matter by allowing real-time
reconfiguration of optical paths. This tunability turns recon-
figurable photonic devices into an ideal platform to explore
exotic topological phenomena in a non-Hermitian and spa-
tially engineered regimes [47–49].
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In this paper, we present a strategy to engineer topological
modes and criticality simultaneously in one-dimensional pho-
tonic arrays solely based on engineered losses. In particular,
we show that a generalized set of models with engineered
losses feature topological edge modes stemming from non-
Hermitian topology. For quasiperiodic modulations, we show
that the modulated losses lead to a delocalization to localiza-
tion transition of the bulk states. We analyze the resilience
of the topological edge modes to disorder in the engineered
losses and detuning frequency, and the impact of long-range
tunneling in the localization transition and topological modes.
Our results provide a starting point for designing topologi-
cal photonic devices based on tunable losses. Our paper is
organized as follows. In Sec. II, we present the generalized
model featuring modes from engineered losses. In Sec. III,
we analyze the localization transition driven by modulated
losses. In Sec. IV, we address the impact of perturbations
and disorder. In Sec. V we address the continuum limit of the
model. Finally, in Sec. VI, we summarize our conclusions.

II. TOPOLOGICAL MODES FROM ENGINEERED LOSSES

We consider a one-dimensional array of photonic dots fea-
turing localized excitation. Photonic losses are included by
adding a non-Hermitian term into a one-dimensional (1D)
model in each site of the array. For the sake of concreteness,
we first consider an engineered loss with four-site periodic-
ity [36,37,50–53], as shown in Fig. 1(a), whose Hamiltonian
takes the form

H = t
N−2∑
n=0

(a†
nan+1 + H.c.) + i

N−1∑
n=0

(v0 + vIβn)a†
nan, (1)

where a†
n creates photon in site n, v0 + vIβn, with v0, vI real

numbers, denotes the site-dependent loss, parametrized by the
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FIG. 1. (a) Schematic of the gain-loss model with a unit cell of
four sites (dashed rectangle). The local loss is modulated by the func-
tion ι̇vn = ι̇vI sin(2παn + ϕ), with α = 1

4 and ϕ = 3π/4. (b) Real
part of the energy spectrum as a function of vI/t for the model
shown in (a), for N = 200. The spectrum is symmetric with respect
to Re(E ) = 0 with an edge mode present at Re(E ) = 0, which is
topologically robust for the entire range of vI/t . (c) The density of
states (DOS) of the zero mode is shown as a function of vI/t and the
site index n. With an increase in the value of vI , the zero mode gets
exponentially localized at the end sites. We took N = 100 for (c).

modulations (β1 = β4 = 1) and (β2 = β3 = −1). The term v0

leads to an overall loss in the system, and therefore in the
following it will be factored out in the spectra. Due to the
non-Hermiticity of the Hamiltonian, the eigenenergies Eα will
be in general complex, with H |�α〉 = Eα|�α〉. We show in
Fig. 1(b) the real part of the energy spectrum of this model for
open boundary conditions as a function of vI . We can see that
the edge modes with Re(E ) = 0 are strongly localized at the
edges, and represent the topological edge modes arising from
the modulated loss. The extent of localization for the edge
modes is shown in Fig. 1(c) using the spectral function at zero
real energy D0(n) = ∑

α δ(Re(Eα ))|�α (n)|2. In particular, as
loss modulation strength increases, the edge modes get local-
ized at the end sites as compared to those in the bulk.

The previous topological non-Hermitian model given by
Eq. (1) can be seen as a specific case of a generalized non-
Hermitian model given by the following Hamiltonian:

H = t
N−2∑
n=0

(a†
nan+1 + H.c.) + i

N−1∑
n=0

vI sin(2πnα + ϕ)a†
nan,

(2)

where α is the inverse period of modulation, ϕ is the phase
of modulation, and vI is the amplitude of modulation of
the losses. This model can be realized as the non-Hermitian
generalization of the Aubry-André-Harper (AAH) potential
[20]. In its Hermitian form H = t

∑N−2
n=0 (a†

nan+1 + H.c.) +∑N−1
n=0 v sin(2πnα + ϕ)a†

nan, this model is well known to be
equivalent to a two-dimensional quantum Hall system [22],
thus inheriting topological edge modes. However, such a

FIG. 2. (a)–(d) Spectra as a function of ϕ for a chain with mod-
ulated losses, for α = 1

4 (a), α = 1
8 (b), and in the incommensurate

limit α = (
√

5 − 1)/2 (c), and α = (
√

7 − 1)/2 (d). The energies are
colored according to the spatial location of the state in the chain. It is
observed that edge modes appear in spectral gaps for wide regions
of ϕ. (e) Shows the spectra as a function of the wave vector of
the modulation of the loss α, showing that topological edge modes
appear for generic values inside the spectral gap. We took vI = 1.5
and N = 200 for (a)–(e).

mapping cannot be performed in its non-Hermitian general-
ization. As it is shown in Fig. 1(a), the systems in Eqs. (1) and
(2) are equivalent when α = 1

4 and ϕ = 3π
4 . To have a periodic

system, the potential should be commensurate to the lattice
periodicity. In particular, when α is a rational number p/q, the
total number of sites N should be a multiple of q. While for
a quasiperiodic system, α should be an irrational number. For
different values of α and ϕ, we obtain a set of topologically
inequivalent insulators [54].

We now show how topological modes can appear for the
generic values of the parameters α and ϕ [54,55]. We show
in Figs. 2(a)–2(d) the real part of the energy spectrum for
different values of the parameter α. In the case of α = 1

4
[Fig. 2(a)], the topological edge modes emerge at zero energy.
In contrast, topological modes at other values of α appear
at finite energies. Also, the real part of the bulk modes is
symmetric with respect to the band gap at Re(E ) = 0 which
is a feature of particle-hole symmetry. The particle-hole sym-
metry is associated with the system when q is a multiple of 4.
Figures 2(a) and 2(b) show the commensurate limit [54],
where the frequency of the modulation leads to a periodic
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system. Figures 2(c) and 2(d) are for incommensurate fre-
quencies, we can see that the energy spectra have a fractal
nature for these cases and have edge modes shown in red.
Also, many band gaps in the energy spectrum do not have
robust edge states, as can be inferred from the figure. Note, all
these systems shown in Figs. [2(a)–2(d)] have an imaginary
component of the energy that is not shown in the figure.

We can also study the presence of edge modes for systems
with a range in α by computing the spectra of the system as a
function of the modulation frequency α. In its Hermitian ver-
sion, such a plot is known as the Hofstadter butterfly spectrum
of the Hamiltonian. We show the real part of the Hofstadter
spectrum of Hamiltonian H given by Eq. (2) in Fig. 2(e). The
edge modes are plotted in red which appear in band gaps for
various α, showing the appearance of those modes even for
modulation frequencies not commensurate with the lattice.

III. CRITICALITY AND
LOCALIZATION-DELOCALIZATION TRANSITION

Quasiperiodic Hermitian models feature localization tran-
sitions at finite strength, phenomena that turned them into
an attractive platform to realize wave-function criticality [27,
56–60]. The Hermitian AAH model described by an onsite
potential v sin(2παn + ϕ) is known to have a localization
transition as a function of the modulation strength v ∈ R.
This model is self-dual and has a limit of self-duality at
v = 2t , i.e., all the bulk states localize at v = 2t [20]. The
localization transition as a function of v is independent of
the phase of modulation ϕ ∈ R for a quasiperiodic system
[20]. In the following, we study the localization transition of
the non-Hermitian AAH model. The localization transition
can be directly inferred from the calculation of the inverse
participation ratio (IPR) of the eigenstates [49]. For a state
|ψ〉, the IPR is defined as

IPR (|ψ〉) =
∑

l

|ψl |4. (3)

For N → ∞, we have IPR = 0 for an extended state and
IPR ∼ 1/W , with W the number of sites where the state is
localized, for a localized state. We study this transition for
the system described by Eq. (2) with respect to the modu-
lation strength vI . We show in Figs. 3(a) and 3(b) the IPR
for all the eigenvalues in the bulk of the Hamiltonian given
by Eq. (2) with respect to the amplitude of modulation vI for
α = (

√
5 − 1)/2. We can see that a localization transition for

all the eigenstates occurs at vI = 2t , simultaneously for all
eigenstates. As a reference, the maximum value of IPR in the
figures is of the order 18/N . In the Hermitian version of this
model, a similar phenomenology takes place stemming from
self-duality between the coordinate and the momentum space.
It should be contrasted that in the case of conventional disor-
der, the localization transition occurs at infinitesimally small
disorder for a one-dimensional model [61,62]. The existence
of a critical value directly reflects the inherent quasiperiod-
icity of the potential, making this model genuinely different
from a disordered system.

The existence of a localization transition in a non-
Hermitian model, analogous to the one known in its
Hermitian counterpart, motivates the question of whether

FIG. 3. (a)–(d) Spectra for a chain model as a function of onsite
losses vI , with IPR as the color. (a), (b) Show that the localization
transition occurs at vI = 2t when vR = 0, whereas (c) and (d) show
that the localization transition occurs at vI = √

2t when vR = √
2t .

We took N = 200, α = (
√

5 − 1)/2, and ϕ = 0.4π in (a)–(d).

there exists a generalized model featuring such a localization-
delocalization. For this purpose, we now address the localiza-
tion transition for a complex modulation strength. Consider
the following modification for our Hamiltonian:

H = t
N−2∑
n=0

(a†
nan+1 + H.c.)

+
N−1∑
n=0

(vR + ι̇vI ) sin(2πnα + ϕ)a†
nan, (4)

where vI is the modulation of the loss and vR the modulation
of the onsite potential of the system, such that vR, vI are real
parameters. In the case vI = 0, the previous model is equiv-
alent to the Hermitian AAH model, whereas for vR = 0 we
recover our model with modulated losses. We start by fixing
vR as a nonzero value to study the spectrum as a function
of the loss modulation vI . We show in Figs. 3(c) and 3(d)
the energy as a function of vI for vR = √

2t . We observe
that approximately at vI = √

2t , all the eigenstates undergo
a localization-delocalization transition. A finite value of the
onsite quasiperiodicity vR leads to a different critical value
for localization transition as a function of the quasiperiodic
engineered loss vI . To elucidate how the critical transition
depends on both modulations, we show in Fig. 4(a) a two-
dimensional phase diagram as given by the IPR as a function
of both vR and vI for α = (

√
5 − 1)/2. It is observed that

a localization-delocalization transition occurs following the
approximate critical line v2

R + v2
I = 4t2. As a reference, the

critical transition in the Hermitian AAH model corresponds
to the cut vI = 0, whereas the critical transition in the purely
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FIG. 4. (a) The average IPR of the chain model as a function of
vR and vI , the system gets localized along the contour v2

R + v2
I = 4t2.

(b), (c) The inverse of localization length λ as a function of vI for
vR = 0 and vR = √

2t , respectively, showing the critical localization
transition at vI = 2t and vI = √

2t , respectively. (d) The inverse of
localization length (λ) of the chain model as a function of vR and vI ,
the system gets localized along the contour v2

R + v2
I = 4t2. We took

α = (
√

5 − 1)/2, N = 200, ϕ = 0.4π in (a)–(d).

imaginary model corresponds to the cut in vR = 0. This
phenomenology highlights that the Hermitian AAH model
belongs to a general family of non-Hermitian AAH models
with complex modulation strength.

The localization-delocalization transition can also be stud-
ied from the localization length of the wave function. In the
localized limit, localized eigenstates can be fitted to a func-
tional form such as

|ψα|2(n) ∼ e−λ|r0−n|, (5)

where α labels the eigenstate, n is the site of the chain, and r0

is the center of eigenstate, i.e., where |ψα|2(n) is the highest.
The parameter 1/λ is the localization length, which in the case
of an extended state corresponds to 1/λ = ∞. For each eigen-
state of the system, we perform a fit to the previous functional
form [Eq. (5)], which allows extracting a localization length
for each state. We show in Fig. 4(b) the average λ versus vI for
vR = 0, showing that a localization-delocalization transition
occurs at vI = 2t . Similarly, setting vR as

√
2t , we see that the

localization occurs at vI = √
2t as in Fig. 4(c). In Fig. 4(d), we

show a phase diagram according to the inverse localization
length as a function of the parameters vR and vI , where we
can see that the localization occurs at v2

R + v2
I = 4t2. The

localization length is given as a function of the modulation
strength by the Thouless formula as 1

λ
= 1

log[|v|/(2t ))] , where
v = vR + ivI and |v| > 2 [20].

IV. LONG-RANGE COUPLING AND DISORDER

A. Impact of long-range coupling

So far our analysis has focused on the limit featuring
first-nearest-neighbor coupling. In realistic experimental sce-
narios, finite coupling between longer neighbors may occur.
Couplings beyond first neighbors are expected to give rise
to an energy-dependent localization transition. In particular,
the Hermitian AAH model with an exponentially decreas-
ing hopping te−p|n−n′ |a†

nan′ gives rise to an energy-dependent
localization transition that can be derived analytically [63].
The non-Hermitian limit, however, cannot be addressed with
the self-duality procedure of the Hermitian limit, and thus
we will focus here on an exact numerical strategy. For this
purpose, we now address the impact of second- and third-
nearest-neighbor coupling. The Hamiltonian for this system
takes the form

H = t
N−2∑
n=0

(a†
nan+1 + a†

n+1an)

+
N−1∑
n=0

(vR + ι̇vI ) sin(2παn + ϕ)a†
nan

+ t2

N−3∑
n=0

(a†
nan+2 + a†

n+2an)

+ t3

N−4∑
n=0

(a†
nan+3 + a†

n+3an). (6)

We show in Fig. 5 the real part of the energy spectrum for the
Hamiltonian given by Eq. (6) with respect to the modulation
strength vI when vR = 0. Figures 5(a) and 5(b) show the
evolution of the localization of the bulk modes as a function
of vI in the presence of second-nearest-neighbor hopping t2.
It is observed that the inclusion of second-nearest-neighbor
hopping removes the particle-hole symmetry of the spectra.
Interestingly, we observe that at certain energies such as vI =
1.9t , localized and extended states coexist in the bulk. This
must be contrasted with the situation observed in Fig. 3 where
it was observed that all the eigenstates are either extended
or localized, and no coexistence is possible. The coexistence
of localized and extended states is associated with a mobility
edge, and in Figs. 5(a) and 5(b) we observe that this mobility
edge depends on the strength t2, appearing in a wider region
for increasing t2. It is instructive to address another case with
extended hopping, in particular, third-neighbor hopping t3 as
shown in Figs. 5(c) and 5(d), while taking t2 = 0. In this
scenario, we observe that the spectrum remains particle-hole
symmetric to Re(E ) = 0. This extended model also features a
localization transition as a function of vI , happening at differ-
ent parameter values depending on the energy. In particular,
the bulk states with energy |Re(E )| closer to 0 get localized
for a smaller vI as compared to those that are farther. Similar
phenomenology is observed in a fully Hermitian model, where
mobility edge exists for the second- and third-neighbor hop-
ping. These results highlight that higher-order couplings lead
to an energy-dependent localization of the non-Hermitian bulk
states, regardless of whether they maintain the particle-hole
symmetry of the underlying model.
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FIG. 5. (a)–(d) Real part of energy spectra for the chain model
with losses as a function of the strength of modulation vI for dif-
ferent values of the second- and third-neighbor hoppings t2 and t3.
The localization transition occurs for different eigenstates at dif-
ferent vI . The inclusion of finite t2 shows that the spectra have
no particle-hole symmetry (a), (b), whereas third-neighbor hopping
preserves particle-hole symmetry (c), (d). We took N = 200, vR =
0, α = (

√
5 − 1)/2, and ϕ = 0.4π in (a)–(d).

B. Impact of disorder

We now study the robustness of the system given by Eq. (2)
as a function of disorder in the imaginary onsite energy [54].
For the sake of concreteness, we will focus on the model
featuring modulation solely on the losses by taking vR = 0
and vI is nonzero corresponding to the model featuring modes
at zero energy for α = 1

4 . To study the effect of disorder on
the energy spectrum, we define the spatially resolved spectral
density as

D(ω, n) =
∑

α

δ[ω − Re(Eα )]|�α (n)|2, (7)

where ω is the frequency. We note that the previous quantity
projects onto the real part of the eigenenergy, whereas an
analogous one can be defined for the imaginary part. The
spectral density D(ω, n) provides direct access to the number
of eigenstates with a specific value in the real part of the
energy, and is analogous to the density of states in a Hermitian
system.

We study the spectral density for the Hamiltonian given by
Eq. (2) with respect to the disorder strength, considering loss
disorder and detuning disorder. The disorder is included in the
Hamiltonian by including a term

HD = wR

∑
n

χn,Ra†
nan + iwI

∑
n

χn,I a
†
nan, (8)

where wI and wR parametrize the loss and detuning disorder,
respectively. The disorder is included by sampling a Gaussian

FIG. 6. (a)–(d) Spectral density as a function of the loss disorder
strength wI (a), (b) and potential disorder wR (c), (d), in the bulk (a),
(c) and at the edge (b), (d). It is observed that the existence of a finite
disorder decreases the bulk gap (a), (c), but without destroying it.
The zero edge modes are robust to the existence of disorder in loss as
shown (b), whereas they develop a finite splitting in the presence of
detuning disorder (d). We took N = 200 and vI = 2, and results are
averaged over 100 realizations.

distribution χ with an average value 0 and width 1, and for the
sake of simplicity we will consider loss and detuning disorder
separately. Let us first focus on the disorder in the loss mod-
ulation. We show in Figs. 6(a) and 6(b) the spectral function
averaged over disorder in the loss modulation projected on the
bulk [Fig. 6(a)] and at the edge [Fig. 6(b)]. It is observed that
the spectral gap in the bulk remains open in the presence of
disorder [Fig. 6(a)], and that a robust zero mode remains at the
edge even at finite disorder [Fig. 6(b)]. This phenomenology
highlights that the topological zero mode is robust to the
presence of disorder in the loss. We now move on to the
situation where disorder appears in the resonance frequency
of each site [Figs. 6(c) and 6(d)]. We show in Figs. 6(c)
and 6(d) the spectral function averaged over disorder in the
detuning disorder projected on the bulk [Fig. 6(c)] and at the
edge [Fig. 6(d)]. It is observed that this disorder also keeps
the spectral gap open in the bulk as shown in [Fig. 6(c)].
However, it is observed that at the edge the energy of the
zero modes is no longer pinned at zero energy, leading to an
edge state at a finite energy proportional to the typical level
of the disorder [Fig. 6(d)]. This phenomenology highlights
that while disorder in the loss does not impact the resonance
frequency of the edge mode, disorder in the onsite energies
affects the topological edge mode.

V. THE AUBRY-ANDRÉ-HARPER MODEL IN THE
CONTINUUM LIMIT

Previously we have focused on the discrete AAH model.
In the following, we now bring our attention to the
non-Hermitian AAH model in the continuum limit. The
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continuous AAH model is given by the Hamiltonian in con-
tinuous space as

H =
∫ [

p̂2

2m
+ (vR + ivI ) cos(2παx)

]
�†

x �xdx, (9)

where p̂ = −i ∂
∂x

, m is the effective mass, α is the AAH
frequency, and �†

x , �x are the continuum field operators
fulfilling [�x, �

†
x′] = δ(x − x′). The eigenbasis of the previ-

ous Hamiltonian can be computed by solving the associated
Sturm-Liouville non-Hermitian differential equation of the

form [− ∂2
x

2m + (vR + ivI ) cos(2παx)]ψk (x) = εkψk (x), with εk

the complex eigenvalue and k parametrizing the phase picked
due to twisted boundary conditions ψk (x + 1/α) = eikψk (x).
It is worth noting that in this continuum limit, the absence of
an underlying lattice makes the Hamiltonian explicitly peri-
odic in space, with a periodicity 1/α.

In the absence of a potential vR = vI = 0, the photonic
dispersion ε(k) corresponds to the folded band structure of
a free particle gas p2/(2m) as shown in Fig. 7(a). Due to the
periodicity of the potential 1/α, the quasimomentum k must
be unfolded to the original free momentum p to recover a
parabolic dispersion even for vR = vI = 0. For the sake of
comparison with the free particle limit, in the following we
will perform an unfolding of the eigenvalues as a function of
the momentum k in the unit cell of size 1/α, which in the case
vR = vI = 0 gives rise to the original band dispersion ε(p) of
Fig. 7(b) for the unfolded momentum p. With the previous
methodology to solve the continuum model and unfold its
eigenvalues we first address the Hermitian AAH model, and
later move to the non-Hermitian version. Focusing first on the
Hermitian case vR 	= 0 and vI = 0, we show in Figs. 7(c) and
7(d) the unfolded eigenvalues for two strengths of the AAH
potential. The insets of Figs. 7(c) and 7(d) show the photonic
dispersion in the original quasimomentum space k before
the unfolding is performed. It is observed that at the lowest
energies, weakly dispersive states appear, giving rise to a set
of minibands with weak dispersion, that eventually lead to a
highly dispersive state at high energies recovering the free par-
ticle dispersion. The emergence of those minibands is easily
rationalized from the fact that, at strong vR, the Hamiltonian
describes a set of deep harmonic potentials, each one leading
to harmonic oscillator modes. Due to the finite depth of the
potential, harmonic oscillator modes between different poten-
tial wells have a finite overlap, leading to a weak dispersion of
the individual modes. At higher energies, equivalent to higher
modes of the oscillator, the tunneling between different wells
becomes stronger. Finally, at kinetic energies bigger than the
depth of the well, the eigenstates resemble the free-particle
dispersion. We now move on to the non-Hermitian AAH con-
tinuous model with vR = 0 and vI 	= 0, as shown in Figs. 7(e)
and 7(f). In this limit, it is observed that at low energies a
set of weakly dispersing modes appear leading to a set of
nearly flat minibands. At higher energies, the free particle gas
dispersion is recovered, analogously to the Hermitian case. It
is further observed that at high energies a small replica of the
dispersion is obtained due to the momentum scattering created
by the non-Hermitian potential. In contrast with the Hermitian
case, the emergence of weakly dispersive states is no longer

FIG. 7. (a) Photonic dispersion in the folded momentum space
k for vR = vI = 0, and (b) unfolded dispersion in the momentum
space p recover the free-particle dispersion p2/(2m). (c), (d) Show
the spectra in the unfolded momentum p for the continuum Hermi-
tian AAH model for two different potential strengths, showing the
appearance of weakly dispersive modes and nearly free states. The
insets in (c) and (d) show the dispersion in the folded momentum
space k. (e), (f) Show the spectra for the continuum non-Hermitian
AAH model for two potential strengths. It observed that both weakly
dispersive and nearly free states emerge, with the inset showing the
spectra in the unfolded k space.

associated with harmonic oscillator modes in each well, but
they stem purely from the non-Hermitian potential.

The nature of the states in Fig. 7 can be further elucidated
by computing the spatially resolved continuum spectral den-
sity that takes the form

D(ω, x) =
∫

δ[ω − Re(εk )]|ψk (x)|2dk. (10)

The spatially resolved spectral density for the continuum
Hermitian and non-Hermitian AAH models are shown in
Figs. 8(a) and 8(b), with Figs. 8(c) and 8(d) showing the
profiles of the Hermitian and non-Hermitian potential as a
reference. In the Hermitian case shown in Fig. 8(a) (vI = 0),
it is observed that the low-energy states are localized at the
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FIG. 8. (a), (b) Spectral density of the Hermitian AAH and non-
Hermitian AAH model, respectively, is shown as a function of space
x. (c), (d) Show the potential profile V (x) as a function of x for
vI = 0 and vR nonzero and vice versa. (a) The lower-energy states
get localized corresponding to x when the potential is zero in (c),
with an increase in the value of Re(E ) the states are more extended.
(b) The lower-energy states get localized corresponding to x when the
potential attains a ±vmax in (d). Also, with an increase in the value of
Re(E ), the states are more extended and at a lower value of Re(E ) in
comparison to the Hermitian case.

bottom of the Hermitian potential wells, as expected from
harmonic oscillator modes. As the energy is increased, the
spatial extension of the modes becomes bigger, leading to an
increasing overlap between the states in the different wells,
and accounting for the enhancement of the bandwidth shown
in Figs. 7(c) and 7(d). At high energies, bigger than the top of
the potential, nearly free wave functions are recovered extend-
ing through all x. We now move on to consider the modes of
the non-Hermitian potential (vR = 0), shown in Fig. 8(b). In
the non-Hermitian case, it is observed that the lowest-energy
modes are located both at the maxima and minima of the
non-Hermitian potential. At higher frequencies, the extension
of the confined modes becomes bigger, leading to the in-
creased bandwidth observed in Figs. 7(e) and 7(f). Finally,
at high enough energies, the nearly free particle dispersion is

recovered, with the unique phenomenology that the states
remain peaked in specific regions of the non-Hermitian po-
tential, in particular those with a vanishing value. This
phenomenology stems from the nonperturbative nature of the
non-Hermitian potential, in stark contrast with the Hermitian
case.

VI. CONCLUSION

We have shown how tunable local losses allow engineering
topological modes in a photonic system. In particular, we
showed that both periodically engineered and quasiperiodic
loss profiles allow the creation of topological excitations at
the edge of the photonic array. In the quasiperiodic limit, we
showed that a critical localization takes place both in the pres-
ence of modulated losses, as well as in generalized photonic
arrays where both the local resonance frequency and the loss
are modulated. We showed that in the presence of second-
and third-nearest-neighbor hopping, the localization transition
takes place at different modulation strengths for each fre-
quency, leading to a photonic spectrum featuring a mobility
edge. Focusing on a topological regime featuring zero modes,
we addressed the robustness of the topological edge modes
in the presence of disorder, showing that resonance frequency
disorder leads to an energy splitting in the real energy, whereas
loss disorder keeps states at zero energy. Finally, we addressed
the continuum limit of the non-Hermitian model showing a
similar emergence of spectral minibands. Our results demon-
strate that photonic arrays with periodically modulated losses
provide a flexible platform to engineer both topological modes
and criticality, making reconfigurable photonics a promising
platform to explore exotic non-Hermitian states of light.
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