Volume 15, number 1

OPTICS COMMUNICATIONS

September 1975

LINE NARROWING IN A SYMMETRY BROKEN LASER®

Weng W. CHOW, Marlan O. SCULLY** and Eric W. Van STRYLAND
Department of Physics and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721, USA

Received 2 June 1975

The power spectral density of a laser subjected to a symmetry breaking injected signal is calculated via the quantum noise
operator approach. The resulting spectrum is sharpened in a manner reminiscent of the line narrowing which occurs in the
Lamb—Mossbauer effect. It is further noted that these considerations are potentially of interest in producing high intensity

fields in small focal volumes.

The quantum properties of laser radiation are well

understood both theoretically and experimentally [1].

Recently, it has been demonstrated that a useful anal-
ogy exists between thermodynamic phase transition
phenomena and laser threshold behavior [2]. In this
context it has been noted that the symmetry break-
ing mechanism in the laser problem involves a classical
signal injected into the laser cavity. It is further noted
that the phase fluctuations associated with the laser
in such a symmetry broken mode of operation will be
markedly changed. This can be seen by looking at the
effective free energy G, as a function of the electric
field amplitude p, and phase ¢ (fig. 1). The injected
signal breaks the symmetry of the effective free ener-
gy so that the laser will now tend to fluctuate about
the injected signal’s phase ¢~ [t will be seen that
there is an amusing similarity between the present
spectral density for the symmetry broken laser pro-
blem and that obtained in the calculation of the spec-
trum for the Lamb—Mo6ssbauer effectt [3].

In the present note we wish to consider the effects
of such a symmetry breaking signal on the linewidth
of the laser. This problem is a logical extension of
the laser—phase-transition analogy and is potentially
of interest in considerations involving delivery of a
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*In the present problem the atoms tend to “lock” in phase
with the incident field, while in the Lamb—M&ssbauer ef-
feet, the nuclear coordinates are locked by the lattice, and
the subsequent well-known line narrowing results.
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high peak power into a small focal volume. In this lat-

ter context we note that if one focuses n “‘identical”
but independent lasers of power P, onto a spot of the
order of a wavelength, we would in general expect the
total power to go as nP. This is the case, since due to
spontaneous emission, each laser is oscillating with a
random phase and the total electric field is proportion-
al to the square root of the number of lasers involved.
However, in the case where an external signal is inject-
ed into the n lasers in question, the symmetry is bro-
ken and the quantum noise fluctuations may be quiet-
ed to the extent that the total electric field is now
proportional to the number of lasers. In this case we
could, in principle, hope to achieve a peak power
over a small region which is n?® times the power of any
one laser. This could be potentially interesting in ex-
periments involving small pellets. We would therefore
like to know how well we can lock the phase of any
given laser by means of a symmetry breaking signal.
We further note that the present notion of » lasers
in “parallel” has some obvious advantages over a long
chain of amplifiers, e.g., the intensity from any one
of our lasers need not be high enough to produce
damage to the optical components. However, the pur-
pose of the present paper is not to suggest the design
of a practicable scheme, but rather to access the ex-
tent to which phase fluctuations may be quieted by
injecting into each laser a small fraction of a “master
laser”. We are therefore interested in the time depen-
dence (spectral density) of the ensemble averaged laser
field in the presence of the symmetry breaking signal.
We find that the spectrum for the present problem is
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Fig. 1. (a) Effective free energy, G(p, ¢) of laser. (b) Effective
free energy, G(p, ¢) of laser subjected to symmetry breaking
signal having phase ¢g.

given by a suitably weighted sum of Lorentzians. Fur-
thermore, the spectral half-width at half-maximum is
narrowed by the presence of the injected signal.

We begin the calculation by extending the quan-
tum noise operator treatment of a laser to include the
presence of an external signal. The equation of mo-
tion for the slowly varying part of the radiation field
annihilation operator, A(¢) exp (—ivt), is

dA(r) _0A(¢)
dr B ot laser
+ [A(0), st () e 20— g(r) o)), (1)

where we take the injected signal to be resonant with
the laser field, ¢y (¢) is the slowly varying phase of the
injected signal, and s is a time independent quantity
which designates the influence of the external signal
on our laser*. From previous calculations [1,4], we
have

5‘% =1(A — @) A(n) —SBADAT (A1)
+G(f) + se 00N (2)

where ¢, 9B and @ are the gain, saturation and loss
parameters®** [5]. For simplicity, we have tuned the

* The injected clectric field £¢ cos (pf + ¢g(r)) induces a po-
larization in the laser medium which couples to the laser
field. From eq. (1) we see that s goes as [veq /M V125 E 82
where x is the susceptibility of the laser medium, € is the
polarization of the radiation field, v is its frequency, and V
is the volume of the cavity.

** ol B, C may be taken from ref. [5], which work includes
temperature effects.
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cavity frequency to the center of the atomic spec-
trum, and G(¢) is the quantum Langevin force defined

by [1]:
GT () GEY + G GT 'y =4nD st 1),
where
1 — (ny,/n n, +n
_ A (b/a)(ia b+1+ﬁT)

2 1+ (B A)
n, and ny are the populations of the upper and lower
active atomic levels, and 7 is the “thermal” photon
number. Making the substitution A(r) = p(r)e " 1?¢)in
eq. (2) gives
dp(t)_

L= (st - @)a(t) = 3B () (3)

20, —ny 2

#5c0s [6() — (D] + 3G+ Gl e O,

and
Q%Q E %{) sin [¢() — ¢ (1))
R <[ e Al () L S
.y - (4)

Thus, when |s| ;> the RMS value of G(t), which is ap-
proximately /A, the phase ¢(r) will tend to fluctuate
about the value ¢,,. For the present discussion we as-
sume the physically reasonable but arbitrary numbers:
2A/i = 1 Hz, A ~1.01€, €= 10° Hz, = 10,
These numbers imply a susceptibility, x, in the laser
medium of 10~ 7 which leads to injected signal fields
[4] of =10 11 yolt/m. Since the injected signal
strength is small, we do not anticipate an appreciable
change in the laser field amplitude®. Thus we can re-
place p(t) by /7. When s >+/s{ , we can write ¢(t) =
¢o(t) +0(r) where 0 < 1. The above substitutions in
eq. (4) result in

s
ity 0

G(1) elo(t) _ G'f({)e*'i‘i'(F)

2/n NS

¥ For the usual laser oscillator operating above threshold, am-
plitude fluctuations are small and thus one replaces p(f) by
the average amplitude \/f In the present problem we may
account for the influence of the injected signal by replacing
p by /T + r. We find that for values of s sufficient to sig-
nificantly narrow the laser linewidth, r is small compared
to /7.
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where terms of order 02 are neglected, and we have
used the fact that cfbo(z‘) < 0(r). Now the power spec-
tral density (Fourier transform of the second order
correlation) is

a(w) = (fw/Veq) [ dre @

oo 4 D). o

where ¢ ) denotes thc appropriate ensemble average
over the injected signal coordinates, and { ) involves
the usual quantum statistical average associated with
the Langevin forces. From eq. (5) and noting that
{A4(r) varies on a time scale that is long compared
to the correlation time of the Langevin forces but
short compared to the temporal variation of the in-
jected signal, we obtain

€At () A0 =
D1-— -2(X /f j|

ii(e %0 (h,

e~

The time ¢ = 0 is taken as the point at which the
phase of the injected signal coincides with that of the
radiation field and ¢(0) = 0. Eq. (7) may be written
as

(7

Wt (0) A, = 7 (e i00 0y ¢ DV Tl4s
e—(Zs/ﬁ)mr (D \/ﬁ')m

m=0 m!

Taking the Fourier transform, we obtain the power
spectral density

a(w) = (v Veg) 7 e~ DN 7145 @
- Qﬁm | 27 .
X ;r§](2 25) m! [y/2 +m(2s/N/m)] (m +2),
where
2
£(1‘)=—I
(w—)? o2’

and we have assumed that the external laser has a
lorentzian spectrum with a linewidth 1/y. The sum in
eq. (8) converges rapidly and is plotted in fig. 2 for
various injected signal values.

In summary we see that the electric field spectrum

OPTICAL COMMUNICATIONS

September 1975

-
-

T F =¥ =T

Qlw) /()

Fig. 2. Normalized spectra of the symmetry broken laser with
4 =10l¢e, e=109Hz, n=10% D =50 Hz,and 2s/\/h =

4 Hz, 8 Hz and 100 Hz compared to the spectrum of the usual
laser (ZS/ﬁz 0) with the same values of «, ¢, D and A.

of a laser that is subjected to a weak symmetry break-
ing signal has gone from a simple lorentzian to a form
that is reminiscent of the Lamb—Mdssbauer effect
with its associated line narrowing. Furthermore, we
note that n lasers in “parallel’” may be influenced to
deliver a total power to a small spot which goes as

Py = anof(r) exp (fD\/ﬁ,’Qs) .

where f(r) is a spatial interference factor.
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