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Dispersion and Band-Gap Scaling of the Electronic Kerr Effect in Solids 
Associated with Two-Photon Absorption 
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Measurements of the nonlinear refractive index using beam-distortion methods and four-wave mixing 
show a strong systematic dispersion in the bound-electronic nonlinearity (electronic Kerr effect nz) near 
the two-photon-absorption edge. We find that with the two-photon-absorption spectrum predicted by a 
two-parabolic-band model, we can predict the observed universal dispersion, scaling, and values of nz 
that range over 4 orders of magnitude and change sign, using a simple Kramers-Kronig analysis. There­
sulting scaling rule correctly predicts the value of nz for 26 different materials, including wide-gap 
dielectrics and semiconductors. 

PACS numbers: 78.20.Wc, 42.65.Bp, 42.65.Jx 

The study of nonlinear optics in semiconductors has 
primarily concentrated on band-gap-resonant effects. 
The very large nonlinear effects observed in this case are 
the saturation of interband and excitonic absorption due 
to photoexcited free carriers and excitons, and the associ­
ated negative change in the refractive index. In contrast, 
by exciting optical solids at frequencies much less than 
the gap, a considerably smaller and faster, positive non­
linear refractive index (nz) due to bound-electronic 
effects is observed. This n2 arises from the real part of 
the third-order susceptibility x0 > and is defined through 
the refractive index change ll.n, where 

(I) 

with lw and Ew being the irradiance and electric field at 
frequency w, respectively, and nz-(2.~r/no)Re{z<3 >}. 
The linear refractive index is no, and rand n2 are relat­
ed by nz(esu) -(cn0 y/40n-)(mks), where c is the speed 
of light. The magnitude and dispersion of nz is of in­
terest because of its importance in applications such as 
nonlinear propagation in fibers, fast optical switching, 
self-focusing and damage in optical materials, and opti­
cal limiting in semiconductors. 

Most studies of nz in optical solids usually concentrate 
on wavelengths far below the energy gap (Eg). Howev­
er, recently we found that measurements in semiconduc­
tors substantially above the two-photon-absorption 
(2PA) edge (Eg/2) yield negative values for nz. 1 We 
have extended these measurements to a large number of 
other materials including semiconductors and dielectrics 
above and below the 2P A edge. As a result, we have 
been able to clearly demonstrate the behavior of the 
dispersion of n z. 

Utilizing a newly developed technique (Z scan) for nz 
measurements 1•2 that can determine its magnitude and 
sign, we have measured nz for several semiconductors 
and wide-gap dielectrics at 1.064 and 0.532 J.Lm. This 
simple technique has been shown to be an accurate and 
sensitive tool for measuring n2 even in the presence of 

nonlinear absorption. For example, we find a negative n2 

in materials such as ZnSe at 0.532 pm where 2PA is 
present, but find that the sign changes at 1.064 pm. We 
have also performed picosecond, degenerate, four-wave­
mixing (DFWM) measurements which show this third­
order response to be fast (time-resolution limited by the 
30-ps pulse width) and dominant at irradiances up to 
=0.5 GW/cm 2, while at higher irradiances the slowly 
decaying 2PA-generated free-carrier refraction becomes 
important. 3 DFWM studies in other semiconductors and 
other wavelengths show this to be a universal pheno­
menon. 

It has previously been predicted that x(J) should vary 
as Eg- 4. 4•5 Using this scaling and the relation between 
nz and x0 > that includes the linear index n0, we can re­
move the Eg and no dependences from the experimental 
values of nz by multiplying them by noEi. Figure 1 
shows a plot of our experimentally determined scaled 
values of nz as a function of hw/Eg. We also divide the 
data by a constant K' which we explain in what follows. 
We show on the same plot several data for large-gap op­
tical crystals obtained from recent measurements by 
Adair, Chase, and Payne using a "nearly degenerate 
three-wave-mixing" scheme. 6 Our own measurements of 
several of the same materials studied in Ref. 6 show ex­
cellent absolute agreement. Assuming that there are no 
other relevant parameters unique to each material other 
than band gap and index, this plot should be general to 
all optical solids. Upon examination of Fig. 1 we im­
mediately see a trend giving small positive values for low 
ratios of photon energy to band-gap energy which slowly 
rises to a broad resonance peak at the 2P A edge and 
then decreases, eventually turning negative between the 
two-photon- and single-photon-absorption edges. We 
should note that the scaling with Eg hides a variation in 
magnitude of nz of 4 orders of magnitude so that the ob­
served universal dispersion curve is quite remarkable. 
This dispersion curve is qualitatively similar to the 
dispersion of the linear index around the single-photon-
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FIG. I. Data of n2 scaled as n2noEi!K' vs hm/Eg. The open 
circles represent the data from Ref. 6 all obtained at A. -1.06 
Jlm. The remaining data are our measurements using the Z­
scan technique taken at A. -1.06 Jlm (open squares), at 
A. =0.532 JJm (solid squares), and at A. -10.6 Jlm (solid trian­
gle). Only the semiconductor data within the highly dispersive 
region are labeled for comparison. The solid line is the calcu­
lated dispersion function G2 with no adjustable parameters. 

absorption edge. 7 As these linear quantities are related 
by causality via a Kramers-Kronig (KK) relation, it 
seems logical to investigate whether the observed disper­
sion of n2 can be calculated using a nonlinear Kramers­
Kronig relation between the real and imaginary parts of 
z(3). Indeed, as we will show, making some reasonable 
assumptions, the observed tendencies as well as the abso­
lute magnitudes of this dispersion are well predicted by 
such a calculation. Figure I is the direct result of such a 
calculation includinf only the 2PA contribution to the 
imaginary part of x 3>. The 2PA spectral dependence is 
well established both experimentally and theoretical­
ly. S-ll It should be noted that no fitting parameter is 
used in this calculation, which is presented below. 

Most theoretical calculations of n2 have been confined 
to the zero-frequency limit. 12- 16 Of these, semiempirical 
formulations have been most successful in predicting the 
magnitude of n2• 15•16 For example, the formula obtained 
by Boling, Glass, and Owyoung in relating n2 to the 
linear index (no) and the dispersion of no in terms of the 
Abbe number has been successfully applied to a large 
class of transparent materials. 6•16 Their theory predicts 
the low-frequency magnitude of n2, but does not give the 
dispersion. The KK method described here predicts the 
dispersion as well as the magnitude of n 2• This calcula­
tion assumes that 2PA gives the dominant contribution 
to nz and that other contributions from electronic Ra­
man and the ac Stark effect ("virtual band blocking") 

are ignored. We will return to this assumption later. 
Based on the principle of causality, the KK transfor­

mation states that a change in the refractive index (~n) 
at ro is associated with changes in the absorption coeff­
icient (~a) throughout the spectrum (ro') and vice versa. 
We write this as 

.. ( -J!)- .E..froo ~a(ro';~) d ' 
un ro,., o 2 •2 lO ' 

7r ro -ro 
(2) 

where c is the velocity of light in vacuum and ~ is a pa­
rameter (or parameters) denoting the "cause" of change 
in the absorption. The cause need not be of optical ori­
gin but could be any external perturbation, such as 
thermal excitation, etc. For cases where an electron-hole 
plasma is injected, the consequent change of absorption 
has been used to obtain the plasma contribution to the 
refractive index. In this case, the ~ parameter is taken as 
the change in plasma density (MV) regardless of the 
mechanism of generation of the plasma or the pump fre­
quency. 17 In the case of 2PA the change is due to the 
presence of a pump field at n (i.e., ~- n ). The corre­
sponding nonlinear refraction is ~n(ro, n ), which gives 
the dispersion of the index change with ro. For the case 
of self-refraction, ro = n, and this gives what is common­
ly referred to as n2• Van Vechten and Aspnes 14 obtained 
the low-frequency limit of n2 from a similar KK trans­
formation of the Franz-Keldysh electroabsorption effect 
where, in this case ~ is the de field. The bound-electronic 
contribution to x(3) can originate from various absorptive 
counterparts that are quadratic functions of the pump 
field. Effects of this order may include 2P A, the elec­
tronic Raman effect, and the optical Stark effect. Here 
we consider only 2P A. 

A wealth of experimental and theoretical work regard­
ing 2PA in semiconductors and crystalline materials ex­
ists. In accordance with the predictions derived from ei­
ther a second-order perturbation calculation of the tran­
sition rate 5•8 or a Keldysh-type formalism, 9 the 2PA 
coefficients of the semiconductors studied in Ref. I 0 were 
found to be in good agreement with the theoretical ex-
pression given as 

f3(2ro') =K ~EP3 F2 [ 2Zro'], 
no g g 

(3) 

where K is a material-independent constant and Ep (re­
lated to the Kane momentum parameter, a momentum 
matrix element) is nearly material independent and 
posseses a value of =21 eV for most direct-gap semicon­
ductors. Note that f3 = (4~rro/noHm {z 0 >}. The function 
F 2 is only a function of the ratio of the photon energy 
hro' to Eg G.e., the optically coupled states). The func­
tional form of F2 reflects the assumed band structure 
and the intermediate states considered in calculating the 
2PA transition rate. The simplest model assumes a pair 
of isotropic and parabolic bands and intermediate states 
that are degenerate to initial (valence) or final (conduc-
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tion) states. Neglecting the Coulomb interaction, this 
simple formalism yields 5 

(2x -1 ) 312 
F2(2x)= (2x) 5 for 2x>1. (4) 

The best fit to the data of Ref. 10 using Eqs. (3) and (4) 
gave K=3.1 x 103 in units such that Ep and Eg were in 
eV and f3 was in cm/GW, while theory gave 5.2X 10 3. 8 

When nonparabolicity was included the average f3 was 
26% lower than theory; however, the frequency depen­
dence of f3 changed very little. Interestingly, Eqs. (3) 
and (4) also give a fair estimate of f3 for a number of 
transparent materials measured using the third and 
fourth harmonics of picosecond Nd-doped yttrium­
aluminum-garnet laser pulses. 11 •18 

special cases have been considered, 21 a general theory 
that would rigorously address the proper scaling and 
spectrum of the nondegenerate 2P A is yet to be 
developed. For this reason we assume that the spectral 
function F 2 for the nondegenerate 2P A coefficient 
f3(m', n) can be given by Eq. (4) modified with the sub­
stitution of 2hm' by hm'+hn; thus, F2(2x) is replaced 
by F2(x'+X), where x'=hm'/Eg. X=hn/Eg, and x' 
+X> 1. This substitution is strictly valid only for 
x'-X; however, the predictions resulting from this sub­
stitution show remarkable agreement with the data, as 
will be shown. 

The change of the absorption spectrum (at m') in­
duced by the presence of a strong pump at n can be 
written for 2PA as lla(m';n)=f3(m';n)/ 0 , where / 0 

denotes the irradiance of the pump field. Similarly, the 
change in refractive index at m induced by the presence 
of a strong pump at n can be written as lln(m;n) 
""'y(m;n )I o- Applying the KK transformation Eq. (2) 
at this point yields a relation between y(m; n) and 
f3(m';n). Using Eq. (3) with F2(x'+X) in Eq. (2) we 
obtain for the degenerate case (m- n), 

(5) 

where the dispersion function G2(x) is given by 

-2+6x-3x 2 -x 3- ix 4 - fx 5 +2(1-2x) 312e(l-2x) 
Gz(x)-----------------------------------------

64x6 

Equations (3) and (4) pertain to a degenerate case 
where the two photons involved are of the same frequen­
cy and source. For a KK transformation the nondegen­
erate 2PA coefficient for two distinct frequencies is need­
ed [i.e., n the "cause" and m' the integration variable in 
Eq. (2)1. Extending the same simple model to obtain the 
non degenerate 2P A coefficient has led to dispersion func­
tions that are afflicted with "infrared divergences." 19•20 

This has been a common problem originating from the 
use of the A· p perturbation to calculate the bound­
electronic nonlinear susceptibilities in solids. 19 Although 

(6) 

with e(x) being the unit step function. 
Using the value of K obtained from the 2PA measure­

ments, Ep =21 eV, and converting from r to n2, we ob­
tain the final expression for n2 as 

( ) , Gz(hm/Eg) 
nz esu -K 4 

noEg 
(7) 

where K'=3.4x10- 8 and Egis in eV. Equation (7) ex­
plicitly shows an Eg- 4 band-gap dependence for the mag­
nitude of n2 as predicted in Refs. 4 and 5, and the sign 
and the frequency dispersion of this quantity are given 
by the simple closed-form function Gz. Gz is the func­
tion plotted as the solid line in Fig. 1. It is important to 
note that no fitting parameter was used in plotting the 
theoretical curve and that the agreement between data 
and the calculation is extremely good for this wide 
variety of materials and large disparity in magnitudes of 
n2. A noticeable difference between the magnitude of 
the measured and calculated values is seen near the one­
photon-absorption edge in Fig. 1. Considering the sim­
plicity of the model in deriving Eq. (7), such deviations 
are not expected. The measured large negative values of 
n2 as compared to the calculated values near the func­
tional absorption edge may be attributed to the refrac­
tion due to the optical Stark effect which has been ig­
nored in our calculations. The contribution of this mech-
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anism to the electronic nonlinear susceptibility has been 
shown to have a strong band-gap resonance and follows 
the same scaling as given in Eq. (7). 4 This effect, which 
is negative for all frequencies below the band gap, van­
ishes quickly for longer wavelengths (hm < Eg/2) and 
gives a negligible contribution in the transparency region 
of the material. 

The Eg- 4 dependence of n2 gives a variation of n2 
from 2.5 x 10- 14 esu for a material such as MgF2 at 1.06 
JJm to 3X 10 -to esu for germanium at 10.6 JJm, which 
we measured using a picosecond C02 laser. This large 
variation of n2 is better displayed by plotting n2 scaled 
by no and G2 as a function of Eg on a log-log plot as 
shown in Fig. 2. In spite of this very large variation in 
magnitude of n2 (and change in sign), this extremely 
simple model gives good agreement with the data for 
materials including both semiconductors and insulators, 
except very near the absorption edge. However, we must 
emphasize that the justification for splitting 2m into 
m' + n in Eq. (4) is empirical. 

In conclusion, the measured n2 data follow a universal 
dispersion curve (see Fig. I) from which values of n 2 for 
other materials at other wavelengths can be calculated. 
We have also experimentally verified the predicted band­
gap scaling of n2. From the excellent overall agreement 
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FIG. 2. A log-log plot of the data of Fig. I vs energy gap 
(£g). Here the data are scaled by no(K'Gz) -I. The solid line 
represents the theoretical result as obtained from Eq. (7) with 
no adjustable parameters and has a slope of -4. The open cir­
cles represent the data from Ref. 6 all obtained at A.= 1.06 ttm. 
The remaining data are our measurements using the Z-scan 
technique taken at A. -1.06 ttm (open squares), at A. -0.532 
ttm (solid squares), and at A. -10.6ttm (solid triangle). 

of the predicted magnitude and dispersion of n 2, as cal­
culated via the KK method, with the large number of ex­
perimental data, we conclude that the process responsi­
ble for 2PA also gives a significant if not dominant con­
tribution to n2. This in turn implies that the bound­
electronic nonlinear refractive index is predominantly a 
causal consequence of two-photon absorption just as the 
linear index is a causal consequence of linear absorption. 
This calculational approach takes advantage of the his­
torical fact that, for the solid state, the 2PA coefficient 
has been calculated from a transition-rate approach. 22 

Thus, we have circumvented problems associated with 
performing a direct calculation of the third-order suscep­
tibility. 
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