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High-sensitivity, single-beam n2 measurements 
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We present a simple yet highly sensitive single-beam experimental technique for the determination of both the sign 
and magnitude of n2• The sample is moved along the z direction of a focused Gaussian beam while the repetitively 
pulsed laser energy is held fixed. The resultant plot of transmittance through an aperture in the far field yields a 
dispersion-shaped curve from which n2 is easily calculated. A transmittance change of 1% corresponds to a phase 
distortion of ~>../250. We demonstrate this method on several materials using both C02 and Nd:YAG laser pulses. 

Numerous techniques are known for the measurement 
of nonlinear refraction in materials. Nonlinear inter­
ferometry,1·2 degenerate four-wave mixing,3 nearly de­
generate three-wave mixing,4 ellipse rotation,5 and 
beam-distortion measurements6•7 are among the tech­
niques frequently reported. The first three methods, 
interferometry and wave mixing, are potentially sensi­
tive techniques but require a complex experimental 
apparatus. Beam-distortion measurements, on the 
other hand, require precise beam scans followed by 
detailed wave-propagation analysis. Based on the 
principles of spatial beam distortion, however, we 
present a single-beam technique for measuring the 
sign and magnitude of refractive nonlinearities that 
offers simplicity as well as high sensitivity. The tech­
nique is based on the transformation of phase distor­
tion to amplitude distortion during beam propagation. 
We demonstrate this technique, which we refer to as a 
Z scan, on several materials in the IR and the visible, 
with nanosecond and picosecond pulses, for thermal 
and electronic Kerr nonlinearities. The demonstrat­
ed sensitivity to nonlinearly induced phase changes is 
better than A./100. 

The Z-scan experimental apparatus is shown in Fig. 
1. Using a Gaussian laser beam in a tight-focus limit­
ing geometry, we measure the transmittance of a non­
linear medium through a finite aperture placed in the 
far field as a function of the sample position (z) mea­
sured with respect to the focal plane. The following 
example qualitatively explains how such a trace (Z 
scan) is related to the nonlinear refraction of the sam­
ple. We place a thin material (i.e., with a thickness 
much less than the beam depth of focus) having n2 < 0 
well in front of the focus ( -z in Fig. 1). As the sample 
is moved toward the focus the increased irradiance 
leads to a negative lensing effect that tends to colli­
mate the beam, thus increasing the aperture transmit­
tance. With the sample on the +z side of the focus, 
the negative lensing effect tends to augment diffrac­
tion, and the aperture transmittance is reduced. The 
approximate null at z = 0 is analogous to placing a thin 
lens at the focus that results in a minimal far-field 
pattern change. For still larger +z the irradiance is 
reduced and the transmittance returns to the original 
linear value. We normalize this value to unity. A 
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positive nonlinearity results in the opposite effect, i.e., 
lowered transmittance for the sample at negative z 
and enhanced transmittance at positive z. Induced 
beam broadening and narrowing of this type have been 
previously observed and explained for the case of band 
filling and plasma nonlinearities8 and in the presence 
of nonlinear absorption in semiconductors. 9 

Not only is the sign of n2 apparent from a Z scan, but 
the magnitude of n2 can also be easily calculated usirig 
a simple analysis for a thin medium. Considering the 
geometry given in Fig. 1, we formulate and discuss a 
simple method of analyzing the Z scan. For a fast 
cubic nonlinearity the index of refraction is expressed 
in terms of nonlinear indices n2 ( esu) through 

n21 12 n = n0 + 2 E = n0 + !:in, (1) 

where n0 is the linear index of refraction and E is the 
electric field. Assuming a Gaussian beam traveling in 
the +z direction, we can write the magnitude of E as 

w0 [ r2 J IE(r, z, t)l = IE0(t)l-( ) exp - -
2 

- ' 
w z w (z) 

(2) 

where w2(z) = w0
2(1 + z2/z0

2) is the beam radius at z, zo 
= kw0

2/2 is the diffraction length of the beam, k = 21r/A. 
is the wave vector, and A. is the laser wavelength, all in 
air. Eo denotes the radiation electric field at the focus 
and contains the temporal envelope of the laser pulse. 

If the sample length is small enough such that 
changes in the beam diameter within the sample due 
to either diffraction or nonlinear refraction can be 

APERTURE 

Fig. 1. Simple Z-scan experimental apparatus in which the 
transmittance ratio D2/D1 is recorded as a function of the 
sample position z. BS, Beam splitter. 

© 1989 Optical Society of America 



956 OPTICS LETTERS I Vol.14, No. 17 I September 1, 1989 

neglected, the medium is regarded as thin. Such an 
assumption simplifies the problem considerably, and 
the amplitude and nonlinear phase change fl.¢ of the 
electric field within the sample are now governed by 

dfl.¢ = 21r/'A fln and diEI = -a/2 lEI, (3) 
dz dz 

where a is the linear absorption coefficient. Equa­
tions (3) are solved to give the phase shift fl.¢ at the 
exit surface of the sample, which simply follows the 
radial variation of the incident irradiance at a given 
position of the sample z: 

flcJ>o [ 2r
2 J fl.¢(r, z, t) = 2 2 exp - - 2- , 

1 + z /z0 w (z) 
(4a) 

with 

21r 1- e-aL 
fl.cJ>0(t) = ~ fln0(t) a , (4b) 

where Lis the sample length and flno(t) is the instan­
taneous on-axis index change at the focus (z = 0). The 
electric field E' at the exit surface of the sample z1 now 
contains the nonlinear phase distortion, 

E'(r, z1, t) = E(r, z1, t)exp( -aL/2)exp[ifl¢(r, z1, t)]. 

(5) 

By virtue of Huygens's principle one can obtain the 
far-field pattern of the beam at the aperture plane 
through a zeroth-order Hankel transformation of E'.10 
We use a numerically simpler Gaussian decomposition 
method given by W eaire et al.11 

Having calculated the electric-field profile, Ea, at 
the aperture, we obtain the normalized instantaneous 
Z-scan power transmittance as 

lra 1Ea(flcJ>0 , r, z, t)l 2 rdr 

T(z, t) = 0 (6) 

S LO) IEa(O, r, z, t)l 2 rdr 

where ra is the aperture radius and Sis the aperture 
transmittance in the linear regime. The laser tempo­
ral pulse shape can be taken into account by simply 
performing a separate time integration on both the 
upper and lower terms in Eq. (6). This gives the Z­
scan fluence transmittance T(z). We first discuss the 
general features of the Z scan using a constant input 
field such that T(z, t) = T(z). 

For a given flcJ>o, the magnitude and shape of T(z) do 
not depend on the wavelength or geometry as long as 
the far-field condition for the aperture plane is satis­
fied. The aperture sizeS is, however, an important 
parameter in that a larger aperture reduces the varia­
tions in T(z), i.e., the sensitivity. This reduction is 
more prominent in the peak, where beam narrowing 
occurs, and results in a peak transmittance that can­
not exceed (1 - S). The effect vanishes for a large 
aperture or no aperture, where S = 1, and T(z) = 1 for 
all z and flcJ>p (assuming no nonlinear absorption). 
For smalli.Ll<I?I, the peak and valley occur at the same 
distance with respect to the focus, and for a cubic 
nonlinearity their separation is found to be ~1.7zo. 

This distance may be used to determine the order of 
the nonlinearity. 

We can define an easily measurable quantity fl.Tp-v 
as the difference between the normalized peak (maxi­
mum) and valley (minimum) transmittances, Tp - Tv. 
The variation of this quantity as a function of flcJ>o as 
calculated for various aperture sizes is found to be 
almost linearly dependent on fl.cJ>0. Within ±3% accu­
racy the following relationship holds: 

fl.Tp-v ~ plflcJ>01 for lflcJ>01 :5 1r, (7a) 

with p = 0.405(1 - S)0.25. Particularly, for on-axis 
transmission (S ~ 0) we find that 

fl.Tp-v ~ 0.405lflcJ>01 for lflcJ>01 :5 71". (7b) 

The linear nature of relations (7) makes it convenient 
to account for the temporal and transient effects in 
Eq. (6) by simply averaging the instantaneous phase 
distortion fl.<I?0(t) over the laser pulse shape. An aver­
age phase distortion fl.cJ>0 can be obtained as the prod­
uct of the peak phase shift fl.<I>0(0) and an averaging 
factor that is a constant of the pulse shape for a given 
type of nonlinearity. For example, for a Gaussian 
pulse shape and a fast cubic nonlinearity, this factor is 
1/{2. For a cumulative nonlinearity having a decay 
time much longer than the pulse width (e.g., thermal) 
a fluence averaging factor of 0.5 is to be used regardless 
of the shape of the pulse. Relations (7) can thus be 
used to calculate the nonlinear index n2 to within ±3%. 
This equation also reveals the highly sensitive nature 
of the Z-scan technique. For example, if the experi­
mental apparatus is capable of resolving transmit­
tance changes (fl.Tp-v) of ~1%, phase changes corre­
sponding to X/250 wave-front distortion are detect­
able. 

Figure 2 shows a Z scan of a 1-mm-thick CS2 cell 
using 300-nsec pulses from a single-longitudinal-mode 
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Fig. 2. Measured Z scan of a 1-mm-thick CS2 cell using 300-
nsec pulses at X = 10.6 J.LID indicating thermal self-defocus­
ing. The solid curve is the calculated result with ~<I>o = 
-0.6. 
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Fig. 3. Measured Z scan of a 2.5-mm-thick BaF2 sample 
using 27 -psec (FWHM) pulses at 'A = 0.532 J.Lffi indicating the 
self-focusing due to the electronic Kerr effect. The solid 
curve is the theoretical fit with .6.<Po = 0.085 corresponding to 
~'A/75 phase distortion. 

TEA C02 laser having an energy of 0.85 mJ. The 
peak-to-valley configuration of this Z scan is indica­
tive of a negative (self-defocusing) nonlinearity. The 
solid curve in Fig. 2 is the calculated result using A <Po= 
-0.6, which gives an index change of Ano = -1 X 10-3. 
This is attributed to a thermal nonlinearity resulting 
from linear absorption of cs2 (a!:!:!. 0.22 cm-1) at 10.6 
ttm. The rise time of a thermal lens in a liquid is 
determined by the acoustic transit time, r = w0/us, 
where Us is the velocity of sound in the liquid. For cs2 
with Us !:!:!. 1.5 X 105 em/sec and wo !:!:!. 60 ttm, we obtain a 
rise time of !:!:!.40 nsec, which is almost an order of 
magnitude smaller than the transversely excited at­
mosphere laser pulse width. Furthermore, the relax­
ation of the thermal lens, governed by thermal diffu­
sion, is of the order of 100 msec.12 Therefore were­
gard the nonuniform heating caused by the 300-nsec 
pulses as quasi-steady state, in which case the average 
on-axis nonlinear index change at focus can be deter­
mined in terms of the thermo-optic coefficient, dn/dT, 
as 

dn 0.5F0a 
An0 C!:!.----, 

dT pCv 
(8) 

where Fo is the fluence, p is the density, Cv is the 
specific heat, and 0.5 denotes the fluence averaging 
factor. With the known value of pCv !:!:!. 1.3 J/K cm3 
for CS2, we calculate that dn/dT!:!:!. -(8.3 ± 1.0) X 10-4 
oc-1, which is in good agreement with the reported 
value of -8 X 10-4 oC-1,13 

Using 27-psec (FWHM), 2.0-ttJ pulses from a fre­
quency-doubled Nd:YAG laser focused to a spot size 
wo of 18 ttm, we performed a Z scan on a 2.5-mm-thick 
BaF2 crystal. The result (Fig. 3) indicates a positive 
(self-focusing) nonlinearity. The theoretical fit as­
suming Gaussian-shaped pulses was obtained for A <Po 
= 0.085, from which an n2 value of !:!:!. (0.8 ± 0.15) X 
10-13 esu is calculated. This value is in agreement 
with the reported values of !:!:!.0.7 X 10-13 and !:!:!.1.0 X 
10-13 esu as measured using nearly degenerate three­
wave mixing4 and time-resolved interferometry,2 re­
spectively. BaF2 has a particularly small value of n2. 
In addition, the laser input energy was purposely low­
ered to 2.0 ttJ to illustrate the sensitivity of this tech­
nique to small induced phase changes. The peak 
wave-front distortion shown in Fig. 3 corresponds to "A/ 
75. 

The simplicity and sensitivity of the technique de­
scribed here make it attractive as a screening test to 
give the sign, magnitude, and order of the nonlinear 
response of new nonlinear-optical materials. 
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