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Abstract: Imaging through scattering media is a useful and yet demanding task since it involves
solving for an inverse mapping from speckle images to object images. It becomes even more
challenging when the scattering medium undergoes dynamic changes. Various approaches have
been proposed in recent years. However, none of them are able to preserve high image quality
without either assuming a finite number of sources for dynamic changes, assuming a thin scattering
medium, or requiring access to both ends of the medium. In this paper, we propose an adaptive
inverse mapping (AIP) method, which requires no prior knowledge of the dynamic change and
only needs output speckle images after initialization. We show that the inverse mapping can be
corrected through unsupervised learning if the output speckle images are followed closely. We
test the AIP method on two numerical simulations: a dynamic scattering system formulated as an
evolving transmission matrix and a telescope with a changing random phase mask at a defocused
plane. Then we experimentally apply the AIP method to a multimode-fiber-based imaging system
with a changing fiber configuration. Increased robustness in imaging is observed in all three
cases. AIP method’s high imaging performance demonstrates great potential in imaging through
dynamic scattering media.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical imaging through scattering media [1–3] is indispensable to many applications, ranging
from underwater imaging [4] and biological tissue imaging [5] to imaging through the atmosphere
[6] and non-line-of-sight imaging [7,8]. Unfortunately, light from the object undergoes multiple
scattering and forms a noise-like speckle image at the detector [9]. An inverse problem must
be solved in order to retrieve the object image. The problem becomes much harder when
the dynamic nature of scattering media has to be incorporated, for example, in living tissues
[10–12]. Time-varying scattering properties rapidly scramble the optical information and result
in decorrelations of the speckle images. Many approaches have been proposed over the past
decades to address this issue. Yet none of them work satisfactorily. In the methods utilizing
phase conjugation [13,14], wavefront shaping [15,16], or transmission matrix (TM) [17–19],
the dynamic change is compensated by fast spatial light modulators (SLMs) [20] or deformable
mirror devices (DMDs) [21,22] in feedback control techniques. Although these methods are
flexible to any dynamic change, they require access to both ends of the scattering medium,
which is often unattainable in real-world applications. Deep learning methods [23–25] establish
a robust inverse mapping by training a convolutional neural network (CNN) with numerous
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pairs of speckle and object images collected under different conditions [26–34]. After training,
the CNN can reconstruct object images from speckle images. Nevertheless, since the CNN is
fixed at the time of the test, any dynamic change that has not been included during training can
significantly degrade the reconstructed images. Memory effects for speckle correlation [35–38]
enable single-shot imaging, overcoming the disadvantages of the above methods. However, the
memory effect method is limited to thin films. As the scattering media get thicker, the speckle
correlation drops rapidly and memory effects become neglectable.

Here, we present a general framework, the adaptive inverse mapping (AIP) method, to realize
stabilized high-performance imaging through dynamic scattering media. Our AIP approach only
requires speckle images and is not restricted to a few predetermined dynamic changes. We show
that although the reconstructed images are scrambled, their relationship to the object images
is preserved. By utilizing recently developed unpaired image-to-image translation [39], the
AIP method enables the inverse mapping to keep close track of the scattering media variations
by dynamic corrections. As a proof of concept, we test the AIP method on two numerical
simulations: a dynamic scattering medium formulated as an evolving TM, and a telescope with a
dynamic random phase mask at a defocused plane. We then experimentally apply the AIP method
to a multimode optical fiber (MMF)-based imaging system with a changing fiber configuration.
By closely monitoring the output speckle images, the AIP method preserves a high quality of
reconstructed images in all three cases. With the universality shown, we see the great potential of
the AIP method on increasing robustness in imaging through a wide range of dynamic scattering
media.

2. Results

2.1. Principle

We illustrate the AIP method in Fig. 1. At any ‘snapshot’ of the dynamic scattering medium, e.g.,
state i-1, the scattering medium can be viewed as a forward mapping that takes object images and
outputs speckle images. An inverse mapping is then applied to reverse this process to reconstruct
object images. At the next state i, dynamic changes in the scattering medium perturb the forward
mapping so that distorted images will be generated if the same inverse mapping is used. The AIP
method corrects the inverse mapping by monitoring the output speckle images from the scattering
medium (Fig. 1 (a)). More specifically, we initialize an inverse mapping of the scattering medium
at state 0 by training a CNN0 (see Methods for details) on m pairs of speckles and ground truth
object images (Fig. 1 (b)). At any subsequent state i, m speckle outputs are passed through
the inverse mapping of the previous state CNNi−1, generating m distorted reconstructed images
(Fig. 1 (c)). Among those m distorted images, n images are used, together with n reserved object
images, to train an image restoration cycle-consistent adversarial network i (Restore-CycleGANi)
(Fig. 1 (c) blue box and arrow). The n reserved object images are randomly selected from the m
object images at state 0. Note that not only are these two sets of images unpaired, but the true
objects of the n distorted images do not need to be included in the n reserved object images.
After learning a translation between distorted images and object images, the Restore-CycleGANi
takes all the m distorted images and generates m object images. In this way, we have m pairs of
speckle and object images. Finally, a CNNi learns a mapping from the m speckle images to the m
object images (Fig. 1 (c) green boxes and arrow). As a result, the inverse mapping is adapted
to the new state i to recover objects from the speckles. The AIP method is semi-supervised in
the sense that paired images are only required at the initialization. In later states, all it needs is
output speckle images.

Figure 1 (d) shows the detailed flowchart of a Restore-CycleGAN. Similar to the original
CycleGAN [39], two generator networks Gobj and Gdis try to learn a mapping from the distorted
reconstructions to the objects and vice versa. Two discriminators Dobj and Ddis try to distinguish
between the real images in the target domain and the fake images from the generators. The



Research Article Vol. 31, No. 9 / 24 Apr 2023 / Optics Express 14345

Fig. 1. (a) The diagram of applying the AIP method on imaging through dynamic scattering
medium. The AIP method constantly corrects the inverse mapping by monitoring output
speckle images from ‘snapshot’ states of the scattering medium. (b) Initialization of the AIP
method. At state 0, m object images are passed through the scattering medium, generating m
speckle images. A CNN0 is trained on these m pairs of images (green boxes) to establish
an initial inverse mapping. (c) The detailed workflow of the AIPi. In the re-calibration
stage (dashed box), m speckles among all the speckle images are passed through the inverse
mapping CNNi−1 of the previous state i-1. Because of the dynamic changes in the scattering
medium, CNNi−1 generates m distorted reconstructions. n images are randomly chosen
among these m images, together with n reserved object images, to form the training set of
Restore-CycleGANi (blue box). After learning a transition between those unpaired images,
the Restore-CycleGANi takes all the m distorted images and generates m clear images.
Therefore, we have m pairs of speckle images and object images (green boxes). Finally, a
CNNi is trained on these m pairs of images to re-establish the inverse mapping at the state i.
Blue box: unsupervised learning. Green boxes: supervised learning. (d) The flowchart of
the Restore-CycleGAN in (c). It consists of two generator-discriminator pairs: the object
image generator Gobj and the discriminator Dobj , and the distorted image generator Gdis and
the discriminator Ddis. The least square adversarial loss LLSGAN is optimized in a min-max
game, in which Gobj tries to fool Dobj by generating object images from distorted images,
whereas Dobj distinguishes between the real objects and the fake objects generated by Gobj.
Similarly, there is a LLSGAN for the reversed direction. The cycle-consistent loss Lcycle
enforces an identical output if an image passes through a full translation cycle. The identity
mapping loss Lidentiy regularizes the generators to have an identity mapping if the input is a
real image from the target domain.
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generators and discriminators are optimized in an adversarial game through the least square
adversarial loss LLSGAN . Further, the generators are optimized through two more losses: the
cycle-consistent loss Lcycle and the identity mapping loss Lidentiy. Lcycle requires that an image
should be unaltered if it goes through a full cycle. Lidentiy imposes an identical output if the input
is an image from the target domain. We use UNets [40] as the generators in place of ResNets
[41] in the CycleGAN [39], inspired by the observation that UNets with skip-connections have
weaker priors than ResNets [42]. This enhances the performance of the Restore-CycleGAN on
image restoration (Supplement 1). PatchGANs [43] are used as the discriminators. The details of
the architecture and the training process of Restore-CycleGANs can be found in Methods.

2.2. Dynamic scattering imaging system as an evolving TM

We test the AIP method on a general case of dynamic scattering imaging systems, where the
system is formulated as a complex-valued TM relating the input image to the output image
(see Methods for details). We construct a TM by drawing its elements from a complex normal
distribution [44–47] with a zero mean and a variance 1, i.e., CN(0, 1). Dynamic changes are
introduced by gradually replacing the elements in the TM with new elements from the same
complex normal distribution (Fig. 2 (a)). The imaging objects are Modified National Institute of
Standards and Technology (MNIST) handwritten digits [48] resized to 256× 256. Starting from
an initial inverse mapping CNN0, the AIP method is applied with m= 5000 and n= 1000 every
time when the percentage of the substituted elements p in the TM is increased by ∆p= 12.5%.
The performance of image reconstruction at all states is evaluated on a separate set of 500 test
images. The results are shown Fig. 2 (b-d). As the p increases, the reconstructed images by
CNN0 become more and more unrecognizable (Fig. 2 (b)). In comparison, the AIP method
stabilizes image reconstruction by improving the inverse mapping from the preceding state. The
improvement is quantified in Fig. 2 (c), where we plot the averages and standard deviations of the
mean absolute errors (MAEs) between the reconstructions and the objects at different states. For
every AIPi−1, the MAE increases when the dynamic scattering system transforms to a later state i.
The AIPi then corrects the inverse mapping and lowers the MAE. Figure 2 (d) shows the output
speckle decorrelations as a function of p. The amount of speckle decorrelation is evaluated
through the Pearson correlation coefficient (PCC). When the output speckles at p= 50% are
already decorrelated to the speckles at the first state, i.e., PCC< 1/e, good image reconstruction
is still preserved. We attribute this to the fact that the speckles remain highly correlated to the
neighboring state if the system is traced closely. This is further confirmed through a comparison
with the results by the AIP method with an increased ∆p= 25% (Supplement 1).

2.3. Dynamic telescopic imaging system

Next, we numerically simulate the use of the AIP method on a dynamic telescopic imaging
system, where a changing random phase mask is located at a defocused plane [25,26,30,49,50]
(Fig. 3). The focal lengths f1 and f2 of the two lenses are chosen to be 250 mm and 150 mm,
respectively. The object has a size of 10.24 mm× 10.24 mm. A random phase mask is placed
z= 15 mm in front of the first lens L1. The transmittance of the phase mask t(x, y) is formulated
as Eqs. ((1)–(2)) given in Fig. 3. ∆n= 0.52 is the refractive index difference between the phase
mask and air. λ= 632.8 nm is the wavelength. D(x, y) is a random height field. W(x, y) is a set of
random height values drawn from the normal distribution N(µ, σ0) at discrete sample location
(x, y), and K(σ) is a zero-mean Gaussian smoothing kernel with a full width half maximum
(FWHM) of σ. Moreover, the elements in the matrix W(x, y) are gradually replaced by values
from the same normal distribution (enlarged figure in Fig. 3). Thus, the phase mask is changing
towards a different phase mask. µ, σ0, and σ are chosen to be 16 µm, 5 µm and 4 µm, respectively.
Imaging through the system is simulated using Fourier optics [51,52].

https://doi.org/10.6084/m9.figshare.22322143
https://doi.org/10.6084/m9.figshare.22322143
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Fig. 2. (a) Schematic of a dynamic scattering system formulated as an evolving TM. The
TM transforms objects into speckles. Enlarged figure: The dynamic changes in the TM.
The elements in the original TM (white) are gradually replaced by new elements (blue). (b)
The results of image reconstruction obtained by applying the AIP method to the dynamic
scattering system shown in (a). Object: The input object images (top left column); Speckle:
the output speckle images when the percentage of the substituted elements p in the TM is
increased from 0% to 100% with a step of 12.5%; CNN0 and AIPi: the reconstructed images
from CNN0 and the ith AIP. The dashed bounding boxes with the same color represent the
reconstructions from a particular AIP or CNN0. (c) The averages and standard deviations of
the MAEs of the test reconstructions from the AIPi and CNN0. The colors of the symbols
correspond to the colors of the bounding boxes in (b). (d) The PCCs of the speckle images
with respect to (w.r.t.) the speckle images from the first state p= 0% (dark blue line), and
w.r.t. the speckle images from the preceding state (brown line).
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Fig. 3. Schematic of the simulated dynamic telescopic imaging system. A changing random
phase mask is placed at a defocused plane. L1, L2: lenses. Eq. ((1)–(2)): formulas of the
transmittance of the random phase mask t(x, y). ∆n: the refractive index difference between
the phase mask and air. λ: wavelength. D(x, y): a random height field. W(x, y): a set
of random height values drawn from the normal distribution N(µ, σ0) at discrete sample
locations (x, y). K(σ): a zero-mean Gaussian smoothing kernel with FWHM value of σ.
Enlarged: the elements in W(x, y) (white) are gradually replaced by new elements (blue).

The objects are extended MNIST (EMNIST) handwritten letters [53]. We initialize an inverse
mapping CNN0 of the system with the original phase mask. The AIP method is then adopted to
stabilize the imaging reconstruction every time when the percentage of the substituted elements p
in the W(x, y) is increased by ∆p= 10%. We choose m= 5000, and n= 1000 in the AIP method.
A separate set containing 500 images is used to test the performance of image reconstruction at
all states. The results are shown in Fig. 4. As p increases, the quality of images reconstructed by
CNN0 degrades (Fig. 4 (a)). In comparison, the AIP method stabilizes the image reconstruction
(the last column at each state in Fig. 4 (a)). Good visual quality is still maintained when the
original phase mask has been completely replaced by a new phase mask (p= 100%). In Fig. 4 (b),
we plot the averages and standard deviations of the MAEs between the reconstructions and the
objects at different states. Similar trends as in Fig. 2 (c) can be observed, where the AIP method
corrects the inverse mapping of the preceding state. Figure 4 (c) shows the averages and standard
deviations of the PCC scores between the output speckles. While the speckles become more
and more decorrelated from the speckles at the first state (dark blue line), they remain highly
correlated with the speckles from the preceding states (brown line). This indicates the necessity
of tracing the state of the system closely. We compare to the results when the AIP method is
applied directly at the final state. Degradation on the reconstructions can be seen from both the
additional column in Fig. 4 (a) and the dark gray star in Fig. 4 (b) at p= 100%.
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Fig. 4. (a) The results of image reconstruction obtained by applying the AIP method to the
dynamic telescopic imaging system shown in Fig. 3. Object: the input object images (top
left column); Speckles: the output speckle images when the percentage p of the substituted
elements in W(x, y) is increased from 0% to 100% with a step of 10%; CNN0 and AIPi: the
reconstructed images from CNN0 and the ith AIP. The dashed bounding boxes with the same
color represent the reconstructions from a particular AIP or CNN0. (b) The averages and
standard deviations of the MAEs of the test reconstructions from the AIPi and CNN0. The
colors of the symbols correspond to the colors of the bounding boxes in (a). (c) The PCCs
of the speckle images w.r.t. the speckle images from the first state p= 0% (dark blue line),
and w.r.t. the speckle images from the preceding state (brown line).
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2.4. Dynamic MMF-based imaging system

Based on the numerical validations, we further experimentally apply the AIP method on a dynamic
MMF-based imaging system. MMFs have shown great potential for endoscopic applications
[54–57], thanks to their miniature sizes and high mode densities. Recently burgeoning deep
learning technology further enhances the performance of MMF-based imaging systems [27,
29,58,59]. However, because of MMFs’ intrinsic scattering properties, it is extremely challenging
to realize image transport in a dynamic MMF [27,29], where the mode coupling is highly sensitive
to perturbations. Here, we validate the AIP method by tackling the dynamic MMF-based image
transport problem. The schematic of the setup is shown in Fig. 5. We illuminate a digital
micromirror device (DMD) (ViALUX, V-7000) using a laser at 632.8 nm. The laser beam
is expanded by lenses L1 and L2. MNIST handwritten digits [48] are binarized, resized to
128× 128, and displayed on the DMD as the objects. We demagnify and couple the objects into a
50-cm-long MMF (Thorlabs, FG105LCA) by a tube lens L3 (f= 200 mm) and a 20x microscope
objective MO1 (NA= 0.75). The MMF is placed on a translation stage with two optical posts
(Supplement 1). The movement of the translation stage changes the fiber bending configuration,
resulting in varied output speckles. The output speckles are magnified and projected onto a CCD
camera (Manta G-145C) by a combination of 20x MO2 (NA= 0.75) and L3 (f= 200 mm). For
image processing, both the objects and the speckles are resized to 256× 256. After initializing
an inverse mapping CNN0, we apply the AIP method to stabilize the image reconstruction
dynamically when the translation stage is moving with a step of 5 µm. m and n are chosen to be
5000 and 1000 for the AIP method implementation, respectively. A separate dataset containing
500 images is used to test the image reconstruction performance at all states.

Fig. 5. Schematic of the MMF-based imaging system. DMD: Digital micromirror device.
MO1, MO2: microscope objectives. L1, L2, L3, L4: lenses. CCD: CCD camera. The MMF
is placed on a translation stage with two posts (the gray rectangle). Mechanical perturbations
to the MMF are applied by translating the stage with a distance of d.

Figure 6 (a) shows the objects, the MMF outputs, and the reconstructed images of AIPs and
CNN0 at each translation distance d. As d increases, the output speckles from the MMF gradually
decorrelate with the initial state (see the Visualization 1). During this dynamic process, the
reconstructions from CNN0 are increasingly distorted, while that from the AIP method maintains
high visual qualities (the last column at each state in Fig. 6 (a)). The image qualities at each state
are quantified through the MAEs between the ground truths and the reconstructions (Fig. 6 (b)).
Similar to the observations in Fig. 2 (c) and Fig. 4 (b), the AIP method slows down the increase of
the MAEs. In Fig. 6 (c), we calculate the PCC scores between the output speckles in the circular
region of the MMF. Decorrelations to the initial state with PCC< 1/e occur when d is larger than
10 µm (dark blue line). Nevertheless, highly correlated neighboring states (brown line) ensure
the success of the AIP method. This is further verified when we skip all the intermediate states

https://doi.org/10.6084/m9.figshare.22322143
https://doi.org/10.6084/m9.figshare.21767993
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and directly apply the AIP method to the last state. Degraded image quality can be observed from
both the additional column in Fig. 6 (a) and the dark brown triangle in Fig. 6 (b) at a translation
distance of 25 µm.

Fig. 6. (a) The results of image reconstruction obtained by applying the AIP method to the
dynamic MMF-based imaging system shown in Fig. 5. Object: the input object images (top
left column); Speckles: the output speckle images when the distance d is increased from 0
to 25 µm with a step of 5 µm; CNN0 and AIPi: the reconstructed images from CNN0 and
the ith AIP. The dashed bounding boxes with the same color represent the reconstructions
from a particular AIP or CNN0. (b) The averages and standard deviations of the MAEs of
the test reconstructions from the AIPi and CNN0. The colors of the symbols correspond
to the colors of the bounding boxes in (a). (c) The PCCs of the speckle images w.r.t. the
speckle images from the first state d = 0 µm (dark blue line), and w.r.t. the speckle images
from the preceding state (brown line). PCCs are calculated for the circular regions of the
fiber outputs.
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3. Discussion and conclusion

3.1. Semi-supervised learning

In the AIP method, object images are only collected at the initialization. They are used in two
aspects. First, paired object images and speckle images form a training set to establish an initial
inverse mapping through supervised learning. Second, a small part of object images is broadcast
to the later states to stabilize the imaging performance. After the initialization, the AIP method
only requires output speckle images from the dynamic scattering medium. Unsupervised learning
is utilized to find a mapping from distorted reconstructed images to object images. Therefore,
the AIP method eliminates the need for access to both ends of the dynamic scattering medium,
as required in methods using feedback control [20–22]. This makes the AIP method easy to
implement in most real-world applications, where only the output end is accessible during image
acquisition.

3.2. Flexibility

Unlike other data-driven approaches [26–30], the AIP method does not make any assumptions on
the system’s dynamics. It can be applied to irregular or unpredictable system variations as long
as the change between neighboring states is not significant. Under such a condition, there is an
implicit connection between the distorted images and the objects. At any state i, the scattering
imaging system takes object images x and generates speckles through a forward mapping Fi
(·). If we take AIPi as an approximation of the system inverse mapping Fi

−1(·), the distorted
reconstructions at state i+ 1 can be represented by Fi

−1(Fi+ 1 (x)). The weights of the generator
in the Restore-CycleGAN are initialized in a way (see Methods 4.1) that the generator starts
at the distorted reconstructions Fi

−1(Fi+ 1 (x)) and looks for an image translation to a nearby
local optimum. Under the condition of Fi+ 1 (·) ≈ Fi (·), x would be the closest optimum to
Fi

−1(Fi+ 1 (x)) in the high-dimensional space. Therefore, the generator will translate the distorted
reconstructions Fi

−1(Fi+ 1 (x)) to their ground truths x, and correct the inverse mapping if the
dynamic scattering medium is traced closely.

3.3. Universality

For linear propagation scattering media, the forward mapping operator Fi (·) reduces to a TM
Ti. Thus, the dynamic changes to the medium result in different transformations of the TMs.
In the first case of an evolving TM, dynamic changes simply replace elements in the TM. In
the dynamic telescopic imaging system, the transformation of the TM is more implicit. In the
dynamic MMF-based imaging system, under the assumption that the fiber deformation does not
change the eigenmodes [60], the TM Ti+ 1 at state i+ 1 can be written as:

Ti+1 = P†
Λi+1P, (1)

Λi+1 = Di+1Λi, (2)
where Λi+ 1 is the diagonal eigenvalue matrix at the state i+ 1. P is the projection matrix to
project the input onto the eigenmode basis. Fiber deformations introduce a diagonal deformation
operator Di+ 1 that changes the eigenvalue matrix Λi of the previous state i. The AIP method
corrects the inverse mappings for the TM transformations of all three cases. This shows the
universality of the AIP method. The universality is further demonstrated in the Supplement
1, where we apply the AIP method to a disordered optical fiber imaging system with dynamic
imaging depths.

3.4. Perspectives

Improvements of the AIP method can be made in several ways. First, while the AIP method
could be applied in many imaging tasks satisfying the quasi-static assumption for re-calibrations,

https://doi.org/10.6084/m9.figshare.22322143
https://doi.org/10.6084/m9.figshare.22322143
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such as fiber-based deep-brain imaging on neurons [55,56], it still faces challenges in imaging
through fast-varying scattering systems. The speed of the current AIP method is limited by the
acquisition time of collecting m speckle images (103 to 104 depending on the complexity of the
objects) to correct the inverse mapping. During the image acquisition, the AIP method assumes
a quasi-static scattering system. This means that the speckle image acquisition time should be
much smaller than the speckle decorrelation time. The image acquisition time is determined by
two factors: the frame rate of the camera and the number of images required. While the former is
limited by the hardware, much effort can be made to reduce the latter. In the current method, the
image reconstruction CNN and the Restore-CycleGAN operate separately. The CNN generates
distorted reconstructions and the Restore-CycleGAN finds the connection between distorted
reconstructions and object images. To make more efficient use of a reduced number of speckle
images, in future studies, the training of the reconstruction CNN and the Restore-CycleGAN can
be done interactively so that improvements on one lead to improvements on the other. Second,
while the trained neural networks from the previous states can still be retrieved, the AIP method
only uses the information from the last state to correct the inverse mapping of the current state.
In future work, the information of all the preceding states could be utilized to establish a more
robust inverse mapping to improve the image quality of new states. Moreover, the current work
lacks start/stop criteria for the initiation and termination of the AIP method. Since the dynamics
of the system are unknown to us, frequent executions of the AIP would be necessary to avoid
losing track of system changes. In future work, additional metrics for evaluating the imaging
performance should be developed to establish start/stop criteria so that the image quality could be
preserved while minimizing the computational time. Finally, a fine-tuned initial CNN may not be
necessary due to the Restore-CycleGAN’s capabilities of correcting the inverse mapping. In the
future, training a coarse CNN in the initialization step using simulations or simpler experiments
could be investigated to further facilitate the AIP method.

In conclusion, we show that the inverse mapping of a dynamic scattering medium can be
corrected through unsupervised learning if the medium is traced closely. We demonstrate the
preservation of good image quality by the AIP method in three showcase dynamic scattering
systems. The advantages of semi-supervised learning and its flexibility make the AIP method
a promising candidate to improve imaging through dynamic scattering media without prior
knowledge of dynamic changes.

4. Methods

4.1. Architectures and training processes of the Restore-CycleGAN

We use PatchGAN [43] as the discriminator network. The PatchGAN looks into patches of an
input image and predicts whether they come from a real or a fake image. It consists of two input
and output layers as well as five blocks in between (Supplement 1). The last four blocks consist
of Convolutional/Instance-Normalization [61] /Leaky-ReLU layers, whereas the first block omits
the Instance-Normalization layer. All convolutional filters in these five blocks, except the last
one, have a size of 4× 4 and a stride of 2. A convolutional layer is added after these five blocks
to generate the final output.

We use UNet [40] as the generator network. The UNet has an encoder-decoder architecture
with skip connections between layers in the encoder and decoder (Supplement 1). The input
image is first down-sampled to a bottleneck layer by the encoder, which consists of convolutional
layers with a kernel size of 4× 4 and a stride of 2. The decoder then up-samples to the output
image using transpose convolutional layers. Dropout layers with a rate of 0.5 are added to the
decoder. The size of the input images is 256× 256. All the weights in the PatchGAN and UNet
are initialized through a random Gaussian distribution with a zero mean and a standard deviation
of 0.02.

https://doi.org/10.6084/m9.figshare.22322143
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The real images from the target domain are labeled as ‘1’, whereas the fake images from the
generator are labeled as ‘0’. The generator network Gobj has the following loss function:

LGobj = Ey[(Dobj(Gobj(CNNi(y))) − 1)2]

+ α1Ex[| |Gobj(Gdis(x)) − x| |1]

+ α1Ey[| |Gdis(Gobj(CNNi(y))) − CNNi(y)| |1]

+ α2Ex[| |Gobj(x) − x| |1]

(3)

where x and y are the object and speckle images, respectively. The first term in the loss function
is the least square adversarial loss LLSGAN . The second and third terms are the cycle-consistent
losses Lcycle in both directions. The fourth term is the identity mapping loss Lidentiy. α1 and
α2 control the weighting among the losses. α1 and α2 are chosen to be 10 and 5, respectively.
The weights in Dobj and Gdis are fixed when Gobj is being trained. The loss function of the
discriminator network Dobj is the least square adversarial loss LLSGAN :

LDobj = Ex[(Dobj(x) − 1)2] + Ey[Dobj(Gobj(CNNi(y)))2] (4)

To train Dobj, the real object images are randomly selected from all the object images, whereas
the fake images are randomly selected from a pool of 50 fake images generated by Gobj. The
pool is randomly updated through newly generated fake images. The loss of the discriminators is
weighted as one half to the loss of the generators. Similarly, we have the loss functions LGdis

and LDdis for Gdis and Ddis, respectively. The discriminators and generators are trained for 100
epochs using a batch size of 1 and an Adam optimizer with a learning rate of 0.0002 and an
exponential decay rate for the first momentum β1 = 0.5. The training takes ∼40 hours on a
dual-GPU (GeForce GTX 1080 Ti) desktop.

4.2. Architectures and training processes of the CNN

The CNNs used to establish the inverse mapping at all states have the same architecture as
the generators in the Restore-CycleGAN. The weights of the CNNs are also initialized in the
same way. The MAE is chosen as the loss function. The m pairs of speckle images and the
corresponding Restore-CycleGAN reconstructions at each state are split into a training set and a
validation set. The CNN is only trained on the training set, while the training process is monitored
through the validation set. We train the CNNs for 200 epochs using an Adam optimizer with a
learning rate of 0.005 and the exponential decay rate for the first momentum β1 = 0.9. The batch
size is 512.

4.3. Generating output images through a TM

The intensity of an input image is first converted to an electric field matrix Ein. The matrix is
flattened into a vector and multiplied by the complex-valued TM (Eq. (7)). The resulting vector
is then rearranged to an output electric field matrix Eout. Finally, the output electric field matrix
is converted back to the output intensity.

Eout =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Eout,1

Eout,2
...

Eout,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
t11 · · · t1n
...

. . .
...

tn1 · · · tnn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ein,1

Ein,2
...

Ein,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= TEin (5)
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4.4. Metrics

The definitions of the metrics used in this paper to evaluate the similarity between two images
are the following:

MAE =
1
n

n∑︂
i=1

|xi − yi | (6)

PCC =

n∑︁
i=1

(xi − x̄)(yi − ȳ)√︃
n∑︁

i=1
(xi − x̄)2

√︃
n∑︁

i=1
(yi − ȳ)2

(7)

where the pixel values of the two images are flattened to two vectors: x and y, both containing n
elements. x̄ and ȳ are the average values of elements in x and y, respectively.
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